Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-11T16:48:44.019Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  01 April 2021

James D. Walker
Affiliation:
Southwest Research Institute, Texas
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Alekseevskii, V. P., Penetration of a rod into a target at high velocity, Combustion, Explosion and Shock Waves 2 (1966), 6366, translated from the Russian.CrossRefGoogle Scholar
2. Allen, W. A. and Rogers, J. W., Penetration of a rod into a semi-infinite target, Journal of the Franklin Institute 272 (1961), 275284.Google Scholar
3. Anderson, C. E. Jr., Chocron, I. S., and Nicholls, A. E., Damage modeling for Taylor impact simulations, Journal de Physique IV 134 (2006), 331337.Google Scholar
4. Anderson, C. E. Jr. and Chocron, S., Effect of lateral confinement on penetration efficiency as a function of impact velocity, Computational Ballistics II (Billerica, MA) (V. Sanchez-Galvez, C. A. Brebbia, A. A. Motta, and C. E. Anderson, Jr., eds.), WIT Press, 2005, pp. 149–158.Google Scholar
5. Anderson, C. E. Jr. and Chocron, S., Experimental results and a simple theory for the early deflection-time history of a ballistic fabric, Shock Compression of Condensed Matter: 2009 (Melville, NY) (M. L. Elert, W. T. Buttler, M. D. Furnish, W. W. Anderson, and W. G. Proud, eds.), AIP Press, 2009, pp. 1457–1460.CrossRefGoogle Scholar
6. Anderson, C. E. Jr., Hohler, V., Walker, J. D., and Stilp, A. J., Time-resolved penetration of long rods into steel targets, International Journal of Impact Engineering 16 (1995), no. 1, 118.Google Scholar
7. Anderson, C. E. Jr., Hohler, V., Walker, J. D., and Stilp, A. J., The influence of projectile hardness on ballistic performance, International Journal of Impact Engineering 22 (1999), no. 6, 619–632.Google Scholar
8. Anderson, C. E. Jr., Littlefield, D. L., and Walker, J. D., Long-rod penetration, target resistance, and hypervelocity impact, International Journal of Impact Engineering 14 (1993), no. 1–4, 112.Google Scholar
9. Anderson, C. E. Jr. and Morris, B. L., The ballistic performance of confined Al2 O3 ceramic tiles, International Journal of Impact Engineering 12 (1992), no. 2, 167187.Google Scholar
10. Anderson, C. E. Jr., Morris, B. L., and Littlefield, D. L., A penetration mechanics database, SwRI Report 3593/001, Southwest Research Institute, San Antonio, TX, 1992, Prepared for DARPA.Google Scholar
11. Anderson, C. E. Jr., Orphal, D. L., Franzen, R. R., and Walker, J. D., On the hydrodynamic approximation for long-rod penetration, International Journal of Impact Engineering 22 (1999), no. 1, 2342.Google Scholar
12. Anderson, C. E. Jr. and Walker, J. D., An examination of long-rod penetration, International Journal of Impact Engineering 11 (1991), no. 4, 481501.Google Scholar
13. Anderson, C. E. Jr. and Walker, J. D., An analytical expression for P/L for WA rods into armor steel, Shock Compression of Condensed Matter: 1995 (Woodbury, NY) (S. C. Schmidt and W. C. Tao, eds.), AIP Press, 1996, pp. 1135–1138.Google Scholar
14. Anderson, C. E. Jr., Walker, J. D., Bless, S. J., and Partom, Y., On the L/D effect for long-rod penetrators, International Journal of Impact Engineering 18 (1996), no. 3, 247264.Google Scholar
15. Anderson, C. E. Jr., Walker, J. D., Bless, S. J., and Sharron, T. R., On the velocity dependence of the L/D effect for long-rod penetrators, International Journal of Impact Engineering 17 (1995), 13 – 24.CrossRefGoogle Scholar
16. Anderson, C. E. Jr., Walker, J. D., and Hauver, G. E., Target resistance for long-rod penetration into semi-infinite targets, Nuclear Engineering and Design 138 (1992), 93104.Google Scholar
17. Anderson, C. E. Jr., Walker, J. D., and Sharron, T. R., The influence of edge effects on penetration, 17th International Symposium on Ballistics (Midrand, South Africa) (C. van Niekerk, ed.), vol. 3, 1998, pp. 33–40.Google Scholar
18. Anderson, C. E. Jr., Wilbeck, J. S., Westine, P. S., Lindholm, U. S., and Wenzel, A. B., A short course in penetration mechanics course notes, Southwest Research Institute, San Antonio, TX, 1985.Google Scholar
19. Antoun, T., Curran, D. R., Razorenov, S. V., Seaman, L., Kanel, G. I., and Utkin, A. V., Spall fracture, Springer, New York, 2003.Google Scholar
20. Asay, J. R., Chhabildas, L. C., Lawrence, R. J., and Sweeney, M. A., Impactful times: memories of 60 years of shock wave research at Sandia National Laboratories, Springer, Berlin, 2017.Google Scholar
21. Asay, J. R. and Shahinpoor, J. (eds.), High-pressure shock compression of solids, Springer-Verlag, New York, 1993.Google Scholar
22. Awerbuch, J. and Bodner, S. R., Analysis of the mechanics of perforation of projectiles in metallic plates, International Journal of Solids and Structures 10 (1974), 671684.Google Scholar
23. Bao, Y. and Wierzbicki, T., A comparative study on various ductile crack formation criteria, Journal of Engineering Materials and Technology 126 (2004), 314324.Google Scholar
24. Bao, Y. and Wierzbicki, T., On fracture locus in the equivalent strain and stress triaxiality space, International Journal of Mechanical Sciences 46 (2004), 81–98.Google Scholar
