Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-28T10:28:33.465Z Has data issue: false hasContentIssue false

7 - Neonatal hemolysis

Published online by Cambridge University Press:  10 August 2009

Pedro A. de Alarcón
Affiliation:
University of Tennessee
Eric J. Werner
Affiliation:
Eastern Virginia Medical School
J. Lawrence Naiman
Affiliation:
Stanford University School of Medicine, California
Get access

Summary

This chapter focuses on the recognition and management of hemolysis in newborn infants (Table 7.1). Some of the common hemolytic anemias of childhood first appear in the newborn period, while others do not present until several months of age, and a few rare hemolytic disorders occur only in the neonatal period. These variations in the age that hemolytic anemia first presents reflect differences in neonatal erythropoiesis, hemoglobin synthesis, and the metabolism of newborn erythrocytes. When approaching an infant with a potential hemolytic disorder, the first issue to be addressed is whether there is evidence of increased red-cell destruction and accelerated production. If yes, then the next question is to consider whether the cause of neonatal hemolysis is due to extracellular (acquired) factors or an intrinsic (genetic) red-cell defect. Acquired disorders are those that are immune-mediated, associated with infection, or accompany some other underlying pathology. Inherited red-cell disorders are due to defects in the cell membrane, abnormalities in red-blood-cell (RBC) metabolism, or a consequence of a hemoglobin defect.

Evaluation of a neonate for hemolysis must be considered in the context of normal newborn physiology. The RBC lifespan in term neonates (80–100 days) and in premature infants (60–80 days) is shorter than in older children and adults (100–120 days) [1]. The reason for the reduced RBC survival observed in newborns is not known, although there are many biochemical differences between adult and neonatal RBCs [2–4].

Type
Chapter
Information
Neonatal Hematology , pp. 132 - 162
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pearson, H. A.Life-span of the fetal red blood cell. J Pediatr 1967; 70: 166–171CrossRefGoogle ScholarPubMed
Oski, F. A., Naiman, J. L.Hematologic problems in the newborn, third edition. Major Probl Clin Pediatr 1982; 4: 1–360Google Scholar
Matovcik, L. M., Chiu, D., et al.The aging process of human neonatal erythrocytes. Pediatr Res 1986; 20: 1091–1096CrossRefGoogle ScholarPubMed
Matovcik, L. M., Mentzer, W. C.The membrane of the human neonatal red cell. Clin Haematol 1985; 14: 203–221Google ScholarPubMed
Advani, R., Mentzer, W., et al.Oxidation of hemoglobin F is associated with the aging process of neonatal red blood cells. Pediatr Res 1992; 32: 165–168CrossRefGoogle ScholarPubMed
Geaghan, S. M.Hematologic values and appearances in the healthy fetus, neonate, and child. Clin Lab Med 1999; 19: 1–37Google Scholar
Holroyde, C. P., Oski, F. A., et al.The “pocked” erythrocyte: red-cell surface alterations in reticuloendothelial immaturity of the neonate. N Engl J Med 1969; 281: 516–520CrossRefGoogle ScholarPubMed
Padmanabhan, J., Risemberg, H. M., et al.Howell–Jolly bodies in the peripheral blood of full-term and premature neonates. Johns Hopkins Med J 1973; 132: 146–150Google ScholarPubMed
Maisels, M. J., Pathak, A., et al.Endogenous production of carbon monoxide in normal and erythroblastotic newborn infants. J Clin Invest 1971; 50: 1–8CrossRefGoogle ScholarPubMed
Arias, I. M.The pathogenesis of “physiologic” jaundice of the newborn: a reevaluation. Birth Defects Orig Artic Ser 1970; 6: 55–59Google Scholar
Bhutani, V. K., Johnson, L., et al.Predictive ability of a predischarge hour-specific serum bilirubin for subsequent significant hyperbilirubinemia in healthy term and near-term newborns. Pediatrics 1999: 103: 6–14CrossRefGoogle ScholarPubMed
