Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-16T17:19:49.306Z Has data issue: false hasContentIssue false

Chapter 18 - Hematological malignancies of the lymph nodes

Published online by Cambridge University Press:  05 November 2015

John M. S. Bartlett
Affiliation:
Ontario Institute for Cancer Research, Toronto
Abeer Shaaban
Affiliation:
Queen Elizabeth Hospital Birmingham
Fernando Schmitt
Affiliation:
University of Porto
Get access
Type
Chapter
Information
Molecular Pathology
A Practical Guide for the Surgical Pathologist and Cytopathologist
, pp. 302 - 335
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Morin, R. D. and Gascoyne, R. D. Newly identified mechanisms in B-cell non-Hodgkin lymphomas uncovered by next-generation sequencing. Semin Hematol 2013; 50(4): 303313.CrossRefGoogle ScholarPubMed
Harris, N. L., Stein, H., Coupland, S. E., Hummel, M., Favera, R. D., Pasqualucci, L. et al. New approaches to lymphoma diagnosis. Hematology Am Soc Hematol Educ Program 2001; 194220.CrossRefGoogle ScholarPubMed
Coupland, S. E. Molecular pathology of lymphoma. Eye (Lond) 2013; 27(2): 180189.CrossRefGoogle ScholarPubMed
Rezuke, W. N., Abernathy, E. C. and Tsongalis, G. J. Molecular diagnosis of B- and T-cell lymphomas: fundamental principles and clinical applications. Clin Chem 1997; 43(10): 18141823.CrossRefGoogle ScholarPubMed
Spagnolo, D. V., Ellis, D. W., Juneja, S., Leong, A. S., Miliauskas, J., Norris, D. L. et al. The role of molecular studies in lymphoma diagnosis: a review. Pathology 2004; 36(1): 1944.CrossRefGoogle ScholarPubMed
Sandberg, Y., van Gastel-Mol, E. J., Verhaaf, B., Lam, K. H., van Dongen, J. J. and Langerak, A. W. BIOMED-2 multiplex immunoglobulin/T-cell receptor polymerase chain reaction protocols can reliably replace Southern blot analysis in routine clonality diagnostic. J Mol Diagn 2005; 7(4): 495503.CrossRefGoogle Scholar
Lukowsky, A., Marchwat, M., Sterry, W. and Gellrich, S. Evaluation of B-cell clonality in archival skin biopsy samples of cutaneous B-cell lymphoma by immunoglobulin heavy chain gene polymerase chain reaction. Leuk Lymphoma 2006; 47(3): 487493.CrossRefGoogle ScholarPubMed
van Dongen, J. J., Langerak, A. W., Brüggemann, M., Evans, P. A., Hummel, M., Lavender, F. L. et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98–3936. Leukemia 2003; 17(12): 22572317.CrossRefGoogle ScholarPubMed
Evans, P. A., Pott, Ch., Groenen, P. J., Salles, G., Davi, F., Berger, F. et al. Significantly improved PCR-based clonality testing in B-cell malignancies by use of multiple immunoglobulin gene targets. Report of the BIOMED-2 Concerted Action BHM4-CT98–3936. Leukemia 2007; 21(2): 207214.CrossRefGoogle ScholarPubMed
Langerak, A. W., Groenen, P. J., Brüggemann, M., Beldjord, K., Bellan, C., Bonello, L. et al. EuroClonality/BIOMED-2 guidelines for interpretation and reporting of Ig/TCR clonality testing in suspected lymphoproliferations. Leukemia 2012; 26(10): 21592171.CrossRefGoogle ScholarPubMed
Halldórsdóttir, A. M., Zehnbauer, B. A. and Burack, W. R. Application of BIOMED-2 clonality assays to formalin-fixed paraffin embedded follicular lymphoma specimens: superior performance of the IGK assays compared to IGH for suboptimal specimens. Leuk Lymphoma 2007; 48(7): 13381343.CrossRefGoogle ScholarPubMed
Payne, K., Wright, P., Grant, J. W., Huang, Y., Hamoudi, R., Bacon, C. M. et al. BIOMED-2 PCR assays for IGK gene rearrangements are essential for B-cell clonality analysis in follicular lymphoma. Br J Haematol 2011; 155(1): 8492.CrossRefGoogle ScholarPubMed
Liu, H., Bench, A. J., Bacon, C. M., Payne, K., Huang, Y., Scott, M. A. et al. A practical strategy for the routine use of BIOMED-2 PCR assays for detection of B- and T-cell clonality in diagnostic haematopathology. Br J Haematol 2007; 138(1): 3143.CrossRefGoogle ScholarPubMed
Patel, K. P., Pan, Q., Wang, Y., Maitta, R. W., Du, J., Xue, X. et al. Comparison of BIOMED-2 versus laboratory-developed polymerase chain reaction assays for detecting T-cell receptor-gamma gene rearrangements. J Mol Diagn 2010; 12(2): 226237.CrossRefGoogle ScholarPubMed
van Krieken, J. H., Langerak, A. W., Macintyre, E. A., Kneba, M., Hodges, E., Sanz, R. G. et al. Improved reliability of lymphoma diagnostics via PCR-based clonality testing: report of the BIOMED-2 Concerted Action BHM4-CT98–3936. Leukemia 2007; 21(2): 201206.CrossRefGoogle ScholarPubMed
Gribben, J. G. Molecular profiling in CLL. Hematology Am Soc Hematol Educ Program 2008: 444449.CrossRefGoogle ScholarPubMed
Swerdlow, S. H., Campo, E., Harris, N. L., Jaffe, E. S., Pileri, S. A., Stein, H. et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, 4th edn. (Lyon: IARC Press, 2008).Google Scholar
Hauswirth, A. W. and Jäger, U. Impact of cytogenetic and molecular prognostic markers on the clinical management of chronic lymphocytic leukemia. Haematologica 2008; 93(1): 1419.CrossRefGoogle ScholarPubMed
Fais, F., Ghiotto, F., Hashimoto, S., Sellars, B., Valetto, A., Allen, S. L. et al. Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors. J Clin Invest 1998; 102(8): 15151525.CrossRefGoogle ScholarPubMed
Stevenson, F. K. and Caligaris-Cappio, F. Chronic lymphocytic leukemia: revelations from the B-cell receptor. Blood 2004; 103(12): 43894395.CrossRefGoogle ScholarPubMed
Damle, R. N., Wasil, T., Fais, F., Ghiotto, F., Valetto, A., Allen, S. L. et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999; 94(6): 18401847.CrossRefGoogle ScholarPubMed