25. Bao, Y. and Wierzbicki, T., On the cut-off value of negative triaxility for fracture, Engineering Fracture Mechanics 72 (2005), 1049–1069.Google Scholar
26. Batra, R. C., Mueller, I., and Strehlow, P., Treloar’s biaxial tests and Kearsley’s bifurcation in rubber sheets, Mathematics and Mechanics of Solids 10 (2005), 705713.CrossRefGoogle Scholar
27. Beatty, M. F., Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues – with examples, Applied Mechanics Reviews 40 (1987), no. 12, 16991734.Google Scholar
28. Birkhoff, G., MacDougall, D. P., Pugh, E. M., and Taylor, G., Explosives with lined cavities, Journal of Applied Physics 19 (1948), 563582.CrossRefGoogle Scholar
29. Bland, D. R., On shock structure in a solid, Journal of the Institute of Mathematics and its Applications 1 (1965), 5675.CrossRefGoogle Scholar
30. Bridgman, P. W., The physics of high pressure, G. Bell and Sons, London, 1949.Google Scholar
31. Bridgman, P. W., Studies in large plastic flow and fracture (with special emphasis on the effects of hydrostatic pressure), McGraw-Hill, New York, 1952.Google Scholar
32. Brun, R. (ed.), High temperature phenomena in shock waves, Springer, Berlin, 2012.CrossRefGoogle Scholar
33. Butcher, B. M. and Karnes, C. H., Dynamic compaction of porous iron, Journal of Applied Physics 40 (1969), no. 7, 29672976.Google Scholar
34. Callen, H. B., Thermodynamics, John Wiley & Sons, Inc., New York, 1960.Google Scholar
35. Carrier, G. F. and Pearson, C. E., Partial differential equations: Theory and technique, 2nd ed., Academic Press, San Diego, CA, 1988.Google Scholar
36. Carroll, M. M. and Holt, A. C., Static and dynamic pore-collapse relations for ductile porous materials, Journal of Applied Physics 43 (1972), no. 4, 1,626–1,636.CrossRefGoogle Scholar
37. Chhabildas, L. C., Davison, L., and Horie, Y. (eds.), High-pressure shock compression of solids VIII: the science and technology of high-velocity impact, Springer-Verlag, Berlin, 2005.Google Scholar
38. Chocron, S., Anderson, C. E. Jr., Grosch, D. J., and Popelar, C. H., Impact of the 7.62-mm APM2 projectile against the edge of a metallic target, International Journal of Impact Engineering 25 (2001), 423437.Google Scholar
39. Chocron, S., Anderson, C. E. Jr., and Walker, J. D., A consistent plastic flow approach to model penetration and failure of finite-thickness metallic targets, 18th International Symposium on Ballistics (San Antonio, TX) (W. G. Reinecke, ed.), vol. 2, Technomic Publishing Co., 1999, pp. 761–768.Google Scholar
40. Chocron, S., Anderson, C. E. Jr., Walker, J. D., and Ravid, M., A unified model for long-rod penetration in multiple metallic target plates, International Journal of Impact Engineering 28 (2003), no. 4, 391411.Google Scholar
41. Chocron, S., Erice, B., and Anderson, C. E., A new plasticity and failure model for ballistic application, International Journal of Impact Engineering 38 (2011), 755764.Google Scholar
42. Chocron, S., Grosch, D. J., and Anderson, C. E. Jr., DOP and V50 predictions for the 0.30-cal APM2 projectile, 18th International Symposium on Ballistics (San Antonio, TX) (W. G. Reinecke, ed.), Technomic Publishing Co., 1999, pp. 769–776.Google Scholar
43. Christensen, R. M., The theory of materials failure, Oxford University Press, Oxford, UK, 2013.Google Scholar
44. Christman, D. R. and Gehring, J. W., Analysis of high-velocity projectile penetration mechanics, Journal of Applied Physics 37 (1966), no. 4, 1,579–1,587.Google Scholar
45. Chung, C. C., Lee, K. L., and Pan, W. F., Finite element analysis on the response of 6061-T6 aluminum alloy tubes with a local sharp cut under cyclic bending, Journal of Vibroengineering 18 (2016), no. 7, 4,276–4,284.CrossRefGoogle Scholar
46. Cockcroft, M. G. and Latham, D. J., Ductility and the workability of metals, Journal of the Institute of Metals 96 (1968), 3339.Google Scholar
47. Courant, R. and Friedrichs, K. O., Supersonic flow and shock waves, Interscience Publishers (reprint by Springer-Verlag 1985), New York, 1948.Google Scholar
48. Crawford, F. S. Jr., Waves, McGraw-Hill, New York, 1968.Google Scholar
49. Crozier, R. J. M. and Hunter, S. C., Similarity solution for the rapid uniform expansion of a cylindrical cavity in a compressible elastic-plastic solid., Quarterly Journal of Mechanics and Applied Mathematics 23 (1970), no. 3, 349363.CrossRefGoogle Scholar
50. Cunniff, P. M., An analysis of the system effects of woven fabrics under ballistic impact, Textile Research Journal 62 (1992), no. 9, 495509.Google Scholar
51. Cunniff, P. M., A design tool for the development of fragmentation protective body armor, 18th International Symposium on Ballistics (San Antonio, TX) (W. G. Reinecke, ed.), vol. 2, Technomic Publishing Co., 1999, pp. 1295–1302.Google Scholar
52. Cunniff, P. M., Dimensionless parameters for optimization of textile-based body armor systems, 18th International Symposium on Ballistics (San Antonio, TX) (W. G. Reinecke, ed.), vol. 2, Technomic Publishing Co., 1999, pp. 1303–1310.Google Scholar
53. Davison, L., Grady, D. E., and Shahinpoor, M. (eds.), High-pressure shock compression of solids II: dynamic fracture and fragmentation, Springer, New York, 1996.Google Scholar