Necheles, T. F., Rai, U. S., et al.The role of haemolysis in neonatal hyperbilirubinaemia as reflected in carboxyhaemoglobin levels. Acta Paediatr Scand 1976; 65: 361–367CrossRefGoogle ScholarPubMed
Coburn, R. F.Endogenous carbon monoxide production. N Engl J Med 1970; 282: 207–209CrossRefGoogle ScholarPubMed
Coburn, R. F., Williams, W. J., et al.Endogenous carbon monoxide production in patients with hemolytic anemia. J Clin Invest 1966; 45: 460–468CrossRefGoogle ScholarPubMed
Stevenson, D. K., Vreman, H. J.Carbon monoxide and bilirubin production in neonates. Pediatrics 1997; 100: 252–254CrossRefGoogle ScholarPubMed
Smith, D. W., Inguillo, D., et al.Use of noninvasive tests to predict significant jaundice in full-term infants: preliminary studies. Pediatrics 1985; 75: 278–280Google ScholarPubMed
Salmi, T. T.Haptoglobin levels in the plasma of newborn infants with special reference to infections. Acta Paediatr Scand Suppl 1973; 241: 1–55Google ScholarPubMed
Freda, V. J., Gorman, J. G., et al.Prevention of Rh hemolytic disease–ten years' clinical experience with Rh immune globulin. N Engl J Med 1975; 292: 1014–1016CrossRefGoogle ScholarPubMed
Baumann, R., Rubin, H.Autoimmune hemolytic anemia during pregnancy with hemolytic disease in the newborn. Blood 1973; 41: 293–297Google ScholarPubMed
Kahn, G.Dapsone is safe during pregnancy. J Am Acad Dermatol 1985; 13: 838–839CrossRefGoogle ScholarPubMed
Tuffanelli, D. L.Successful pregnancy in a patient with dermatitis herpetiformis treated with low-dose dapsone. Arch Dermatol 1982; 118: 876CrossRefGoogle Scholar
Hocking, D. R.Neonatal haemolytic disease due to dapsone. Med J Aust 1968; 1: 1130–1131Google ScholarPubMed
Sanders, S. W., Zone, J. J., et al.Hemolytic anemia induced by dapsone transmitted through breast milk. Ann Intern Med 1982; 96: 465–466CrossRefGoogle ScholarPubMed
Thornton, Y. S., Bowe, E. T.Neonatal hyperbilirubinemia after treatment of maternal leprosy. South Med J 1989; 82: 668CrossRefGoogle ScholarPubMed
Batton, D. G., Amanullah, A., et al.Fetal schistocytic hemolytic anemia and umbilical vein varix. J Pediatr Hematol Oncol 2000; 22: 259–261CrossRefGoogle ScholarPubMed
Ramasethu, J., Luban, N.T activation. Br J Haematol 2001; 112: 259–263CrossRefGoogle ScholarPubMed
Klein, R. L., Novak, R. W., et al.T-cryptantigen exposure in neonatal necrotizing enterocolitis. J Pediatr Surg 1986; 21: 1155–1158CrossRefGoogle ScholarPubMed
Osborn, D. A., Lui, K., et al.T and Tk antigen activation in necrotising enterocolitis: manifestations, severity of illness, and effectiveness of testing. Arch Dis Child Fetal Neonatal Ed 1999; 80: F192–F197CrossRefGoogle Scholar
Novak, R. W.The pathobiology of red cell cryptantigen exposure. Pediatr Pathol 1990; 10: 867–875CrossRefGoogle ScholarPubMed
Cabrera, G. R., Fortenberry, J. D., et al.Hemolytic uremic syndrome associated with invasive Streptococcus pneumoniae infection. Pediatrics 1998; 101: 699–703CrossRefGoogle ScholarPubMed
Kirsten, G. F., Smith, J., et al.The necessity for T-cryptantigen activation screening in babies with necrotising enterocolitis. S Afr Med J 1996; 86: 546–548Google ScholarPubMed
Rodwell, R., Tudehope, D. I.Screening for cryptantigen exposure and polyagglutination in neonates with suspected necrotizing enterocolitis. J Paediatr Child Health 1993; 29: 16–18CrossRefGoogle ScholarPubMed
Oski, F. A., Barness, L. A.Vitamin E deficiency, a previously unrecognized cause of hemolytic anemia in the premature infant. J Paediatr 1967; 70: 211–220CrossRefGoogle ScholarPubMed
Ritchie, J. H., Fish, M. B., et al.Edema and hemolytic anemia in premature infants: a vitamin E deficiency syndrome. N Engl J Med 1968; 279: 1185–1190CrossRefGoogle ScholarPubMed
Zipursky, A., Brown, E. J., et al.Oral vitamin E supplementation for the prevention of anemia in premature infants: a controlled trial. Pediatrics 1987; 79: 61–68Google ScholarPubMed
Smith, H. Normal values and appearances. In Smith, H., ed. Diagnosis in Paediatric Haematology. New York: Churchill Livingstone, 1996: 4Google Scholar