Hamblin, T. J., Davis, Z., Gardiner, A., Oscier, D. G. and Stevenson, F. K. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999; 94(6): 18481854.CrossRefGoogle ScholarPubMed
Oscier, D. G., Gardiner, A. C., Mould, S. J., Glide, S., Davis, Z. A., Ibbotson, R. E. et al. Multivariate analysis of prognostic factors in CLL: clinical stage, IGVH gene mutational status, and loss or mutation of the p53 gene are independent prognostic factors. Blood 2002; 100(4): 11771184.CrossRefGoogle ScholarPubMed
Vasconcelos, Y., Davi, F., Levy, V., Oppezzo, P., Magnac, C., Michel, A. et al. Binet's staging system and VH genes are independent but complementary prognostic indicators in chronic lymphocytic leukemia. J Clin Oncol 2003; 21(21): 39283932.CrossRefGoogle ScholarPubMed
Ritgen, M., Stilgenbauer, S., von Neuhoff, N., Humpe, A., Brüggemann, M., Pott, C. et al. Graft-versus-leukemia activity may overcome therapeutic resistance of chronic lymphocytic leukemia with unmutated immunoglobulin variable heavy-chain gene status: implications of minimal residual disease measurement with quantitative PCR. Blood 2004; 104(8): 26002602.CrossRefGoogle ScholarPubMed
Tobin, G. and Rosenquist, R. Prognostic usage of V(H) gene mutation status and its surrogate markers and the role of antigen selection in chronic lymphocytic leukemia. Med Oncol 2005; 22(3): 217228.CrossRefGoogle ScholarPubMed
Rosenwald, A., Alizadeh, A. A., Widhopf, G., Simon, R., Davis, R. E., Yu, X. et al. Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med 2001; 194(11): 16391647.CrossRefGoogle ScholarPubMed
Crespo, M., Bosch, F., Villamor, N., Bellosillo, B., Colomer, D., Rozman, M. et al. ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. New Engl J Med 2003; 348(18): 17641775.CrossRefGoogle ScholarPubMed
Döhner, H., Stilgenbauer, S., Benner, A., Leupolt, E., Kröber, A., Bullinger, L. et al. Genomic aberrations and survival in chronic lymphocytic leukemia. New Engl J Med 2000; 343(26): 19101916.CrossRefGoogle ScholarPubMed
Stilgenbauer, S. and Döhner, H. Campath-1H-induced complete remission of chronic lymphocytic leukemia despite p53 gene mutation and resistance to chemotherapy. New Engl J Med 2002; 347(6): 452453.CrossRefGoogle ScholarPubMed
Pettitt, A. R., Sherrington, P. D., Stewart, G., Cawley, J. C., Taylor, A. M. and Stankovic, T. Blood 2001; 98(3): 814822.CrossRefGoogle Scholar
Rassenti, L. Z., Jain, S., Keating, M. J., Wierda, W. G., Grever, M. R., Byrd, J. C. et al. Relative value of ZAP-70, CD38, and immunoglobulin mutation status in predicting aggressive disease in chronic lymphocytic leukemia. Blood 2008; 112(5): 19231930.CrossRefGoogle ScholarPubMed
Shanafelt, T. D., Geyer, S. M. and Kay, N. E. Prognosis at diagnosis: integrating molecular biologic insights into clinical practice for patients with CLL. Blood 2004; 103(4): 12021210.CrossRefGoogle ScholarPubMed
Grever, M. R., Lucas, D. M., Dewald, G. W., Neuberg, D. S., Reed, J. C., Kitada, S. et al. Comprehensive assessment of genetic and molecular features predicting outcome in patients with chronic lymphocytic leukemia: results from the US Intergroup Phase III Trial E2997. J Clin Oncol 2007; 25(7): 799804.CrossRefGoogle ScholarPubMed
Puente, X. S., Pinyol, M., Quesada, V., Conde, L., Ordóñez, G. R., Villamor, N. et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 2011; 475(7354): 101105.CrossRefGoogle ScholarPubMed
Fabbri, G., Rasi, S., Rossi, D., Trifonov, V., Khiabanian, H., Ma, J. et al. Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J Exp Med 2011; 208(7): 13891401.CrossRefGoogle ScholarPubMed
Rossi, D., Bruscaggin, A., Spina, V., Rasi, S., Khiabanian, H., Messina, M. et al. Mutations of the SF3B1 splicing factor in chronic lymphocytic leukemia: association with progression and fludarabine-refractoriness. Blood 2011; 118(26): 69046908.CrossRefGoogle ScholarPubMed
Quesada, V., Conde, L., Villamor, N., Ordóñez, G. R., Jares, P., Bassaganyas, L. et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet 2011; 44(1): 4752.CrossRefGoogle ScholarPubMed
Wan, Y. and Wu, C. J. SF3B1 mutations in chronic lymphocytic leukemia. Blood 2013; 21(23): 46274634.CrossRefGoogle Scholar
Gribben, J. G. Monitoring disease in lymphoma and CLL patients using molecular techniques. Best Pract Res Clin Haematol 2002; 15(1): 179195.CrossRefGoogle ScholarPubMed
Provan, D., Bartlett-Pandite, L., Zwicky, C., Neuberg, D., Maddocks, A., Corradini, P. et al. Eradication of polymerase chain reaction-detectable chronic lymphocytic leukemia cells is associated with improved outcome after bone marrow transplantation. Blood 1996; 88(6): 22282235.CrossRefGoogle ScholarPubMed
Milligan, D. W., Fernandes, S., Dasgupta, R., Davies, F. E., Matutes, E., Fegan, C. D. et al. Results of the MRC pilot study show autografting for younger patients with chronic lymphocytic leukemia is safe and achieves a high percentage of molecular responses. Blood 2005; 105(1): 397404.CrossRefGoogle ScholarPubMed
Rawstron, A. C., Böttcher, S., Letestu, R., Villamor, N., Fazi, C., Kartsios, H. et al. Improving efficiency and sensitivity: European Research Initiative in CLL (ERIC) update on the international harmonised approach for flow cytometric residual disease monitoring in CLL. Leukemia 2013; 27(1): 142149.CrossRefGoogle ScholarPubMed
Forconi, F., Sozzi, E., Cencini, E., Zaja, F., Intermesoli, T., Stelitano, C. et al. Hairy cell leukemias with unmutated IGHV genes define the minor subset refractory to single-agent cladribine and with more aggressive behavior. Blood 2009; 114(21): 46964702.CrossRefGoogle ScholarPubMed