54. Denardo, B. P. and Nysmith, C. R., Momentum transfer and cratering phenomena associated with the impact of aluminum spheres into thick aluminum targets at velocities to 24000 ft/s, Proceedings of the AGARD-NATO Specialists, Vol. 1: The Fluid Dynamic Aspect of Space Flight (New York) (S. C. Schmidt, J. W. Shaner, G. A. Samara, and R. Ross, eds.), Gordon and Breach Science Publishers, 1964, pp. 389–402.Google Scholar
55. Dey, S., Børvik, T., Hopperstad, O. S., and Langseth, M., On the influence of fracture criterion in projectile impact of steel plates, Computational Materials Science 38 (2006), 176191.Google Scholar
56. Duvall, G. E., Some properties and applications of shock waves, Response of Metals to High Velocity Deformation (New York) (P. G. Shewnon and V. F. Zackay, eds.), Interscience Publishers, 1961, Chapter 4, pp. 165–203.Google Scholar
57. Duvall, G. E., Shock waves and equations of state, Dynamic Response of Materials to Intense Impulsive Loading (Wright Patterson Air Force Base, OH) (P. C. Chou and A. K. Hopkins, eds.), Air Force Materials Laboratory, 1973, Chapter 4.Google Scholar
58. Eichelberger, R. J., Experimental test of the theory of penetration by metallic jets, Journal of Applied Physics 27 (1956), no. 1, 6368.CrossRefGoogle Scholar
59. Eichelberger, R. J. and Gehring, J. W., Effects of meteoroid impacts on space vehicles, ARS Journal 32 (1962), 1,583–1,591.Google Scholar
60. Eringen, A. C., Microcontinuum field theories I: foundations and solids, Springer, New York, 1999.Google Scholar
61. Fickett, W. and Davis, W. C., Detonation, University of California Press, Berkeley, CA, 1979.Google Scholar
62. Flanagan, D. P. and Taylor, L. M., An accurate numerical algorithm for stress integration with finite rotations, Computer Methods in Applied Mechanics and Engineering 62 (1987), 305320.Google Scholar
63. Follansbee, P. S., Fundamentals of strength, John Wiley & Sons, Hoboken, NJ, 2014.Google Scholar
64. Forrestal, M. J., Børvik, T., Warren, T. L., and Chen, W., Perforation of 6082-T651 aluminum plates with 7.62 mm APM2 bullets at normal and oblique impacts, Experimental Mechanics 54 (2014), 471481.CrossRefGoogle Scholar
65. Forrestal, M. J., Brar, N. S., and Luk, V. K., Penetration of strain-hardening targets with rigid spherical-nose rods, Journal of Applied Mechanics 58 (1991), 710.Google Scholar
66. Forrestal, M. J. and Hanchak, S. J., Perforation experiments on HY-100 steel plates with 4340 R c 38 and maraging T-250 steel rod projectiles, International Journal of Impact Engineering 22 (1999), 923933.CrossRefGoogle Scholar
67. Forrestal, M. J., Lim, B., and Chen, W., A scaling law for APM2 bullets and aluminum armor plates, Experimental Mechanics 59 (2019), no. 1, 121123.CrossRefGoogle Scholar
68. Forrestal, M. J. and Longcope, D. B., Target strength of ceramic materials for high-velocity penetration, Journal of Applied Physics 67 (1990), no. 8, 36693672.Google Scholar
69. Forrestal, M. J. and Luk, V. K., Dynamic spherical cavity-expansion in a compressible elastic-plastic solid, Journal of Applied Mechanics 55 (1988), 275279.CrossRefGoogle Scholar
70. Forrestal, M. J. and Luk, V. K., Dynamic spherical cavity-expansion of strain-hardening materials, Journal of Applied Mechanics 58 (1991), 1–6.Google Scholar
71. Forrestal, M. J., Okajima, K., and Luk, V. K., Penetration of 6061-T651 aluminum targets with rigid long rods, Journal of Applied Mechanics 55 (1988), 755760.Google Scholar
72. Fortov, V. E., Al’tshuler, L. V., Trunin, R. F., and Funtikov, A. I. (eds.), High-pressure shock compression of solids VII: shock waves and extreme states of matter, Springer-Verlag, New York, 2004.Google Scholar
73. Franzen, R. R. and Schneidewind, P. N., Observations concerning the penetration mechanics of tubular hypervelocity penetrators, International Journal of Impact Engineering 11 (1991), 289303.CrossRefGoogle Scholar
74. Fung, Y. C., Foundations of solid mechanics, Prentice Hall International, London, 1965.Google Scholar
75. Funtikov, A. I., Phase diagram of iron, High-Pressure Shock Compression of Solids VII: shock Waves and Extreme States of Matter (New York) (V. E. Fortov, L. V. Al’tshuler, R. F. Trunin, and A. I. Funtikov, eds.), Springer-Verlag, 2004, pp. 225–246.Google Scholar
76. Gerlach, U., Microstructural analysis of residual projectiles – a new method to explain penetration mechanisms, Metallurgical Transactions A 17 (1986), no. 3, 435442.Google Scholar
77. Goldsmith, W., Impact, Edward Arnold, London, 1960.Google Scholar
78. Gosline, J. M., Guerette, P. A., Ortlepp, C. S., and Savage, K. N., The mechanical design of spider silks: from fibroin sequence to mechanical function, Journal of Experimental Biology 202 (1999), 32953303.Google Scholar
79. Grabarek, C. L., Penetration of armor by steel and high density penetrators (BRL Memorandum Report No. 2134), U.S. Army Ballistics Research Laboratory, Aberdeen Proving Ground, MD, 1971.Google Scholar
80. Grady, D., Fragmentation of rings and shells: the legacy of N. F. Mott, Springer, Berlin, 2006.CrossRefGoogle Scholar
81. Grady, D., Physics of shock and impact volume 1: Fundamentals and dynamic failure, IOP Publishing, Bristol, 2017.Google Scholar
82. Grady, D. E., The spall strength of condensed materials, Journal of the Mechanics and Physics of Solids 36 (1988), no. 3, 353384.Google Scholar