Tuffy, P., Brown, A. K., et al.Infantile pyknocytosis: a common erythrocyte abnormality in the first trimester. Am J Dis Child 1959; 98: 227–241CrossRefGoogle ScholarPubMed
Zannos-Mariola, L., Kattimis, C.Infantile pyknocytosis and glucose-6-phosphate dehydrogenase deficiency. Br J Haematol 1962; 8: 258–265CrossRefGoogle Scholar
Kleimowitz, R., Desforges, J. F.Infantile pyknocytosis. N Engl J Med 1965; 273: 1152–1155CrossRefGoogle Scholar
Maxwell, D. J., Sehardri, R., et al.Infantile pyknocytosis: a cause of intrauterine hemolysis in 2 siblings. Aust N Z J Obstet Gynaecol 1983; 23: 182–185CrossRefGoogle ScholarPubMed
Dabbous, I. A., Bahlawan, L. E.Infantile pyknocytosis: a forgotten or dead diagnosis. J Pediatr Hematol Oncol 2002; 24: 507CrossRefGoogle ScholarPubMed
Gallagher, P. G., Forget, B. G., et al. Disorders of the erythrocyte membrane. In Orkin, S. H., ed. Nathan and Oski's Hematology of Infancy and Childhood. Philadelphia: W. B. Saunders, 1998: 544–664Google Scholar
Walensky, L., Lux, S. E. Disorders of red blood cell membrane. In Handin, R. I., ed. Blood: Principles and Practice of Hematoloty. Boston, MA: Lippincott Williams & Wilkins, 2002; 1709–1858Google Scholar
Mentzer, W. C. Pyruvate kinase deficiency and disorders of glycolysis. In Nathan, D. G., Orkin, S. H., Look, A. T., Ginsburg, D., ed. Hematology of Infancy and Childhood, 6th edn. Philadelphia: W. B. Saunders, 2003: 685–720Google Scholar
Morton, N.Genetics of spherocytosis. Am J Hum Genet 1962; 14: 170Google ScholarPubMed
Agre, P., Asimos, A., et al.Inheritance pattern and clinical response to splenectomy as a reflection of erythrocyte spectrin deficiency in hereditary spherocytosis. N Engl J Med 1986; 315: 1579–1583CrossRefGoogle ScholarPubMed
Eber, S. W., Pekrun, A., et al.Prevalence of increased osmotic fragility of erythrocytes in German blood donors: screening using a modified glycerol lysis test. Ann Hematol 1992; 64: 88–92CrossRefGoogle ScholarPubMed
Gallagher, P. G., Petruzzi, M. J., et al.Mutation of a highly conserved residue of betaI spectrin associated with fatal and near-fatal neonatal hemolytic anemia. J Clin Invest 1997; 99: 267–277CrossRefGoogle ScholarPubMed
Stamey, C., Diamond, L. K.Congenital hemolytic anemia in the newborn. Am J Dis Child 1957; 94: 616CrossRefGoogle ScholarPubMed
Trucco, J. I., Brown, A. K.Neonatal manifestations of hereditary spherocytosis. Am J Dis Child 1967; 113: 263–270Google ScholarPubMed
Rubins, J., Young, L. E.Hereditary spherocytosis and glucose-6-phosphate dehydrogenase deficiency. J Am Med Assoc 1977; 237: 797–798CrossRefGoogle ScholarPubMed
Schroter, W., Kahsnitz, E.Diagnosis of hereditary spherocytosis in newborn infants. J Pediatr 1983; 103: 460–463CrossRefGoogle ScholarPubMed
Iolascon, A., Faienza, M. F., et al.UGT1 promoter polymorphism accounts for increased neonatal appearance of hereditary spherocytosis. Blood 1998; 91: 1093Google ScholarPubMed
Delhommeau, F., Cynober, T., et al.Natural history of hereditary spherocytosis during the first year of life. Blood 2000; 95: 393–397Google ScholarPubMed
Diamond, L. K.Splenectomy in childhood and the hazard of overwhelming infection. Pediatrics 1969; 43: 886–889Google ScholarPubMed
Bader-Meunier, B., Gauthier, F., et al.Long-term evaluation of the beneficial effect of subtotal splenectomy for management of hereditary spherocytosis. Blood 2001; 97: 399–403CrossRefGoogle ScholarPubMed
Mentzer, W., Glader, B. Hereditary spherocytosis and other anemias due to abnormalities of the red cell membrane. In Greer, J., Foerster, J., Lukens, J. N., et al., eds. Wintrobe's Clinical Hemotology. Philadelphia: Lippincott Williams & Wilkins, 2003; 1089–1114Google Scholar
Palek, J., Jarolim, P.Clinical expression and laboratory detection of red blood cell membrane protein mutations. Semin Hematol 1993; 30: 249–283Google ScholarPubMed