Ravandi, F., Jorgensen, J. L., O'Brien, S. M., Verstovsek, S., Koller, C. A., Faderl, S. et al. Eradication of minimal residual disease in hairy cell leukemia. Blood 2006; 107(12): 46584662.CrossRefGoogle ScholarPubMed
Tiacci, E., Trifonov, V., Schiavoni, G., Holmes, A., Kern, W., Martelli, M. P. et al. BRAF mutations in hairy-cell leukemia. New Engl J Med 2011; 364(24): 23052315.CrossRefGoogle ScholarPubMed
Samuel, J., Macip, S. and Dyer, M. J. Efficacy of vemurafenib in hairy-cell leukemia. New Engl J Med 2014; 370(3): 286288.CrossRefGoogle ScholarPubMed
Davi, F., Maloum, K., Michel, A., Pritsch, O., Magnac, C., Macintyre, E. et al. High frequency of somatic mutations in the VH genes expressed in prolymphocytic leukemia. Blood 1996; 88(10): 39533961.CrossRefGoogle ScholarPubMed
Ruchlemer, R., Parry-Jones, N., Brito-Babapulle, V., Attolico, I., Wotherspoon, A. C., Matutes, E. et al. B-prolymphocytic leukaemia with t(11;14) revisited: a splenomegalic form of mantle cell lymphoma evolving with leukaemia. Br J Haematol 2004; 125(3): 330336.CrossRefGoogle Scholar
Schlette, E., Lai, R., Onciu, M., Doherty, D., Bueso-Ramos, C. and Medeiros, L. J. Leukemic mantle cell lymphoma: clinical and pathologic spectrum of twenty-three cases. Mod Pathol 2001; 14(11): 11331140.CrossRefGoogle ScholarPubMed
van der Velden, V. H., Hoogeveen, P. G., de Ridder, D., Schindler-van der Struijk, M., van Zelm, M. C., Sanders, M. et al. B-cell prolymphocytic leukemia: a specific subgroup of mantle cell lymphoma. Blood 2014; 124(3): 412–19.CrossRefGoogle ScholarPubMed
Medeiros, L. J., van Krieken, J. H., Jaffe, E. S. and Raffeld, M. Association of bcl-1 rearrangements with lymphocytic lymphoma of intermediate differentiation. Blood 1990; 76(10): 20862090.CrossRefGoogle ScholarPubMed
Rosenberg, C. L., Wong, E., Petty, E. M., Bale, A. E., Tsujimoto, Y., Harris, N. L. et al. PRAD1, a candidate BCL1 oncogene: mapping and expression in centrocytic lymphoma. Proc Natl Acad Sci USA 1991; 88(21): 96389642.CrossRefGoogle ScholarPubMed
Mozos, A., Royo, C., Hartmann, E., De Jong, D., Baró, C., Valera, A. et al. SOX11 expression is highly specific for mantle cell lymphoma and identifies the cyclin D1-negative subtype. Haematologica 2009; 94(11): 15551562.CrossRefGoogle ScholarPubMed
Vaandrager, J. W., Schuuring, E., Zwikstra, E., de Boer, C. J., Kleiverda, K. K., van Krieken, J. H. et al. Direct visualization of dispersed 11q13 chromosomal translocations in mantle cell lymphoma by multicolor DNA fiber fluorescence in situ hybridization. Blood 1996; 88(4): 11771182.CrossRefGoogle ScholarPubMed
Bosch, F., Jares, P., Campo, E., Lopez-Guillermo, A., Piris, M. A., Villamor, N. et al. PRAD-1/cyclin D1 gene overexpression in chronic lymphoproliferative disorders: a highly specific marker of mantle cell lymphoma. Blood 1994; 84(8): 27262732.CrossRefGoogle ScholarPubMed
Aguilera, N. S., Bijwaard, K. E., Duncan, B., Krafft, A. E., Chu, W. S., Abbondanzo, S. L. et al. Differential expression of cyclin D1 in mantle cell lymphoma and other non-Hodgkin's lymphomas. Am J Pathol 1998; 153(6): 19691976.CrossRefGoogle ScholarPubMed
Uchimaru, K., Taniguchi, T., Yoshikawa, M., Asano, S., Arnold, A., Fujita, T. et al. Detection of cyclin D1 (bcl-1, PRAD1) overexpression by a simple competitive reverse transcription-polymerase chain reaction assay in t(11;14)(q13;q32)-bearing B-cell malignancies and/or mantle cell lymphoma. Blood 1997; 89(3): 965974.CrossRefGoogle ScholarPubMed
Thorsélius, M., Walsh, S., Eriksson, I., Thunberg, U., Johnson, A., Backlin, C. et al. Somatic hypermutation and V(H) gene usage in mantle cell lymphoma. Eur J Haematol 2002; 68(4): 217242.CrossRefGoogle ScholarPubMed
Orchard, J., Garand, R., Davis, Z., Babbage, G., Sahota, S., Matutes, E. et al. A subset of t(11;14) lymphoma with mantle cell features displays mutated IgVH genes and includes patients with good prognosis, nonnodal disease. Blood 2003; 101(12): 49754981.CrossRefGoogle ScholarPubMed
Corradini, P., Ladetto, M., Zallio, F., Astolfi, M., Rizzo, E., Sametti, S. et al. Long-term follow-up of indolent lymphoma patients treated with high-dose sequential chemotherapy and autografting: evidence that durable molecular and clinical remission frequently can be attained only in follicular subtypes. J Clin Oncol 2004; 22(8): 14601468.CrossRefGoogle ScholarPubMed
Howard, O. M., Gribben, J. G., Neuberg, D. S., Grossbard, M., Poor, C., Janicek, M. J. et al. Rituximab and CHOP induction therapy for newly diagnosed mantle-cell lymphoma: molecular complete responses are not predictive of progression-free survival. J Clin Oncol 2002; 20(5): 12881294.CrossRefGoogle Scholar
Pott, C., Schrader, C., Gesk, S., Harder, L., Tiemann, M., Raff, T. et al. Quantitative assessment of molecular remission after high-dose therapy with autologous stem cell transplantation predicts long-term remission in mantle cell lymphoma. Blood 2006; 107(6): 22712278.CrossRefGoogle ScholarPubMed
Bertoni, F., Zucca, E. and Cotter, F. E. Molecular basis of mantle cell lymphoma. Br J Haematol 2004; 124(2): 130140.CrossRefGoogle ScholarPubMed
Louie, D. C., Offit, K., Jaslow, R., Parsa, N. Z., Murty, V. V., Schluger, A. et al. p53 overexpression as a marker of poor prognosis in mantle cell lymphomas with t(11;14)(q13;q32). Blood 1995; 86(8): 28922899.CrossRefGoogle Scholar
Kridel, R., Meissner, B., Rogic, S., Boyle, M., Telenius, A., Woolcock, B. et al. Whole transcriptome sequencing reveals recurrent NOTCH1 mutations in mantle cell lymphoma. Blood 2012; 119(9): 19631971.CrossRefGoogle ScholarPubMed
