Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-29T22:26:17.273Z Has data issue: false hasContentIssue false

8 - Survivability: Protection and Restoration

Published online by Cambridge University Press:  05 June 2012

Thomas E. Stern
Affiliation:
Columbia University, New York
Georgios Ellinas
Affiliation:
University of Cyprus
Krishna Bala
Affiliation:
Xtellus, New Jersey
Get access

Summary

Survivability against failures, including failure recovery, is important in any telecommunications network but is highly critical for high-bandwidth optical networks. As more traffic is concentrated on fewer routes, the number of customers that can be potentially affected by a failure is increased. An analysis of failures in the Public Switched Telephone Network over a two-year period in the 1990s showed that human error, acts of nature, and overloads were the major sources of failure. The impact of the failures was measured in terms of how many times a particular failure occurred, duration of the outage, and number of customers and number of customer minutes affected during that outage. During that period, the average number of customers affected due to cable cuts or cable component failures was 216,690, costing 2,643 million in customer minutes. Similarly, the average number of customers affected by each equipment failure was 1,836,910, costing 3,544.3 million in customer minutes . Cable cuts and hardware/equipment failures account for approximately half of the failures encountered in the network during that period.

Fiber cuts are considered one of the most common failures in fiber-optic networks. Furthermore, the use of WDM over these fibers produces an extremely high volume of traffic on a cable. Commercially available fiber-optic transmission systems can run at 10 Gbps or more per channel with 80 or more channels (wavelengths) per fiber. This translates to more than 800 Gbps per fiber.

Type
Chapter
Information
Multiwavelength Optical Networks
Architectures, Design, and Control
, pp. 647 - 713
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×