Austin, R. F., Desforges, J. F.Hereditary elliptocytosis: an unusual presentation of hemolysis in the newborn associated with transient morphologic abnormalities. Pediatrics 1969; 44: 196–200Google ScholarPubMed
MacDougall, L. G., Moodley, G., et al.The pyropoikilocytosis-elliptocytosis syndrome in a black South African infant: clinical and hematological features. Am J Pediatr Hematol Oncol 1982; 4: 344–349Google Scholar
Mentzer, W. C. Jr, Iarocci, T. A., et al.Modulation of erythrocyte membrane mechanical stability by 2,3-diphosphoglycerate in the neonatal poikilocytosis/elliptocytosis syndrome. J Clin Invest 1987; 79: 943–949CrossRefGoogle ScholarPubMed
Glader, B. Hemolysis due to red blood cell enzyme disorders. Greer, J., Foerster, J., Lukens, J. N., et al., eds. Wintrobe's Clinical Hematology.Philadelphia: Lippincott Williams & Wilkins, 2003: 1115–1140Google Scholar
Beutler, E., Vulliamy, T., et al.Hematologically important mutations: glucose-6-phosphate dehydrogenase. Blood Cells Mol Dis 1996; 22: 49–56CrossRefGoogle ScholarPubMed
Miwa, S., Fujii, H.Molecular basis of erythroenzymopathies associated with hereditary hemolytic anemia: tabulation of mutant enzymes. Am J Hematol 1996; 51: 122–1323.0.CO;2-#>CrossRefGoogle ScholarPubMed
Beutler, E.The Molecular Biology of Enzymes of Erythrocyte Metabolism. Philadelphia: W. B. Saunders, 1993Google Scholar
Beutler, E.The genetics of glucose-6-phosphate dehydrogenase deficiency. Semin Hematol 1990; 27: 137–164Google ScholarPubMed
Valaes, T.Severe neonatal jaundice associated with glucose-6-phosphate dehydrogenase deficiency: pathogenesis and global epidemiology. Acta Paediatr Suppl 1994; 394: 58–76CrossRefGoogle ScholarPubMed
Kaplan, M., Algur, N., et al.Onset of jaundice in glucose-6-phosphate dehydrogenase-deficient neonates. Pediatrics 2001; 108: 956–959CrossRefGoogle ScholarPubMed
Kaplan, M., Hammerman, C., et al.Predischarge bilirubin screening in glucose-6-phosphate dehydrogenase-deficient neonates. Pediatrics 2000; 105: 533–537CrossRefGoogle ScholarPubMed
Kaplan, M., Hammerman, C., Beutler, E.Hyperbilirubinaemia, glucose-6-phosphate dehydrogenase deficiency and Gilbert syndrome. Eur J Pediatr 2001; 160: 195CrossRefGoogle ScholarPubMed
Bienzle, U., Effiong, C., et al.Erythrocyte glucose 6-phosphate dehydrogenase deficiency (G6PD type A-) and neonatal jaundice. Acta Paediatr Scand 1976; 65: 701–703CrossRefGoogle ScholarPubMed
Slusher, T. M., Vreman, H. J., et al.Glucose-6-phosphate dehydrogenase deficiency and carboxyhemoglobin concentrations associated with bilirubin-related morbidity and death in Nigerian infants. J Pediatr 1995; 126: 102–108CrossRefGoogle ScholarPubMed
Oyebola, D. D.Care of the neonate and management of neonatal jaundice as practised by Yoruba traditional healers of Nigeria. J Trop Pediatr 1983; 29: 18–22CrossRefGoogle ScholarPubMed
Drew, J. H., Kitchen, W. H.Jaundice in infants of Greek parentage: the unknown factor may be environmental. J Pediatr 1976; 89: 248–252CrossRefGoogle ScholarPubMed
Brown, A. K.Hyperbilirubinemia in black infants. Role of glucose-6-phosphate dehydrogenase deficiency. Clin Pediatr (Phila) 1992; 31: 712–715CrossRefGoogle ScholarPubMed
Mentzer, W. C., Collier, E.Hydrops fetalis associated with erythrocyte G-6-PD deficiency and maternal ingestion of fava beans and ascorbic acid. J Pediatr 1975; 86: 565–567CrossRefGoogle ScholarPubMed
Kaplan, M., Vreman, H. J., et al.Contribution of haemolysis to jaundice in Sephardic Jewish glucose-6-phosphate dehydrogenase deficient neonates. Br J Haematol 1996; 93: 822–827CrossRefGoogle ScholarPubMed
Kaplan, M., Beutler, E., et al.Neonatal hyperbilirubinemia in glucose-6-phosphate dehydrogenase-deficient heterozygotes. Pediatrics 1999; 104: 68–74CrossRefGoogle ScholarPubMed
Kappas, A., Drummond, G. S., et al.A single dose of Sn-mesoporphyrin prevents development of severe hyperbilirubinemia in glucose-6-phosphate dehydrogenase-deficient newborns. Pediatrics 2001; 108: 25–30CrossRefGoogle ScholarPubMed