Willis, T. G. and Dyer, M. J. The role of immunoglobulin translocations in the pathogenesis of B-cell malignancies. Blood 2000; 96(3): 808822.CrossRefGoogle ScholarPubMed
Buchonnet, G., Jardin, F., Jean, N., Bertrand, P., Parmentier, F., Tison, S. et al. Distribution of BCL2 breakpoints in follicular lymphoma and correlation with clinical features: specific subtypes or same disease? Leukemia 2002; 16(9): 18521856.CrossRefGoogle ScholarPubMed
Vaandrager, J. W., Schuuring, E., Raap, T., Philippo, K., Kleiverda, K. and Kluin, P. Interphase FISH detection of BCL2 rearrangement in follicular lymphoma using breakpoint-flanking probes. Gene Chromosome Canc 2000; 27(1): 8594.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Belaud-Rotureau, M. A., Parrens, M., Carrere, N., Turmo, M., Ferrer, J., de Mascarel, A. et al. Interphase fluorescence in situ hybridization is more sensitive than BIOMED-2 polymerase chain reaction protocol in detecting IGH-BCL2 rearrangement in both fixed and frozen lymph node with follicular lymphoma. Hum Pathol 2007; 38(2): 365372.CrossRefGoogle ScholarPubMed
Falini, B. and Mason, D. Y. Proteins encoded by genes involved in chromosomal alterations in lymphoma and leukemia: clinical value of their detection by immunocytochemistry. Blood 2002; 99(2): 409426.CrossRefGoogle ScholarPubMed
Skinnider, B. F., Horsman, D. E., Dupuis, B. and Gascoyne, R. D. Bcl-6 and Bcl-2 protein expression in diffuse large B-cell lymphoma and follicular lymphoma: correlation with 3q27 and 18q21 chromosomal abnormalities. Hum Pathol 1999; 30(7): 803808.CrossRefGoogle ScholarPubMed
Jardin, F., Buchonnet, G., Parmentier, F., Contentin, N., Leprêtre, S., Lenain, P. et al. Follicle center lymphoma is associated with significantly elevated levels of BCL-6 expression among lymphoma subtypes, independent of chromosome 3q27 rearrangements. Leukemia 2002; 16(11): 23182325.CrossRefGoogle ScholarPubMed
Gribben, J. G., Neuberg, D., Freedman, A. S., Gimmi, C. D., Pesek, K. W., Barber, M. et al. Detection by polymerase chain reaction of residual cells with the bcl-2 translocation is associated with increased risk of relapse after autologous bone marrow transplantation for B-cell lymphoma. Blood 1993; 81(12): 34493457.CrossRefGoogle ScholarPubMed
Luthra, R., McBride, J. A., Cabanillas, F. and Sarris, A. Novel 5’ exonuclease-based real-time PCR assay for the detection of t(14;18)(q32;q21) in patients with follicular lymphoma. Am J Pathol 1999; 153(1): 6368.CrossRefGoogle Scholar
Iqbal, S., Jenner, M. J., Summers, K. E., Davies, A. J., Matthews, J., Norton, A. et al. Reliable detection of clonal IgH/Bcl2 MBR rearrangement in follicular lymphoma: methodology and clinical significance Br J Haematol 2004; 124(3): 325328.CrossRefGoogle ScholarPubMed
Sanchez-Vega, B., Vega, F., Hai, S., Medeiros, L. J. and Luthra, R. Real-time t(14;18)(q32;q21) PCR assay combined with high-resolution capillary electrophoresis: a novel and rapid approach that allows accurate quantitation and size determination of bcl-2/JH fusion sequences. Mod Pathol 2002; 15(4): 448453.CrossRefGoogle Scholar
Limpens, J., Stad, R., Vos, C., de Vlaam, C., de Jong, D., van Ommen, G. J. et al. Lymphoma-associated translocation t(14;18) in blood B cells of normal individuals. Blood 1995; 85(9): 25282536.CrossRefGoogle ScholarPubMed
Rambaldi, A., Lazzari, M., Manzoni, C., Carlotti, E., Arcaini, L., Baccarani, M. et al. Monitoring of minimal residual disease after CHOP and rituximab in previously untreated patients with follicular lymphoma. Blood 2002; 99(3): 856862.CrossRefGoogle ScholarPubMed
Galimberti, S., Guerrini, F., Morabito, F., Palumbo, G. A., Di Raimondo, F., Papineschi, F. et al. Quantitative molecular evaluation in autotransplant programs for follicular lymphoma: efficacy of in vivo purging by Rituximab. Bone Marrow Transplant 2003; 32(1): 5763.CrossRefGoogle ScholarPubMed
Matolcsy, A., Casali, P., Warnke, R. A. and Knowles, D. M. Morphologic transformation of follicular lymphoma is associated with somatic mutation of the translocated Bcl-2 gene. Blood 1996; 88(10): 39373944.CrossRefGoogle ScholarPubMed
Szereday, Z., Csernus, B., Nagy, M., László, T., Warnke, R. A. and Matolcsy, A. Somatic mutation of the 5’ noncoding region of the BCL-6 gene is associated with intraclonal diversity and clonal selection in histological transformation of follicular lymphoma. Am J Pathol 2000; 156(3): 10171024.CrossRefGoogle ScholarPubMed
Lo Coco, F., Gaidano, G., Louie, D. C., Offit, K. and Chaganti, R. S. Dalla-Favera R. p53 mutations are associated with histologic transformation of follicular lymphoma. Blood 1993; 82(8): 22892295.CrossRefGoogle ScholarPubMed
Yano, T., Jaffe, E. S., Longo, D. L. and Raffeld, M. MYC rearrangements in histologically progressed follicular lymphomas. Blood 1992; 80(3): 758767.CrossRefGoogle ScholarPubMed
Elenitoba-Johnson, K. S., Gascoyne, R. D., Lim, M. S., Chhanabai, M., Jaffe, E. S. and Raffeld, M. Homozygous deletions at chromosome 9p21 involving p16 and p15 are associated with histologic progression in follicle center lymphoma. Blood 1998; 91(12): 46774685.CrossRefGoogle ScholarPubMed
Pinyol, M., Cobo, F., Bea, S., Jares, P., Nayach, I., Fernandez, P. L. et al. p16(INK4a) gene inactivation by deletions, mutations, and hypermethylation is associated with transformed and aggressive variants of non-Hodgkin's lymphomas. Blood 1998; 91(8): 29772984.CrossRefGoogle ScholarPubMed
Okosun, J., Bödör, C., Wang, J., Araf, S., Yang, C. Y., Pan, C. et al. Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nat Genet 2014; 46(2): 176178.CrossRefGoogle ScholarPubMed