83. Grady, D. E. and Kipp, M. E., The growth of unstable thermoplastic shear with applications to steady-wave shock compression in solids, Journal of the Mechanics and Physics of Solids 35 (1987), no. 1, 95118.Google Scholar
84. Grady, D. E. and Olsen, M. L., A statistics and energy based theory of dynamic fragmentation, International Journal of Impact Engineering 29 (2003), 293306.Google Scholar
85. Graham, R. A., Solids under high-pressure shock compression, Springer-Verlag, New York, 1993.Google Scholar
86. Gray, G. T., III, Chen, S. R., Wright, W., and Lopez, M. F., Constitutive equations for annealed metals under compression at high strain rates and high temperatures (LA-12669-MS), Los Alamos National Laboratory, Los Alamos, NM, 1994.Google Scholar
87. (R.) Gray, G. T., III, Classic split-Hopkinson pressure bar testing, ASM, 2000.Google Scholar
88. Gschneidner, K. A. Jr., Physical properties and interrelationships of metallic and semimetallic elements, Solid State Physics (New York) (F. Seitz and D. Turnbull, eds.), vol. 16, Academic Press, 1964, pp. 275–426.Google Scholar
89. Gurtin, M. E., Fried, E., and Anand, L., The mechanics and thermodynamics of continua, Cambridge University Press, New York, 2010.Google Scholar
90. Hancock, J. W. and MacKenzie, A. C., On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress states, Journal of the Mechanics and Physics of Solids 24 (1976), 147169.Google Scholar
91. Hayes, D. B., Introduction to stress wave phenomena (SLA-73-0801), Sandia National Laboraties, Albuquerque, NM, 1973.Google Scholar
92. Herrmann, W., Constitutive equation for the dynamic compaction of ductile porous materials, Journal of Applied Physics 40 (1969), no. 6, 24902499.Google Scholar
93. Hill, R., The mathematical theory of plasticity, Oxford University Press, Oxford, UK, 1950.Google Scholar
94. Hohler, V. and Stilp, A. J., Penetration of steel and high density rods in semi-infinite steel targets, 3rd Int. Symp. on Ballistics (Karlsruhe, Germany), 1977, pp. H3/1–12.Google Scholar
95. Hohler, V. and Stilp, A. J., Influence of length-to-diameter ratio in the range from 1 to 32 on the penetration performance of rod projectiles, 8th International Symposium on Ballistics (Orlando, Florida) (W. G. Reinecke, ed.), Avco Systems Division, 1984, pp. IB/13–19.Google Scholar
96. Hohler, V. and Stilp, A. J., Hypervelocity impact of rod projectiles with L/D from 1 to 32, International Journal of Impact Engineering 5 (1987), no. 38721, 323–331.Google Scholar
97. Hohler, V. and Stilp, A. J., Long-rod penetration mechanics, High Velocity Impact Dynamics (New York) (J. A. Zukas, ed.), John Wiley & Sons, 1990, pp. 394–395.Google Scholar
98. Hohler, V. and Stilp, A. J., Penetration data, A Penetration Mechanics Database (SwRI Report 3593/001) (San Antonio, TX) (C. E. Anderson, Jr., B. L. Morris, and D. L. Littlefield, eds.), 1992.Google Scholar
99. Holmquist, T. J., Templeton, D. W., and Bishnoi, K. D., Constitutive modeling of aluminum nitride for large strain, high-strain rate, and high-pressure applications, International Journal of Impact Engineering 25 (2000), 211231.Google Scholar
100. Hopkins, H. G., Dynamic expansion of spherical cavities in metals, vol. 1, North-Holland Publishing Co., Amsterdam, 1960, Chapter 3.Google Scholar
101. Isbell, W. M., Shock waves: measuring the dynamic response of materials, Imperial College Press, London, 2005.Google Scholar
102. Jameson, J. W., Stewart, G. M., Petterson, D. R., and Odell, F. A., Dynamic distribution of strain in textile materials under high-speed impact: part iii: strain-time-position history in yarns, Textile Research Journal 32 (1962), no. 10, 858860.Google Scholar
103. Jeng, S. T. and Goldsmith, W., Shear and bending phenomena in normal projectile impacts on thin targets, Computational Techniques for Contact, Impact, Penetration and Perforation of Solids (New York) (L. E. Schwer, N. J. Salamon, and W. K. Liu, eds.), vol. AMD 103, ASME, 1989, pp. 223–233.Google Scholar
104. Johnson, G. R., Material characterization for warhead computations, Tactical Missile Warheads (Washington, D.C.) (J. Carleone, ed.), American Institute of Aeronautics and Astronautics, 1993, pp. 165–197.Google Scholar
105. Johnson, G. R. and Cook, W. H., A constitutive model and data for metals subjected to large strains, high strain rates, temperatures and pressures, 7th International Symposium on Ballistics (The Hague, Netherlands), 1983, pp. 541–547.Google Scholar
106. Johnson, G. R. and Cook, W. H., Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Engineering Fracture Mechanics 21 (1985), no. 1, 31–48.Google Scholar
107. Johnson, G. R., Holmquist, T. J., Anderson, C. E. Jr., and Nicholls, A. E., Strain-rate effects for high-strain-rate compuations, Journal de Physique IV 134 (2006), 391396.Google Scholar
108. Johnson, J. N., Single-particle model of a solid: the Mie–Grüneisen equation, American Journal of Physics 36 (1968), no. 10, 917919.Google Scholar
109. Johnson, J. N. and Addessio, F. L., Tensile plasticity and ductile fracture, Journal of Applied Physics 64 (1988), no. 12, 66996712.CrossRefGoogle Scholar