MacDonald, M. G.Hidden risks: early discharge and bilirubin toxicity due to glucose 6-phosphate dehydrogenase deficiency. Pediatrics 1995; 96: 734–738Google ScholarPubMed
Meloni, T., Forteleoni, G., et al.Marked decline of favism after neonatal glucose-6-phosphate dehydrogenase screening and health education: the northern Sardinian experience. Acta Haematol 1992; 87: 29–31CrossRefGoogle ScholarPubMed
Beutler, E. Red blood cell enzyme disorders. In Bern, F. F., ed. Hematologic Disorders in Maternal-Fetal Medicine. M. New York: Wiley-Liss, 1990: 199Google Scholar
McCurdy, P. R., Morse, E. E.Glucose-6-phosphate dehydrogenase deficiency and blood transfusion. Vox Sang 1975; 28: 230–237CrossRefGoogle ScholarPubMed
Shalev, O., Manny, N., et al.Posttransfusional hemolysis in recipients of glucose-6-phosphate dehydrogenase-deficient erythrocytes. Vox Sang 1993; 64: 94–98Google ScholarPubMed
Mimouni, F., Shohat, S., et al.G6PD-deficient donor blood as a cause of hemolysis in two preterm infants. Isr J Med Sci 1986; 22: 120–122Google ScholarPubMed
Kumar, P., Sarkar, S., et al.Acute intravascular haemolysis following exchange transfusion with G-6-PD deficient blood. Eur J Pediatr 1994; 153: 98–99CrossRefGoogle ScholarPubMed
Zanella, A., Bianchi, P.Red cell pyruvate kinase deficiency: from genetics to clinical manifestations. Baillieres Best Pract Res Clin Haematol 2000; 13: 57–81CrossRefGoogle ScholarPubMed
Bowman, H. S.Pyruvate kinase-deficient hemolytic anemia in an Amish isolate. Am J Hum Genet 1965; 17: 1–8Google Scholar
Matthay, K. K., Mentzer, W. C.Erythrocyte enzymopathies in the newborn. Clin Haematol 1981; 10: 31–55Google ScholarPubMed
Hutton, J. J., Chilcote, R. R.Glucose phosphate isomerase deficiency with hereditary nonspherocytic hemolytic anemia. J Pediatr 1974; 85: 494–497CrossRefGoogle ScholarPubMed
Schroter, W., Koch, H. H., et al.Glucose phosphate isomerase deficiency with congenital nonspherocytic hemolytic anemia: a new variant (type Nordhorn). I. Clinical and genetic studies. Pediatr Res 1974; 8: 18–25CrossRefGoogle ScholarPubMed
Ravindranath, Y., Paglia, D. E., et al.Glucose phosphate isomerase deficiency as a cause of hydrops fetalis. N Engl J Med 1987; 316: 258–261CrossRefGoogle ScholarPubMed
Biervliet, J. P., Milligen-Boersma, L., et al.A new variant of glucosephosphate isomerase deficiency (GPI-Utrecht). Clin Chim Acta 1975; 65: 157–165CrossRefGoogle Scholar
Xu, W., Beutler, E.The characterization of gene mutations for human glucose phosphate isomerase deficiency associated with chronic hemolytic anemia. J Clin Invest 1994; 94: 2326–2329CrossRefGoogle ScholarPubMed
Vora, S.Isozymes of phosphofructokinase. Isozymes Curr Top Biol Med Res 1982; 6: 119–167Google ScholarPubMed
Vora, S., DiMauro, S., et al.Characterization of the enzymatic defect in late-onset muscle phosphofructokinase deficiency: new subtype of glycogen storage disease type VII. J Clin Invest 1987; 80: 1479–1485CrossRefGoogle ScholarPubMed
Valentine, W. N., Hsieh, H. S., et al.Hereditary hemolytic anemia: association with phosphoglycerate kinase deficiency in erythrocytes and leukocytes. Trans Assoc Am Physicians 1968; 81: 49–65Google ScholarPubMed
Schneider, A., Westwood, B., et al.Triosephosphate isomerase deficiency: repetitive occurrence of point mutation in amino acid 104 in multiple apparently unrelated families. Am J Hematol 1995; 50: 263–268CrossRefGoogle ScholarPubMed
Schneider, A., Valentine, W. N.Hereditary hemolytic anemia with triosephosphate isomerase deficiency. N Engl J Med 1965; 272: 229–235CrossRefGoogle ScholarPubMed
Valentine, W. N., Oski, F. A., et al.Hereditary hemolytic anemia with hexokinase deficiency: role of hexokinase in erythrocyte aging. N Engl J Med 1967; 276: 1–11CrossRefGoogle ScholarPubMed
Kanno, H.Hexokinase: gene structure and mutations. Baillieres Best Pract Res Clin Haematol 2000; 13: 83–88CrossRefGoogle ScholarPubMed
Beutler, E.Red cell enzyme defects as nondiseases and as diseases. Blood 1979; 54: 1–7Google ScholarPubMed