Abramson, J. S. and Shipp, M. A. Advances in the biology and therapy of diffuse large B-cell lymphoma: moving toward a molecularly targeted approach. Blood 2005; 106(4): 11641174.CrossRefGoogle Scholar
Barrans, S. L., O'Connor, S. J., Evans, P. A., Davies, F. E., Owen, R. G., Haynes, A. P. et al. Rearrangement of the BCL6 locus at 3q27 is an independent poor prognostic factor in nodal diffuse large B-cell lymphoma. Br J Haematol 2002; 117(2): 322332.CrossRefGoogle ScholarPubMed
Barrans, S. L., Evans, P. A., O'Connor, S. J., Kendall, S. J., Owen, R. G., Haynes, A. P. et al. The t(14;18) is associated with germinal center-derived diffuse large B-cell lymphoma and is a strong predictor of outcome. Clin Cancer Res 2003; 9(6): 21332139.Google Scholar
Rosenwald, A. and Staudt, L. M. Gene expression profiling of diffuse large B-cell lymphoma. Leuk Lymphoma 2003; 44(Suppl. 3): S4147.CrossRefGoogle ScholarPubMed
Hans, C. P., Weisenburger, D. D., Greiner, T. C., Gascoyne, R. D., Delabie, J., Ott, G. et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood 2004; 103(1): 275282.CrossRefGoogle ScholarPubMed
Gascoyne, R. D. Pathologic prognostic factors in diffuse aggressive non-Hodgkin's lymphoma. Hematol Oncol Clin North Am 1997; 11(5): 847862.CrossRefGoogle ScholarPubMed
Vega, F., Orduz, R. and Medeiros, L. J. Chromosomal translocations and their role in the pathogenesis of non-Hodgkin's lymphomas. Pathology 2002; 34(5): 397409.CrossRefGoogle ScholarPubMed
Akasaka, T., Ueda, C., Kurata, M., Yamabe, H., Uchiyama, T. and Ohno, H. Nonimmunoglobulin (non-Ig)/BCL6 gene fusion in diffuse large B-cell lymphoma results in worse prognosis than Ig/BCL6. Blood 2000; 96(8): 29072909.CrossRefGoogle ScholarPubMed
Lu, Z., Tsai, A. G., Akasaka, T., Ohno, H., Jiang, Y., Melnick, A. M. et al. BCL6 breaks occur at different AID sequence motifs in Ig-BCL6 and non-Ig-BCL6 rearrangements. Blood 2013; 121(22): 45514554.CrossRefGoogle ScholarPubMed
Bastard, C., Deweindt, C., Kerckaert, J. P., Lenormand, B., Rossi, A., Pezzella, F. et al. LAZ3 rearrangements in non-Hodgkin's lymphoma: correlation with histology, immunophenotype, karyotype, and clinical outcome in 217 patients. Blood 1994; 83(9): 24232427.CrossRefGoogle ScholarPubMed
Lo Coco, F., Ye, B. H., Lista, F., Knowles, D. M., Offit, K., Chaganti, R. S. et al. Rearrangements of the BCL6 gene in diffuse large cell non-Hodgkin's lymphoma. Blood 1994; 83(7): 17571759.CrossRefGoogle ScholarPubMed
Butler, M. P., Iida, S., Capello, D., Rossi, D., Rao, P. H., Nallasivam, P. et al. Alternative translocation breakpoint cluster region 5’ to BCL-6 in B-cell non-Hodgkin's lymphoma. Cancer Res 2002; 62(14): 40894094.Google ScholarPubMed
Akasaka, T., Ohno, H., Mori, T. and Okuma, M. Long distance polymerase chain reaction for detection of chromosome translocations in B-cell lymphoma/leukemia. Leukemia 1997; 11(Suppl. 3): 316317.Google ScholarPubMed
Lossos, I. S., Jones, C. D., Warnke, R., Natkunam, Y., Kaizer, H., Zehnder, J. L. et al. Expression of a single gene, BCL-6, strongly predicts survival in patients with diffuse large B-cell lymphoma. Blood 2001; 98(4): 945951.CrossRefGoogle ScholarPubMed
Pasqualucci, L., Migliazza, A., Basso, K., Houldsworth, J., Chaganti, R. S. and Dalla-Favera, R. Mutations of the BCL6 proto-oncogene disrupt its negative autoregulation in diffuse large B-cell lymphoma. Blood 2003; 15(101): 29142923.CrossRefGoogle Scholar
Ladanyi, M., Offit, K., Jhanwar, S. C., Filippa, D. A. and Chaganti, R. S. MYC rearrangement and translocations involving band 8q24 in diffuse large cell lymphomas. Blood 1991; 77(5): 10571063.CrossRefGoogle ScholarPubMed
Zhou, K., Xu, D., Cao, Y., Wang, J., Yang, Y. and Huang, M. C-MYC aberrations as prognostic factors in diffuse large B-cell lymphoma: a meta-analysis of epidemiological studies. PLoS ONE 2014; 9(4): e95020.CrossRefGoogle ScholarPubMed
Vaidya, R. and Witzig, T. E. Prognostic factors for diffuse large B-cell lymphoma in the R(X)CHOP era. Ann Oncol 2014; 25(11): 21242133.CrossRefGoogle Scholar
Macpherson, N., Lesack, D., Klasa, R., Horsman, D., Connors, J. M., Barnett, M. et al. Small noncleaved, non-Burkitt's (Burkitt-like) lymphoma: cytogenetics predict outcome and reflect clinical presentation. J Clin Oncol 1999; 17(5): 15581567.CrossRefGoogle ScholarPubMed
Johnson, N. A., Savage, K. J., Ludkovski, O., Ben-Neriah, S., Woods, R., Steidl, C. et al. Lymphomas with concurrent BCL2 and MYC translocations: the critical factors associated with survival. Blood 2009; 114(11): 22732279.CrossRefGoogle ScholarPubMed
Alizadeh, A. A., Eisen, M. B., Davis, R. E., Ma, C., Lossos, I. S., Rosenwald, A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000; 403(6769): 503511.CrossRefGoogle ScholarPubMed
Deckert, M., Montesinos-Rongen, M., Brunn, A. and Siebert, R. Systems biology of primary CNS lymphoma: from genetic aberrations to modeling in mice. Acta Neuropathol 2014; 127(2): 175188.CrossRefGoogle ScholarPubMed
Choi, W. W., Weisenburger, D. D., Greiner, T. C., Piris, M. A., Banham, A. H., Delabie, J. et al. A new immunostain algorithm classifies diffuse large B-cell lymphoma into molecular subtypes with high accuracy. Clin Cancer Res 2009; 15(17): 54945502.CrossRefGoogle ScholarPubMed
Mitterbauer-Hohendanner, G., Mannhalter, C., Winkler, K., Mitterbauer, M., Skrabs, C., Chott, A. et al. Prognostic significance of molecular staging by PCR-amplification of immunoglobulin gene rearrangements in diffuse large B-cell lymphoma (DLBCL). Leukemia 2004; 18(6): 11021107.CrossRefGoogle ScholarPubMed