110. Johnson, J. N. and Chéret, R. (eds.), Classic papers in shock compression science, Springer-Verlag, New York, 1998.Google Scholar
111. Johnson, K. L., Contact mechanics, Cambridge University Press, Cambridge, UK, 1985.Google Scholar
112. Johnson, W., Henri Tresca as the originator of adiabatic heat lines, International Journal of Mechanical Sciences 29 (1987), no. 5, 301310.Google Scholar
113. Jones, T. L., DeLorme, R. D., Burkins, M. S., and Gooch, W. A., Ballistic evaluation of magnesium alloy AZ31B (ARL-TR-4077), Army Research Laboratory, Aberdeen, MD, 2007.Google Scholar
114. Kalitkin, N. N. and Kuzmina, L. V., Wide-range characteristic thermodynamic curves, High-Pressure Shock Compression of Solids VII: shock Waves and Extreme States of Matter (New York) (V. E. Fortov, L. V. Al’tshuler, R. F. Trunin, and A. I. Funtikov, eds.), Springer-Verlag, 2004, pp. 109–176.Google Scholar
115. Kerley, G. I., Multiphase equation of state for iron (SAND93–0027), Sandia National Laboratories, Albuquerque, NM, 1993.Google Scholar
116. Kerley, G. I., Equation of state for copper and lead (KTS02–1), Kerley Technical Services, Appomattox, VA, 2002.Google Scholar
117. Kerley, G. I., Equations of state for hydrogen and deuterium (SAND2003–3613), Sandia National Laboratories, Albuquerque, NM, 2003.CrossRefGoogle Scholar
118. Kerley, G. I., The linear U s–up in shock-wave physics (KTS06–1), Kerley Technical Services, Appomattox, VA, 2006.Google Scholar
119. Kinslow, R. (ed.), High-velocity impact phenomena, Academic Press, New York, 1970.Google Scholar
120. Kipp, M. E. and Grady, D. E., Dynamic fracture growth and interaction in one dimension, Journal of the Mechanics and Physics of Solids 33 (1985), no. 4, 399415.Google Scholar
121. Kolsky, H., Stress waves in solids, Dover Publications, New York, 1963.Google Scholar
122. Koski, K. J., Akhenblit, P., McKiernan, K., and Yarger, J. L., Non-invasive determination of the complete elastic moduli of spider silks, Nature Materials (2013), 1–6, DOI:10.1038/NMAT3549.Google Scholar
123. Kreyszig, E., Introduction to differential geometry and Riemannian geometry, University of Toronto Press, Toronto, Canada, 1968.Google Scholar
124. Krieg, R. D. and Krieg, D. B., Accuracies of numerical solution methods for the elastic-perfectly plastic model, ASME Journal of Pressure Vessel Technology 99 (1977), 510515.Google Scholar
125. Laboratory, Los Alamos National, GMX-6 Hugoniot data, High-Pressure Shock Compression of Solids (New York) (J. R. Asay and J. Shahinpoor, eds.), Springer-Verlag, 1993, Appendix C.Google Scholar
126. Lankford, J., Anderson, C. E. Jr., Royal, S. A., and Riegel, J. P., III, Penetration erosion phenomenology, International Journal of Impact Engineering 18 (1996), no. 5, 565578.Google Scholar
127. Lankford, J., Couque, H., Bose, A., and Anderson, C. E. Jr., Microstructural dependence of high strain rate deformation and damage development in tungsten heavy alloys, Shock Waves and High-Strain Rate Phenomena in Materials (New York) (M. A. Meyers, L. E. Murr, and K. P. Staudhammer, eds.), Marcel Dekker, 1991.Google Scholar
128. Latham, G. V., Ewing, M., Press, F., Sutton, G., Dorman, J., Nakamura, Y., Toksoz, N., Duennebier, F., and Lammlein, D., Passive seismic experiment, Apollo 14 Preliminary Science Report (Washington, D.C.) (NASA Manned Spacecraft Center, ed.), US Government Printing Office, 1971, pp. 133–161.Google Scholar
129. Lax, P. D., Hyperbolic systems of conservation laws and the mathematical theory of shock waves, SIAM, Philadelphia, PA, 1973.Google Scholar
130. Lee, C., Wei, X., Kysar, J. W., and Hone, J., Measurement of the elastic properties and in-strinsic strength of monolayer graphene, Science 321 (2008), 385–388, DOI: 10.1126/science.1157996.Google Scholar
131. LeVeque, R. J., Numerical methods for conservation laws, 2nd ed., Birkhauser, Basel, Switzerland, 1992.Google Scholar
132. Lin, C. C.. and Segel, L. A., Mathematics applied to deterministic problems in the natural sciences, Macmillan Publishing Co., New York, 1974.Google Scholar
133. Lindholm, U. S., Deformation maps in the region of high dislocation velocity, High Velocity Deformation of Solids (New York) (K. Kawata and J. Shiori, eds.), Springer Verlag, 1978, pp. 26–35.Google Scholar
134. Littlefield, D. L., Anderson, C. E. Jr., Partom, Y., and Bless, S. J., The penetration of steel targets finite in radial extent, International Journal of Impact Engineering 19 (1997), no. 1, 4962.Google Scholar
135. Love, A. E. H., A treatise on the mathematical theory of elasticity, Dover, New York, 1944.Google Scholar
136. Lubliner, J., Plasticity theory, Macmillan Publishing Co., New York, 1990.Google Scholar
137. Luk, V. K., Forrestal, M. J., and Amos, D. E., Dynamic spherical cavity expansion of strain-hardening materials, Journal of Applied Mechanics 58 (1991), 16.Google Scholar
138. Malvern, L. E., Introduction to the mechanics of a continuous medium, Prentice-Hall, En-glewood Cliffs, NJ, 1969.Google Scholar
139. Marsh, S. P., LASL shock Hugoniot data, University of California Press, Berkeley, CA, 1980.Google Scholar
140. Maugin, G. A. and Metrikine, A. V. (eds.), Mechanics of generalized continua: one hundred years after the Cosserats, Springer, New York, 2010.Google Scholar