Beutler, E., Baranko, P. V., et al.Hemolytic anemia due to pyrimidine-5′-nucleotidase deficiency: report of eight cases in six families. Blood 1980; 56: 251–255Google ScholarPubMed
Paglia, D. E., Valentine, W. N.Hereditary and acquired defects in the pyrimidine nucleotidase of human erythrocytes. Curr Top Hematol 1980; 3: 75–109Google ScholarPubMed
Paglia, D. E., Valentine, W. N., et al.Pyrimidine nucleotidase deficiency with active dephosphorylation of dTMP: evidence for existence of thymidine nucleotidase in human erythrocytes. Blood 1983; 62: 1147–1149Google ScholarPubMed
Chui, D. H., Waye, J. S.Hydrops fetalis caused by alpha-thalassemia: an emerging health care problem. Blood 1998; 91: 2213–2222Google ScholarPubMed
Liang, S. T., , Wong V. C., et al.Homozygous alpha-thalassaemia: clinical presentation, diagnosis and management: a review of 46 cases. Br J Obstet Gynaecol 1985; 92: 680–684CrossRefGoogle ScholarPubMed
Beaudry, M. A., Ferguson, D. J., et al.Survival of a hydropic infant with homozygous alpha-thalassemia-1. J Pediatr 1986; 108: 713–716CrossRefGoogle ScholarPubMed
Bianchi, D. W., Beyer, E. C., et al.Normal long-term survival with alpha-thalassemia. J Pediatr 1986; 108: 716–718CrossRefGoogle ScholarPubMed
Singer, S. T., Styles, L., et al.Changing outcome of homozygous alpha-thalassemia: cautious optimism. J Pediatr Hematol Oncol 2000; 22: 539–542CrossRefGoogle ScholarPubMed
Chik, K. W., Shing, M. M., et al.Treatment of hemoglobin Bart's hydrops with bone marrow transplantation. J Pediatr 1998; 132: 1039–1042CrossRefGoogle ScholarPubMed
Guy, G., Coady, D. J., et al.Alpha-thalassemia hydrops fetalis: clinical and ultrasonographic considerations. Am J Obstet Gynecol 1985; 153: 500–504CrossRefGoogle ScholarPubMed
Hsieh, F. J., Ko, T. M., et al.Hydrops fetalis caused by severe alpha-thalassemia. Early Hum Dev 1992; 29: 233–236CrossRefGoogle ScholarPubMed
Stein, J., Berg, C., Jones, J., Detter, J.A screening protocol for a prenatal population at risk for inherited hemoglobin disorders: results of its application to a group of Southeast Asians and blacks. Am J Obstet Gynecol 1984; 150: 333–341CrossRefGoogle ScholarPubMed
Glader, B. E.Screening for anemia and erythrocyte disorders in children. Pediatrics 1986; 78: 368–369Google ScholarPubMed
Chan, V., Ghosh, A., et al.Prenatal diagnosis of homozygous alpha thalassaemia by direct DNA analysis of uncultured amniotic fluid cells. Br Med J (Clin Res Ed) 1984; 288: 1327–1329CrossRefGoogle ScholarPubMed
Fucharoen, S., Winichagoon, P., et al.Prenatal diagnosis of thalassemia and hemoglobinopathies in Thailand: experience from 100 pregnancies. Southeast Asian J Trop Med Public Health 1991; 22: 16–29Google ScholarPubMed
Hsieh, F. J., Chang, F. M., et al.Percutaneous ultrasound-guided fetal blood sampling in the management of nonimmune hydrops fetalis. Am J Obstet Gynecol 1987; 157: 44–49CrossRefGoogle ScholarPubMed
Higgs, D. R.Alpha-thalassaemia. Baillieres Clin Haematol 1993; 6: 117–150CrossRefGoogle ScholarPubMed
Higgs, D. R., Weatherall, D. J.Alpha-thalassemia. Curr Top Hematol 1983; 4: 37–97Google ScholarPubMed
Galanello, R.Molecular basis of thalassemia major. Int J Pediatr Hematol Oncol 1995; 2: 383Google Scholar
McDonagh, K., Nienhuis, A. W. The thalassemias. In Nathan, D. G., Oski, F. A., eds. Hematology of Infancy and Childhood, 4th edn. Philadelphia: W. B. Saunders, 1993: 783Google Scholar
Olivieri, N. F.The beta-thalassemias. N Engl J Med 1999; 341: 99–109CrossRefGoogle ScholarPubMed
Kazazian, H. H. Jr, Boehm, C. D.Molecular basis and prenatal diagnosis of beta-thalassemia. Blood 1988; 72: 1107–1116Google ScholarPubMed
Cao, A., Galanello, R., et al.Clinical experience of management of thalassemia: the Sardinian experience. Semin Hematol 1996; 33: 66–75Google ScholarPubMed
Fucharoen, S., Ketvichit, P., et al.Clinical manifestation of beta-thalassemia/hemoglobin E disease. J Pediatr Hematol Oncol 2000; 22: 552–557CrossRefGoogle ScholarPubMed