van Besien, K., Ha, C. S., Murphy, S., McLaughlin, P., Rodriguez, A., Amin, K., Forman, A., Romaguera, J. et al. Risk factors, treatment, and outcome of central nervous system recurrence in adults with intermediate-grade and immunoblastic lymphoma. Blood 1998; 91(4): 11781184.CrossRefGoogle ScholarPubMed
Morin, R. D., Johnson, N. A., Severson, T. M., Mungall, A. J., An, J., Goya, R. et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet 2010; 42(2): 181185.CrossRefGoogle ScholarPubMed
Sneeringer, C. J., Scott, M. P., Kuntz, K. W., Knutson, S. K., Pollock, R. M., Richon, V. M. et al. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc Natl Acad Sci USA 2010; 107(49): 2098020985.CrossRefGoogle ScholarPubMed
Qi, W., Chan, H., Teng, L., Li, L., Chuai, S., Zhang, R. et al. Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation. Proc Natl Acad Sci USA 2012; 109(52): 2136021365.CrossRefGoogle ScholarPubMed
McCabe, M. T., Ott, H. M., Ganji, G., Korenchuk, S., Thompson, C., Van Aller, G. S. et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 2012; 492(7427): 108112.CrossRefGoogle ScholarPubMed
Ngo, V. N., Young, R. M., Schmitz, R., Jhavar, S., Xiao, W., Lim, K. H. et al. Oncogenically active MYD88 mutations in human lymphoma. Nature 2011; 470(7332): 115119.CrossRefGoogle ScholarPubMed
Pasqualucci, L., Dominguez-Sola, D. Chiarenza, A., Fabbri, G., Grunn, A., Trifonov, V. et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature 2011; 471(7337): 189195.CrossRefGoogle ScholarPubMed
Morin, R. D., Mendez-Lago, M., Mungall, A. J., Goya, R., Mungall, K. L., Corbett, R. D. et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 2011; 476(7360): 298303.CrossRefGoogle ScholarPubMed
Pasqualucci, L., Trifonov, V., Fabbri, G., Ma, J., Rossi, D., Chiarenza, A. et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat Genet 2011; 43(9): 830837.CrossRefGoogle ScholarPubMed
Lohr, J. G., Stojanov, P., Lawrence, M. S., Auclair, D., Chapuy, B., Sougnez, C. et al. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc Natl Acad Sci USA 2012; 109(10): 38793884.CrossRefGoogle ScholarPubMed
Scott, D. W., Mungall, K. L., Ben-Neriah, S., Rogic, S., Morin, R. D., Slack, G. W. et al. TBL1XR1/TP63: a novel recurrent gene fusion in B-cell non-Hodgkin lymphoma. Blood 2012; 119(21): 49494952.CrossRefGoogle ScholarPubMed
Magrath, I. The pathogenesis of Burkitt's lymphoma. Adv Cancer Res 1990; 55: 133270.CrossRefGoogle ScholarPubMed
Hecht, J. L. and Aster, J. C. Molecular biology of Burkitt's lymphoma. J Clin Oncol 2000; 18(21): 37073721.CrossRefGoogle ScholarPubMed
Love, C., Sun, Z., Jima, D., Li, G., Zhang, J., Miles, R. et al. The genetic landscape of mutations in Burkitt lymphoma. Nat Genet 2012; 44(12): 13211325.CrossRefGoogle ScholarPubMed
Farinha, P. and Gascoyne, R. D. Molecular pathogenesis of mucosa-associated lymphoid tissue lymphoma. J Clin Oncol 2005; 23(26): 63706378.CrossRefGoogle ScholarPubMed
Wotherspoon, A. C., Diss, T. C., Pan, L. X., Schmid, C., Kerr-Muir, M. G., Lea, S. H. et al. Primary low-grade B-cell lymphoma of the conjunctiva: a mucosa-associated lymphoid tissue type lymphoma. Histopathology 1993; 23(5): 417424.CrossRefGoogle ScholarPubMed
Chanudet, E., Zhou, Y., Bacon, C. M., Wotherspoon, A. C., Müller-Hermelink, H. K., Adam, P. et al. Chlamydia psittaci is variably associated with ocular adnexal MALT lymphoma in different geographical regions. J Pathol 2006; 209(3): 344351.CrossRefGoogle ScholarPubMed
Liu, H., Ye, H., Ruskone-Fourmestraux, A., De Jong, D., Pileri, S., Thiede, C. et al. T(11;18) is a marker for all stage gastric MALT lymphomas that will not respond to H. pylori eradication. Gastroenterology 2002; 122(5): 12861294.CrossRefGoogle Scholar
Liu, H., Ye, H., Dogan, A., Ranaldi, R., Hamoudi, R. A., Bearzi, I. et al. T(11;18)(q21;q21) is associated with advanced mucosa-associated lymphoid tissue lymphoma that expresses nuclear BCL10. Blood 2001; 98(4): 11821187.CrossRefGoogle Scholar
Streubel, B., Vinatzer, U., Lamprecht, A., Raderer, M. and Chott, A. T(3;14)(p14.1;q32) involving IGH and FOXP1 is a novel recurrent chromosomal aberration in MALT lymphoma. Leukemia 2005; 19(4): 652658.CrossRefGoogle Scholar
Chanudet, E., Huang, Y., Ichimura, K., Dong, G., Hamoudi, R. A., Radford, J. et al. A20 is targeted by promoter methylation, deletion and inactivating mutation in MALT lymphoma. Leukemia 2010; 24(2): 483487.CrossRefGoogle ScholarPubMed
Chanudet, E., Ye, H., Ferry, J., Bacon, C. M., Adam, P., Müller-Hermelink, H. K. et al. A20 deletion is associated with copy number gain at the TNFA/B/C locus and occurs preferentially in translocation-negative MALT lymphoma of the ocular adnexa and salivary glands. J Pathol 2009; 217(3): 420430.CrossRefGoogle ScholarPubMed
Rossi, D., Ciardullo, C. and Gaidano, G. Genetic aberrations of signaling pathways in lymphomagenesis: revelations from next generation sequencing studies. Semin Cancer Biol 2013; 23(6): 422430.CrossRefGoogle ScholarPubMed
Walsh, S. H., Laurell, A., Sundström, G., Roos, G., Sundström, C. and Rosenquist, R. Lymphoplasmacytic lymphoma/Waldenström's macroglobulinemia derives from an extensively hypermutated B cell that lacks ongoing somatic hypermutation. Leuk Res 2005; 29(7): 729734.CrossRefGoogle ScholarPubMed
Offit, K., Parsa, N. Z., Filippa, D., Jhanwar, S. C. and Chaganti, R. S. t(9;14)(p13;q32) denotes a subset of low-grade non-Hodgkin's lymphoma with plasmacytoid differentiation. Blood 1992; 80(10): 25942599.CrossRefGoogle Scholar