141. McConnell, P., Sheckherd, J. W., Perrin, J. S., and Wullaert, R. A., Experience in subsized specimen testing, The Use of Small-Scale Specimens for Testing Irradiated Material (Philadelphia, PA) (W. R. Corwin and G. E. Lucas, eds.), ASTM, 1986, pp. 353–368.Google Scholar
142. McGlaun, J. M, Thompson, S. L., and Elrick, M. G., CTH: a three-dimensional shock wave physics code, International Journal of Impact Engineering 10 (1990), 351–360.Google Scholar
143. McQueen, R. G., Marsh, S. P., Taylor, J. W., Fritz, J. N., and Carter, W. J., The equation of state of solids from shock wave studies, High-Velocity Impact Phenomena (New York) (R. Kinslow, ed.), Academic Press, 1970.Google Scholar
144. Mescall, J., Materials issues in computer simulation of penetration mechanics, Computational Aspects of Penetration Mechanics (New York) (J. Chandra and J. E. Flaherty, eds.), Springer-Verlag, 1983, pp. 47–62.Google Scholar
145. Mescall, J. and Papirno, R., Spallation in cylinder-plate impact, Experimental Mechanics 14 (1974), 257266.Google Scholar
146. Meyer, H. W. Jr. and Kleponis, D. S., An analysis of parameters for the Johnson–Cook strength model for 2-in-thick rolled homogeneous armor (ARL-TR-2528), Army Research Laboratory, Aberdeen Proving Ground, MD, 2001.Google Scholar
147. Meyers, M. A., Dynamic behavior of materials, Wiley-Interscience, New York, 1994.Google Scholar
148. Morris, C. E. (ed.), Los Alamos shock wave profile data, University of California Press, Berkeley, CA, 1982.Google Scholar
149. Mueller, I. and Strehlow, P., Rubber and rubber balloons, paradigms of thermodynamics, Springer-Verlag, Berlin, 2004.Google Scholar
150. Nellis, W. J., Dynamic compression of materials: metallization of fluid hydrogen at high pressures, Reports on Progress in Physics 69 (2006), 14791580.Google Scholar
151. Nellis, W. J., Ultracondensed matter by dynamic compression, Cambridge University Press, Cambridge, UK, 2017.Google Scholar
152. Nuckolls, J., Emmett, J., and Wood, L., Laser-induced thermonuclear fusion, Physics Today 26 (1973), no. 8, 4653.Google Scholar
153. Orphal, D. L. and Anderson, C. E. Jr., Streamline reversal in hypevelocity penetration, International Journal of Impact Engineering 23 (1999), 699710.Google Scholar
154. Petersen, P., Riemannian geometry, 2nd ed., Springer, New York, 2006.Google Scholar
155. Phoenix, S. L. and Porwal, P. K., A new membrane model for the ballistic impact response and V50 performance of multi-ply fibrous systems, International Journal of Solids and Structures 40 (2003), 67236765.Google Scholar
156. Piekutowski, A. J., Forrestal, M. J., Poormon, K. L., and Warren, T. L., Pentration of 6061-T6511 aluminum targets by ogive-nose steel projectiles with striking velocities between 0.5 and 3.0 km/s, International Journal of Impact Engineering 23 (1999), no. 1, 723–733.Google Scholar
157. Rapacki, E. J., Frank, K. Jr., Leavy, R. B., Keele, M. J., and Prifti, J. J., Armor steel hardness influence on kinetic energy penetration, 15th International Symposium on Ballistics (Jerusalem, Israel) (M. Mayseless and S. R. Bodner, eds.), vol. 1, 1995, pp. 323–330.Google Scholar
158. Ravid, M. and Bodner, S. R., Dynamic perforation of viscoplastic plates by rigid projectiles, International Journal of Engineering Science 21 (1983), no. 6, 577591.Google Scholar
159. Ravid, M., Bodner, S. R., Walker, J. D., Chocron, S., Anderson, C. E. Jr., and Riegel, J. P., III, Modifications of the Walker–Anderson penetration model to include exit failure modes and fragmentation, 17th International Symposium on Ballistics (Midrand, South Africa) (C. van Niekerk, ed.), vol. 3, 1998, pp. 267–274.Google Scholar
160. Reaugh, J. E., Holt, A. C., Wilkins, M. L., Cunningham, B. J., Hord, B. L., and Kusubov, A. S., Impact studies of five ceramic materials and Pyrex, International Journal of Impact Engineering 23 (1999), 771782.Google Scholar
161. Reif, F., Fundamentals of statistical and thermal physics, McGraw-Hill, New York, 1965.Google Scholar
162. Rinehart, J. S., Stress transients in solids, Hyperdynamics, Santa Fe, NM, 1975.Google Scholar
163. Rittel, D., Dynamic shear failure of materials, Dynamic Failure of Materials and Structures (New York) (A. Shukla, G. Ravichandran, and Y. D. S. Rajapakse, eds.), Springer-Verlag, 2010, pp. 29–61.Google Scholar
164. Rosenberg, Z. and Dekel, E., On the relation between deformation modes and the penetration capability of long-rods, International Workshop on New Models and New Codes on Shock Wave Processes in Condensed Media (St. Catherine’s College, Cambridge, UK), 1997.Google Scholar
165. Rosenberg, Z. and Dekel, E., Terminal ballistics, Springer-Verlag, Berlin, 2012.Google Scholar
166. Rosenberg, Z., Marmor, E., and Mayseless, M., On the hydrodynamic theory of long-rod penetration, International Journal of Impact Engineering 10 (1990), 483486.Google Scholar
167. Roylance, D. and Wang, S. S., Penetration mechanics of textile structures, Ballistics Materials and Penetration Mechanics (Amsterdam, Netherlands) (R. C. Laible, ed.), Elsevier, 1980, pp. 273–292.Google Scholar
168. Rudin, W., Real and complex analysis, McGraw-Hill, New York, 1974.Google Scholar
169. Sadd, M. H., Elasticity: theory, applications, and numerics, Elsevier Butterworth-Heinemann, Burlington, MA, 2005.Google Scholar