Embury, S. H., Kropp, G. L., et al.Detection of the hemoglobin E mutation using the color complementation assay: application to complex genotyping. Blood 1990; 76: 619–623Google ScholarPubMed
Lorey, F., Cunningham, G., et al.Universal screening for hemoglobinopathies using high-performance liquid chromatography: clinical results of 2.2 million screens. Eur J Hum Genet 1994; 2: 262–271CrossRefGoogle ScholarPubMed
Lenfant, C.The Management of Sickle Cell Disease, 4th edn. Bethesda, MD: National Institutes of Health, 2002Google Scholar
Gaston, M. H., Verter, J. I., et al.Prophylaxis with oral penicillin in children with sickle cell anemia: a randomized trial. N Engl J Med 1986; 314: 1593–1599CrossRefGoogle ScholarPubMed
Reed, W., Lane, P. A., et al.Sickle-cell disease not identified by newborn screening because of prior transfusion. J Pediatr 2000; 136: 248–250CrossRefGoogle Scholar
Diaz-Barrios, V.New York's experience. Pediatrics 1989; 83: 2Google ScholarPubMed
Lorey, F. W., Arnopp, J., et al.Distribution of hemoglobinopathy variants by ethnicity in a multiethnic state. Genet Epidemiol 1996; 13: 501–5123.0.CO;2-4>CrossRefGoogle Scholar
Wethers, D., Pearson, H., Gaston, M.Newborn screening for sickle cell disease and other hemoglobinopathies. Pediatric (Suppl) 1989; 83: 2Google Scholar
Koshy, M., Burd, L. Obstetric and gynecologic issues. In Embury, S., Hebbel, R. P., Mohandas, N., Steinberg, M. H., eds. Sickle Cell Disease: Basic Principles and Clinical Practice. New York: Raven Press, 1995: 689Google Scholar
Veiga, S., Vaithianathan, T.Massive intravascular sickling after exchange transfusion with sickle cell trait blood. Transfusion 1963; 3: 387CrossRefGoogle ScholarPubMed
Lehmann, H., Carrell, R. W.Variations in the structure of human haemoglobin: with particular reference to the unstable haemoglobins. Br Med Bull 1969; 25: 14–23CrossRefGoogle ScholarPubMed
Rieder, R. F.Human hemoglobin stability and instability: molecular mechanisms and some clinical correlations. Semin Hematol 1974; 11: 423–440Google ScholarPubMed
Carrell, R. W., Kay, R.A simple method for the detection of unstable haemoglobins. Br J Haematol 1972; 23: 615–619CrossRefGoogle ScholarPubMed
Lee-Potter, J. P., Deacon-Smith, R. A., et al.A new cause of haemolytic anaemia in the newborn: a description of an unstable fetal haemoglobin: F Poole, alpha2-G-gamma2 130 trptophan yeilds glycine. J Clin Pathol 1975; 28: 317–320CrossRefGoogle ScholarPubMed
Charache, S., Mondzac, A. M., et al.Hemoglobin Hasharon (alpha-2–47 his(CD5)beta-2): a hemoglobin found in low concentration. J Clin Invest 1969; 48: 834–847CrossRefGoogle ScholarPubMed
Levine, R.Hemoglobin hasharon in a premature infant with hemolytic anemia. Pediatr Res 1975; 7–11CrossRefGoogle Scholar
Martin, H., Huisman, T.Formation of ferrihaemoglobin of isolated human haemoglobin types by sodium nitrite. Nature 1963; 200: 898–899CrossRefGoogle ScholarPubMed
Bartos, H. R., Desforges, J. F.Erythrocyte DPNH dependent diaphorase levels in infants. Pediatrics 1966; 37: 991–993Google ScholarPubMed
Comly, H.Cyanosis in infants caused by nitrates in well water. J Am Med Assoc 1945; 129: 112–116CrossRefGoogle Scholar
Gelperin, A., Jacobs, E. E., et al.The development of methemoglobin in mothers and newborn infants from nitrate in water supplies. Ill Med J 1971; 140: 42–44Google ScholarPubMed
Keating, J. P., Lell, M. E., et al.Infantile methemoglobinemia caused by carrot juice. N Engl J Med 1973; 288: 824–826CrossRefGoogle ScholarPubMed
Yano, S. S., Danish, E. H., et al.Transient methemoglobinemia with acidosis in infants. J Pediatr 1982; 100: 415–418CrossRefGoogle ScholarPubMed
Avner, J. R., Henretig, F. M., et al.Acquired methemoglobinemia: the relationship of cause to course of illness. Am J Dis Child 1990; 144: 1229–1230CrossRefGoogle ScholarPubMed
Kay, M. A., O'Brien, W., et al.Transient organic aciduria and methemoglobinemia with acute gastroenteritis. Pediatrics 1990; 85: 589–592Google ScholarPubMed