Treon, S. P., Xu, L., Yang, G., Zhou, Y., Liu, X., Cao, Y. et al. MYD88 L265P somatic mutation in Waldenström's macroglobulinemia. New Engl J Med 2012; 367(9): 826833.CrossRefGoogle ScholarPubMed
Hideshima, T., Bergsagel, P. L., Kuehl, W. M. and Anderson, K. C. Advances in biology of multiple myeloma: clinical applications. Blood 2004; 104(3): 607618.CrossRefGoogle ScholarPubMed
Bergsagel, P. L. and Kuehl, W. M. Molecular pathogenesis and a consequent classification of multiple myeloma. J Clin Oncol 2005; 23(26): 63336338.CrossRefGoogle Scholar
González, D., González, M., Alonso, M. E., López-Pérez, R., Balanzategui, A., Chillon, M. C. et al. Incomplete DJH rearrangements as a novel tumor target for minimal residual disease quantitation in multiple myeloma using real-time PCR. Leukemia 2003; 17(6): 10511057.CrossRefGoogle ScholarPubMed
Martinelli, G., Terragna, C., Zamagni, E., Ronconi, S., Tosi, P., Lemoli, R. et al. Polymerase chain reaction-based detection of minimal residual disease in multiple myeloma patients receiving allogeneic stem cell transplantation. Haematologica 2000; 85(9): 930934.Google ScholarPubMed
Novella, E., Giaretta, I., Elice, F., Madeo, D., Piccin, A., Castaman, G. et al. Fluorescent polymerase chain reaction and capillary electrophoresis for IgH rearrangement and minimal residual disease evaluation in multiple myeloma. Haematologica 2002; 87(11): 11571164.Google ScholarPubMed
Martinez-Lopez, J., Lahuerta, J. J., Pepin, F., González, M., Barrio, S., Ayala, R. et al. Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma. Blood 2014; 123(20): 30733079.CrossRefGoogle ScholarPubMed
Schumacher, J. A., Duncavage, E. J., Mosbruger, T. L., Szankasi, P. M. and Kelley, T. W. A comparison of deep sequencing of TCRG rearrangements vs traditional capillary electrophoresis for assessment of clonality in T-Cell lymphoproliferative disorders. Am J Clin Pathol 2014; 141(3): 348359.CrossRefGoogle ScholarPubMed
Matutes, E. T-cell prolymphocytic leukemia. Cancer Control 1998; 5(1): 1924.CrossRefGoogle ScholarPubMed
Foroni, L., Foldi, J., Matutes, E., Catovsky, D., O'Connor, N. J., Forster, A. et al. Alpha, beta and gamma T-cell receptor genes: rearrangements correlate with haematological phenotype in T cell leukaemias. Br J Haematol 1987; 67(3): 307318.Google ScholarPubMed
Matutes, E., Brito-Babapulle, V., Swansbury, J., Ellis, J., Morilla, R., Dearden, C. et al. Clinical and laboratory features of 78 cases of T-prolymphocytic leukemia. Blood 1991; 78(12): 32693274.CrossRefGoogle ScholarPubMed
Delgado, P., Starshak, P., Rao, N. and Tirado, C. A. A comprehensive update on molecular and cytogenetic abnormalities in T-cell prolymphocytic leukemia (T-pll). J Assoc Genet Technol 2012; 38(4): 193198.Google ScholarPubMed
Kiel, M. J., Velusamy, T., Rolland, D., Sahasrabuddhe, A. A., Chung, F., Bailey, N. G. et al. Integrated genomic sequencing reveals mutational landscape of T-cell prolymphocytic leukemia. Blood 2014; 124(9): 14601472.CrossRefGoogle ScholarPubMed
Bergmann, A. K., Schneppenheim, S., Seifert, M., Betts, M. J., Haake, A., Lopez, C. et al. Recurrent mutation of JAK3 in T-cell prolymphocytic leukemia. Gene Chromosome Canc 2014; 53(4): 309316.CrossRefGoogle ScholarPubMed
Rose, M. G. and Berliner, N. T-cell large granular lymphocyte leukemia and related disorders. Oncologist 2004; 9(3): 247258.CrossRefGoogle ScholarPubMed
Jerez, A., Clemente, M. J., Makishima, H., Koskela, H., Leblanc, F., Peng Ng, K. et al. STAT3 mutations unify the pathogenesis of chronic lymphoproliferative disorders of NK cells and T-cell large granular lymphocyte leukemia. Blood 2012; 120(15): 30483057.CrossRefGoogle ScholarPubMed
Yamagishi, M. and Watanabe, T. Molecular hallmarks of adult T cell leukemia. Front Microbiol 2012; 17(3): 334.Google Scholar
Willemze, R., Jaffe, E. S., Burg, G., Cerroni, L., Berti, E., Swerdlow, S. H. et al. WHO-EORTC classification for cutaneous lymphomas. Blood 2005; 105(10): 37683785.CrossRefGoogle ScholarPubMed
Sandberg, Y., Heule, F., Lam, K., Lugtenburg, P. J., Wolvers-Tettero, I. L. M., van Dongen, J. J. et al. Molecular immunoglobulin/T-cell receptor clonality analysis in cutaneous lymphoproliferations. Experience with the BIOMED-2 standardized polymerase chain reaction protocol. Haematologica 2003; 88(6): 659670.Google ScholarPubMed
Assaf, C., Hummel, M., Steinhoff, M., Geilen, C. C., Orawa, H., Stein, H. et al. Early TCR-beta and TCR-gamma PCR detection of T-cell clonality indicates minimal tumor disease in lymph nodes of cutaneous T-cell lymphoma: diagnostic and prognostic implications. Blood 2005; 105(2): 503510.CrossRefGoogle ScholarPubMed
Vaqué, J. P., Gómez-López, G., Monsálvez, V., Varela, I., Martínez, N., Pérez, C. et al. PLCG1 mutations in cutaneous T-cell lymphomas. Blood 2014; 123(13): 20342043.CrossRefGoogle ScholarPubMed
Iqbal, J., Wright, G., Wang, C., Rosenwald, A., Gascoyne, R. D., Weisenburger, D. D. et al. Gene expression signatures delineate biological and prognostic subgroups in peripheral T-cell lymphoma. Blood 2014; 123(19): 29152923.CrossRefGoogle ScholarPubMed
Stein, H., Foss, H. D., Dürkop, H., Marafioti, T., Delsol, G., Pulford, K. et al. CD30(+) anaplastic large cell lymphoma: a review of its histopathologic, genetic, and clinical features. Blood 2000; 96(12): 36813695.CrossRefGoogle ScholarPubMed
Gascoyne, R. D., Aoun, P., Wu, D., Chhanabhai, M., Skinnider, B. F., Greiner, T. C. et al. Prognostic significance of anaplastic lymphoma kinase (ALK) protein expression in adults with anaplastic large cell lymphoma. Blood 1999; 93(11): 39133921.CrossRefGoogle ScholarPubMed