170. Silsby, G. F., Penetration of semi-infinite steel targets by tungsten long rods at 1.3 to 4.5 km/s, 8th International Symposium on Ballistics (Orlando, FL), vol. 2, 1984, pp. TB31– 36.Google Scholar
171. Smith, J. C., McCrackin, F. L., and Schiefer, H. F., Stress-strain relationships in yarns subjected to rapid impact loading, part V: wave propagation in long textile yarns impacted transversely, Textile Research Journal 28 (1958), no. 4, 288302.Google Scholar
172. Sorensen, B. R., Kimsey, K. D., Silsby, G. F., Scheffler, D. R., Sherrick, T. M., and deRosset, W. S., High velocity penetration of steel targets, International Journal of Impact Engineering 11 (1991), no. 1, 107–119.Google Scholar
173. Spivak, M., A comprehensive introduction to differential geometry, 3rd ed., vol. 2, Publish or Perish, Houston, TX, 1999.Google Scholar
174. Steinberg, D. J., Equation of state and strength properties of selected materials (UCRL-MA-106439), Lawrence Livermore National Laboratory, Livermore, CA, 1991.Google Scholar
175. Steinberg, D. J. and Lund, C. M., A constitutive model for strain rates from 10−4 to 106 s−1 , Journal of Applied Physics 64 (1989), no. 4, 15281533.Google Scholar
176. Sternglass, E. J. and Stuart, D. A., An experimental study of the propagation of transient longitudinal deformations in elastoplastic media, Journal of Applied Mechanics 20 (1953), 427434.Google Scholar
177. Stewart, S. T. and Ahrens, A new H2O ice Hugoniot: implications for planetary impact events, Shock Compression of Condensed Matter: 2003 (New York) (M D. Furnish, Y. M. Gupta, and J. W. Forbes, eds.), Amer. Inst. of Phys., 2004, pp. 1478–1483.Google Scholar
178. Swegle, J. W. and Grady, D. E., Shock viscosity and the prediction of shock wave rise times, Journal of Applied Physics 58 (1985), no. 2, 692701.Google Scholar
179. Tate, A., A theory for the deceleration of long rods after impact, Journal of the Mechanics and Physics of Solids 15 (1967), 387399.Google Scholar
180. Tate, A., Further results in the theory of long rod penetration, Journal of the Mechanics and Physics of Solids 17 (1969), 141–150.Google Scholar
181. Tate, A., Long rod penetration models–part I. A flow field model for high speed long rod penetration, International Journal of Engineering Science 28 (1986), no. 8, 535–548.Google Scholar
182. Tate, A., Long rod penetration models–part II. Extensions to the hydrodynamic theory of penetration, International Journal of Engineering Science 28 (1986), no. 9, 599–612.Google Scholar
183. Taylor, G. I., The use of flat-ended projectiles in determining dynamic yield stress, Proceedings of the Royal Society of London, Series A 194 (1948), 298299.Google Scholar
184. Taylor, G. I. , The scientific papers of G. I. Taylor, volume 1: the mechanics of solids, Cambridge University Press, Cambridge, UK, 1958.Google Scholar
185. Taylor, G. I. and Quinney, H., Plastic distortion of metals, Philosophical Transactions of the Royal Society, Series A 230 (1931), 323362.Google Scholar
186. Teng, X. and Wierzbicki, T., Evaluation of six fracture models in high velocity perforation, Engineering Fracture Mechanics 73 (2006), 16531678.Google Scholar
187. Thomason, P. F., Ductile fracture of metals, Pergamon Press, Oxford, UK, 1990.Google Scholar
188. Tuler, F. R. and Butcher, B. M., A criterion for the time dependence of dynamic fracture, International Journal of Fracture Mechanics 4 (1968), no. 4, 431437.Google Scholar
189. Walker, J. D., Waves and cracks in composites (Ph.D. Thesis), University of Utah, Salt Lake City, UT, 1988.Google Scholar
190. Walker, J. D., On maximum dissipation for dynamic plastic flow (SwRI Report 07-9753), Southwest Research Institute, San Antonio, TX, 1995.Google Scholar
191. Walker, J. D., An analytic velocity field for back surface bulging, 18th International Symposium on Ballistics (San Antonio, TX) (W. G. Reinecke, ed.), vol. 2, Technomic Publishing Co., 1999, pp. 1,239–1,246.Google Scholar
192. Walker, J. D., Constitutive model for fabrics with explicit static solution and ballistic limit, 18th International Symposium on Ballistics (San Antonio, TX) (W. G. Reinecke, ed.), vol. 2, Technomic Publishing Co., 1999, pp. 1,231–1,238.Google Scholar
193. Walker, J. D., Ballistic limit of fabrics with resin, 19th International Symposium on Ballistics (Thun, Switzerland) (I. R. Crewther, ed.), vol. 3, Vetter Druck AG, 2001, pp. 1,409–1,414.Google Scholar
194. Walker, J. D., Hypervelocity penetration modeling: momentum vs. energy and energy transfer mechanisms, International Journal of Impact Engineering 26 (2001), 809–822.Google Scholar
195. Walker, J. D., Analytic expression for the deformation and ballistic limit of fabrics, International Conference on Composite Materials–2003 (San Diego, CA), Society of Manufacturing Engineers, 2003, SME Technical Paper EM03–336.Google Scholar
196. Walker, J. D., Target flow fields and penetration resistance for pointed projectiles, 31st International Symposium on Ballistics (Hyderabad, India), 2019.Google Scholar