Pollack, E. S., Pollack, C. V. Jr.Incidence of subclinical methemoglobinemia in infants with diarrhea. Ann Emerg Med 1994; 24: 652–656CrossRefGoogle ScholarPubMed
Hanukoglu, A., Danon, P. N.Endogenous methemoglobinemia associated with diarrheal disease in infancy. J Pediatr Gastroenterol Nutr 1996; 23: 1–7CrossRefGoogle ScholarPubMed
Kinsella, J. P., Abman, S. H.Methaemoglobin during nitric oxide therapy with high-frequency ventilation. Lancet 1993; 342: 615CrossRefGoogle ScholarPubMed
Williams, R. S., Mickell, J. J., et al.Methemoglobin levels during prolonged combined nitroglycerin and sodium nitroprusside infusions in infants after cardiac surgery. J Cardiothorac Vasc Anesth 1994; 8: 658–662CrossRefGoogle ScholarPubMed
Dotsch, J., Demirakca, S., et al.Extracorporeal circulation increases nitric oxide-induced methemoglobinemia in vivo and in vitro. Crit Care Med 1997; 25: 1153–1158CrossRefGoogle ScholarPubMed
Riou, Y., Storme, L., et al.Combined effects of inhaled nitric oxide (iNO) and oxidant agents on the production of methemoglobinemia in newborn piglets. Crit Care Med 2000; 28: 1068–1071CrossRefGoogle ScholarPubMed
Riddle, E. M., Feltes, T. F., et al.Association of nitric oxide dose and methemoglobin levels in patients with congenital heart disease and pulmonary hypertension. Am J Cardiol 2002; 90: 442–444CrossRefGoogle ScholarPubMed
Sager, S., Grayson, G. H., et al.Methemoglobinemia associated with acidosis of probable renal origin. J Pediatr 1995; 126: 59–61CrossRefGoogle ScholarPubMed
Climie, C. R., McLean, S., et al.Methaemoglobinaemia in mother and foetus following continuous epidural analgesia with prilocaine. Clinical and experimental data. Br J Anaesth 1967; 39: 155–160CrossRefGoogle ScholarPubMed
Law, R. M., Halpern, S., et al.Measurement of methemoglobin after EMLA analgesia for newborn circumcision. Biol Neonate 1996; 70: 213–217CrossRefGoogle ScholarPubMed
Tush, G. M., Kuhn, R. J.Methemoglobinemia induced by an over-the-counter medication. Ann Pharmacother 1996; 30: 1251–1254CrossRefGoogle ScholarPubMed
Brisman, M., Ljung, B. M., et al.Methaemoglobin formation after the use of EMLA cream in term neonates. Acta Paediatr 1998; 87: 1191–1194CrossRefGoogle ScholarPubMed
Essink-Tebbes, C. M., Wuis, E. W., et al.Safety of lidocaine-prilocaine cream application four times a day in premature neonates: a pilot study. Eur J Pediatr 1999; 158: 421–423CrossRefGoogle Scholar
Kearns, G. L., Fiser, D. H.Metoclopramide-induced methemoglobinemia. Pediatrics 1988; 82: 364–366Google ScholarPubMed
Hjelt, K., Lund, J. T., et al.Methaemoglobinaemia among neonates in a neonatal intensive care unit. Acta Paediatr 1995; 84: 365–370CrossRefGoogle Scholar
Hayashi, A., Fujita, T., et al.A new abnormal fetal hemoglobin, Hb FM-Osaka (alpha 2 gamma 2 63His replaced by Tyr). Hemoglobin 1980; 4: 447–448CrossRefGoogle Scholar
Glader, B. E., Zwerdling, D., et al.Hb F-M-Osaka or alpha 2G gamma 2(63)(E7)His----Tyr in a Caucasian male infant. Hemoglobin 1989; 13: 769–773CrossRefGoogle Scholar
Priest, J. R., Watterson, J., et al.Mutant fetal hemoglobin causing cyanosis in a newborn. Pediatrics 1989; 83: 734–736Google Scholar
Aalfs, C. M., Salieb-Beugelaar, G. B., et al.A case of methemoglobinemia type II due to NADH-cytochrome b5 reductase deficiency: determination of the molecular basis. Hum Mutat 2000; 16: 18–223.0.CO;2-N>CrossRefGoogle ScholarPubMed
Wang, Y., Wu, Y. S., et al.A novel mutation in the NADH-cytochrome b5 reductase gene of a Chinese patient with recessive congenital methemoglobinemia. Blood 2000; 95: 3250–3255Google ScholarPubMed
Harley, J. D., Celermajer, J. M.Neonatal methaemoglobinaemia and the “red-brown” screening-test. Lancet 1970; 2: 1223–1225CrossRefGoogle ScholarPubMed
Stockman, J. A. 3rd, Pochedly, C.Developmental and Neonatal Hematology. New York: Raven Press, 1988Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×