Pulford, K., Lamant, L., Morris, S. W., Butler, L. H., Wood, K. M., Stroud, D. et al. Detection of anaplastic lymphoma kinase (ALK) and nucleolar protein nucleophosmin (NPM)-ALK proteins in normal and neoplastic cells with the monoclonal antibody ALK1. Blood 1997; 89(4): 13941404.CrossRefGoogle ScholarPubMed
Kutok, J. L. and Aster, J. C. Molecular biology of anaplastic lymphoma kinase-positive anaplastic large-cell lymphoma. J Clin Oncol 2002; 20(17): 36913702.CrossRefGoogle ScholarPubMed
Feldman, A. L., Dogan, A., Smith, D. I., Law, M. E., Ansell, S. M., Johnson, S. H. et al. Discovery of recurrent t(6;7)(p25.3;q32.3) translocations in ALK-negative anaplastic large cell lymphomas by massively parallel genomic sequencing. Blood 2011; 117(3): 915919.CrossRefGoogle Scholar
Vasmatzis, G., Johnson, S. H., Knudson, R. A., Ketterling, R. P., Braggio, E., Fonseca, R. et al. Genome-wide analysis reveals recurrent structural abnormalities of TP63 and other p53-related genes in peripheral T-cell lymphomas. Blood 2012; 120(11): 22802289.CrossRefGoogle ScholarPubMed
Parilla Castellar, E. R., Jaffe, E. S., Said, J. W., Swerdlow, S. H., Ketterling, R. P., Knudson, R. A. et al. ALK-negative anaplastic large cell lymphoma is a genetically heterogeneous disease with widely disparate clinical outcomes. Blood 2014; 124(9): 14731480.CrossRefGoogle Scholar
Willenbrock, K., Roers, A., Seidl, C., Wacker, H. H., Küppers, R. and Hansmann, M. L. Analysis of T-cell subpopulations in T-cell non-Hodgkin's lymphoma of angioimmunoblastic lymphadenopathy with dysproteinemia type by single target gene amplification of T-cell receptor-beta gene rearrangements. Am J Pathol 2001; 158(5): 18511857.CrossRefGoogle ScholarPubMed
Anagnostopoulos, I., Hummel, M., Finn, T., Tiemann, M., Kobjuhn, P., Dimmler, C. et al. Heterogeneous Epstein-Barr virus infection patterns in peripheral T-cell lymphoma of angioimmunoblastic lymphadenopathy type. Blood 1992; 80(7): 18041812.CrossRefGoogle ScholarPubMed
Odejide, O., Weigert, O., Lane, A. A., Toscano, D., Lunning, M. A., Kopp, N. et al. A targeted mutational landscape of angioimmunoblastic T-cell lymphoma. Blood 2014; 123(9): 12931296.CrossRefGoogle ScholarPubMed
Calvaruso, M., Gulino, A., Buffa, S., Guarnotta, C. and Franco, G. Challenges and new prospects in hepatosplenic γδ T-cell lymphoma. Leuk Lymphoma 2014; 10: 19.Google Scholar
Wlodarska, I., Martin-Garcia, N., Achten, R., De Wolf-Peeters, C., Pauwels, P., Tulliez, M. et al. Fluorescence in situ hybridization study of chromosome 7 aberrations in hepatosplenic T-cell lymphoma: isochromosome 7q as a common abnormality accumulating in forms with features of cytologic progression. Gene Chromosome Canc 2002; 33(3): 243251.CrossRefGoogle ScholarPubMed
Travert, M., Huang, Y., de Leval, L., Martin-Garcia, N., Delfau-Larue, M. H., Berger, F. et al. Molecular features of hepatosplenic T-cell lymphoma unravels potential novel therapeutic targets. Blood 2012; 119(24): 57955806.CrossRefGoogle ScholarPubMed
Kwong, K. L. Natural killer-cell malignancies: diagnosis and treatment. Leukemia 2005; 19(12): 21862194.CrossRefGoogle ScholarPubMed
Tse, E. and Kwong, Y. L. Management of advanced NK/T-Cell lymphoma. Curr Hematol Malig Rep 2014; 9(3): 233242.CrossRefGoogle ScholarPubMed
Ruskova, A., Thula, R. and Chan, G. Aggressive Natural Killer-Cell Leukemia: report of five cases and review of the literature. Leuk Lymphoma 2004; 45(12): 24272438.CrossRefGoogle ScholarPubMed
Koo, G. C., Tan, S. Y., Tang, T., Poon, S. L., Allen, G. E., Tan, L. et al. Janus kinase 3-activating mutations identified in natural killer/T-cell lymphoma. Cancer Discov 2012; 2(7): 591597.CrossRefGoogle ScholarPubMed
Bouchekioua, A., Scourzic, L., de Wever, O., Zhang, Y., Cervera, P., Aline-Fardin, A. et al. JAK3 deregulation by activating mutations confers invasive growth advantage in extranodal nasal-type natural killer cell lymphoma. Leukemia 2014; 28(2): 338348.CrossRefGoogle ScholarPubMed
Emmert-Buck, M. R., Bonner, R. F., Smith, P. D., Chuaqui, R. F., Zhuang, Z., Goldstein, S. R. et al. Laser capture microdissection. Science 1996; 274(5289): 9981001.CrossRefGoogle ScholarPubMed
Küppers, R. New insights in the biology of Hodgkin lymphoma. Hematology Am Soc Hematol Educ Program 2012; 2012: 328334.CrossRefGoogle ScholarPubMed
Steidl, C., Diepstra, A., Lee, T., Chan, F. C., Farinha, P., Tan, K. et al. Gene expression profiling of microdissected Hodgkin Reed-Sternberg cells correlates with treatment outcome in classical Hodgkin lymphoma. Blood 2012; 120(17): 35303540.CrossRefGoogle ScholarPubMed
Liu, Y., Razak, F. R., Terpstra, M., Chan, F. C., Saber, A., Nijland, M. et al. The mutational landscape of Hodgkin lymphoma cell lines determined by whole exome sequencing. Leukemia 2014; 28(11): 22482251.CrossRefGoogle ScholarPubMed
Steidl, C., Telenius, A., Shah, S. P., Farinha, P., Barclay, L., Boule, M. et al. Genome-wide copy number analysis of Hodgkin Reed-Sternberg cells identifies recurrent imbalances with correlations to treatment outcome. Blood 2010; 116(3): 418427.CrossRefGoogle ScholarPubMed
Tiacci, E., Döring, C., Brune, V., van Noesel, C. J., Klapper, W., Mechtersheimer, G. et al. Analyzing primary Hodgkin and Reed-Sternberg cells to capture the molecular and cellular pathogenesis of classical Hodgkin lymphoma. Blood 2012; 120(23): 46094620.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×