197. Walker, J. D. and Anderson, C. E. Jr., A nonsteady-state model for penetration, 13th International Symposium on Ballistics (Stockholm, Sweden) (A. Persson, K. Andersson, and E. B. Bjorck, eds.), vol. 3, National Defence Research Establishment, 1992, pp. 9–16.Google Scholar
198. Walker, J. D. and Anderson, C. E. Jr., The influence of initial nose shape in eroding penetration, International Journal of Impact Engineering 15 (1994), no. 2, 139–148.Google Scholar
199. Walker, J. D. and Anderson, C. E. Jr., A time-dependent model for long-rod penetration, International Journal of Impact Engineering 16 (1995), no. 1, 19–48.Google Scholar
200. Walker, J. D., Bigger, R. P., and Chocron, S., Comparison of breakout modes in analytic penetration modeling, Shock Compression of Condensed Matter: 2009 (Melville, NY) (M. L. Elert, W. T. Buttler, M. D. Furnish, W. W. Anderson, and W. G. Proud, eds.), AIP Press, 2009, pp. 1,439–1,442.Google Scholar
201. Walker, J. D. and Chocron, S., Why impacted yarns break at lower speed than classical theory predicts, Journal of Applied Mechanicss 78 (2011), 051012–1–7.Google Scholar
202. Walker, J. D. and Chocron, S., Damage modeling, scaling, and momentum enhancement for asteroid and comet nucleus deflection, Procedia Engineering 103 (2015), 636641.Google Scholar
203. Walker, J. D., Chocron, S., and Gray, W., Analytical models for foam, ice and ablator impacts into space shuttle thermal tiles, 22nd International Symposium on Ballistics (Vancouver, British Columbia, November 14-18, 2005) (W. Flis and B. Scott, eds.), vol. 2, DEStech Publications, 2005, pp. 1,196–1,203.Google Scholar
204. Walker, J. D., Chocron, S., and Grosch, D. J., Size scaling of crater size, ejecta mass, and momentum enhancement due to hypervelocity impacts into 2024-T4 and 2024-T351 aluminum, 2019 Hypervelocity Impact Symposium (D. Littlefield, ed.), no. HVIS2019–049, V001T04A004, ASME, 2020.Google Scholar
205. Walker, J. D., Chocron, S., and Grosch, D. J., Size scaling of hypervelocity-impact ejecta mass and momentum enhancement: experiments and a nonlocal-shear-band-motivated strain-rate-dependent failure model, International Journal of Impact Engineering 135 (2020), 103388–1–14.Google Scholar
206. Walker, J. D., Chocron, S., Waite, J. H., and Brockwell, T., The vaporization threshold: hypervelocity impacts of ice grains into a titanium Cassini spacecraft instrument chamber, Procedia Engineering 103 (2015), 628635.Google Scholar
207. Wei, G. and Zhang, W., Penetration of thin aluminum alloy plates by blunt projectiles: an experimental and numerical investigation, Shock Compression of Condensed Matter: 2013 (Melville, NY) (M. L. Elert, W. T. Buttler, M. D. Furnish, W. W. Anderson, and W. G. Proud, eds.), vol. 500, AIP Press, 2014, pp. 1–4.Google Scholar
208. Wierzbicki, T., Bao, Y., Lee, Y.-W., and Bai, Y., Calibration and evaluation of seven fracture models, International Journal of Mechanical Sciences 47 (2005), 719743.Google Scholar
209. Wilkins, M. L., Third progress report of light armor program (UCRL-50460), Lawrence Radiation Laboratory, Livermore, CA, 1968.Google Scholar
210. Wilkins, M. L., Computer simulation of dynamic phenomena, Springer, Berlin, 1999.Google Scholar
211. Wilkins, M. L. and Guinan, M. W., Impact of cylinders on a rigid boundary, Journal of Applied Physics 44 (1973), no. 3, 12001206.Google Scholar
212. Wilkins, M. L., Streit, R. D., and Reaugh, J. E., Cumulative-strain-damage model of ductile fracture: simulation and prediction of engineering fracture tests (UCRL-53058), Lawrence Livermore National Laboratory, Livermore, CA, 1980.Google Scholar
213. Wright, T. W., The physics and mathematics of adiabatic shear bands, Cambridge University Press, Cambridge, UK, 2002.Google Scholar
214. Young, David A., Phase diagrams of the elements, University of California Press, Berkeley, CA, 1991.Google Scholar
215. Zel’dovich, Y. B. and Raizer, Y. P., Physics of shock waves and high-temperature hydrodynamic phenomena, Academic Press, New York, 1967.Google Scholar
216. Zemansky, M. W. and Dittman, R. H., Heat and thermodynamics, 6th ed., McGraw-Hill, New York, 1981.Google Scholar
217. Zerilli, F. J. and Armstrong, R. W., Dislocation-mechanics-based constitutive relations for material dynamics calculations, Journal of Applied Physics 61 (1987), no. 5, 18161825.Google Scholar
218. Zukas, J. A. (ed.), High velocity impact dynamics, John Wiley & Sons, 1990.Google Scholar
219. Zukas, J. A., Nicholas, T., Swift, H. F., Greszczuk, L. B., and Curran, D. R., Impact dynamics, John Wiley & Sons, New York, 1982.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • James D. Walker, Southwest Research Institute, Texas
  • Book: Modern Impact and Penetration Mechanics
  • Online publication: 01 April 2021
  • Chapter DOI: https://doi.org/10.1017/9781108684026.020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • James D. Walker, Southwest Research Institute, Texas
  • Book: Modern Impact and Penetration Mechanics
  • Online publication: 01 April 2021
  • Chapter DOI: https://doi.org/10.1017/9781108684026.020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • James D. Walker, Southwest Research Institute, Texas
  • Book: Modern Impact and Penetration Mechanics
  • Online publication: 01 April 2021
  • Chapter DOI: https://doi.org/10.1017/9781108684026.020
Available formats
×