Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-29T16:40:15.783Z Has data issue: false hasContentIssue false

16 - Neonatal oncology

Published online by Cambridge University Press:  10 August 2009

Pedro A. de Alarcón
Affiliation:
University of Tennessee
Eric J. Werner
Affiliation:
Eastern Virginia Medical School
J. Lawrence Naiman
Affiliation:
Stanford University School of Medicine, California
Get access

Summary

Oncology

Malignancies occurring in the newborn have some unique features that distinguish them from tumors occurring later in childhood. Neonatal tumors generally are not histologically distinct from those occurring later, but their incidence is different. Perinatal cancers also can vary in their clinical presentation, biology, course, and response to treatment. Some tumors of infancy are associated with inherited syndromes and chromosomal/gene abnormalities. This chapter will review malignant tumors that occur in the newborn, focusing on features that differ from tumors occurring later in childhood.

Epidemiology

Cancer in the newborn (defined for purposes of this chapter as cancer diagnosed before one month of age) is a rare event. Data from the Third National Cancer Survey (1969–71) reported an incidence of 3.65 cases diagnosed before 29 days of life per 100000 live births [1]. Other population-based studies have yielded numbers within the same range (1.88–2.98/100000 and 2.27/100000) [2, 3]. More cancers are diagnosed in the first year of life than in any other year (up to age 18 years) according to data from the Surveillance, Epidemiology, and End Results program from 1976 to 1984 and from 1986 to 1994, with an incidence of 23.3/100000/year [4]. Assuming an equal distribution over each four-week period, this translates to 1.8 cases/100000/four-week period. It does not appear that neonatal cancers account for a disproportionate number of tumors diagnosed before one year of age.

The distribution of types of malignancies in the neonatal period is different from that found in later childhood.

Type
Chapter
Information
Neonatal Hematology , pp. 385 - 405
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bader, J. L., Miller, R. W.US cancer incidence and mortality in the first year of life. Am J Dis Child 1979; 133: 157–159Google ScholarPubMed
Borch, K., Jacobsen, T., Olsen, J. H., Hirsch, F., Hertz, H.Neonatal cancer in Denmark 1943–1985. Pediatr Hematol Oncol 1992; 9: 209–216CrossRefGoogle ScholarPubMed
Broadbent, V. A. Malignancy in the Neonate. In Rennie, J., Robertson, N. R. C., eds. Textbook of Neonatology. Edinburgh; New York: Churchill Livingstone, 1999: 1051–1061Google Scholar
Gurney, J. G., Smith, M. A., Ross, J. A. Cancer among infants. In Ries, L. A. G., Smith, M. A., Gurney, J. G., et al., eds. Cancer Incidence and Survival Among Children and Adolescents: United States SEER Program 1975–1995. NIH Pub. No. 99-4649. Bethesda, MD: National Cancer Institute, SEER Program, 1999: 149–156Google Scholar
Havranek, P., Rubenson, A., Guth, D., et al.Sacrococcygeal teratoma in Sweden: a 10-year national retrospective study. J Pediatr Surg 1992; 27: 1447–1450CrossRefGoogle ScholarPubMed
Flake, A. W.Fetal sacrococcygeal teratoma. Semin Pediatr Surg 1993; 2: 113–120Google ScholarPubMed
Ries, L. A. G., Smith, M. A., Gurney, J. G., et al.Cancer Incidence and Survival Among Children and Adolescents: United States SEER Program 1975–1995. NIH Pub. No. 99-4649. Bethesda, MD: National Cancer Institute, SEER Program, 1999Google Scholar
Campbell, A. N., Chan, H. S., O'Brien, A., Smith, C. R., Becker, L. E.Malignant tumours in the neonate. Arch Dis Child 1987; 62: 19–23CrossRefGoogle ScholarPubMed
Parkes, S. E., Muir, K. R., Southern, L., et al.Neonatal tumours: a thirty-year population-based study. Med Pediatr Oncol 1994; 22: 309–317CrossRefGoogle ScholarPubMed
Isaacs, H., Jr. General survey. In Isaacs, H. Jr, ed. Tumors of the Fetus and Infant.New York: Springer-Verlag, 2002: 1–4Google Scholar
Walker, J. W., Reinisch, J. F., Monforte, H. L.Maternal pulmonary adenocarcinoma metastatic to the fetus: first recorded case report and literature review. Pediatr Pathol Mol Med 2002; 21: 57–69CrossRefGoogle ScholarPubMed
Catlin, E. A., Roberts, J. D. Jr, Erana, R., et al.Transplacental transmission of natural-killer-cell lymphoma. N Engl J Med 1999; 341: 85–91CrossRefGoogle ScholarPubMed
Tolar, J., Coad, J. E., Neglia, J. P.Transplacental transfer of small-cell carcinoma of the lung. N Engl J Med 2002; 346: 1501–1502CrossRefGoogle ScholarPubMed
Pavlidis, N. A.Coexistence of pregnancy and malignancy. Oncologist 2002; 7: 279–287CrossRefGoogle ScholarPubMed
Pollack, M. S., Kirkpatrick, D., Kapoor, N., Dupont, B., O'Reilly, R. J.Identification by HLA typing of intrauterine-derived maternal T cells in four patients with severe combined immunodeficiency. N Engl J Med 1982; 307: 662–666CrossRefGoogle ScholarPubMed
Bianchi, D. W., Zickwolf, G. K., Weil, G. J., Sylvester, S., DeMaria, M. A.Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci USA 1996; 93: 705–708CrossRefGoogle Scholar
Geha, R. S., Reinherz, E.Identification of circulating maternal T and B lymphocytes in uncomplicated severe combined immunodeficiency by HLA typing of subpopulations of T cells separated by the fluorescence-activated cell sorter and of Epstein Barr virus-derived B cell lines. J Immunol 1983; 130: 2493–2495Google Scholar
Maloney, S., Smith, A., Furst, D. E., et al.Microchimerism of maternal origin persists into adult life. J Clin Invest 1999; 104: 41–47CrossRefGoogle ScholarPubMed
Velden, V., Willemse, M. J., Mulder, M. F., et al.Clearance of maternal leukaemic cells in a neonate. Br J Haematol 2001; 114: 104–106CrossRefGoogle Scholar
Tapper, D., Lack, E. E.Teratomas in infancy and childhood: a 54-year experience at the Children's Hospital Medical Center. Ann Surg 1983; 198: 398–410CrossRefGoogle ScholarPubMed
Altman, R. P., Randolph, J. G., Lilly, J. R.Sacrococcygeal teratoma: American Academy of Pediatrics Surgical Section Survey 1973. J Pediatr Surg 1974; 9: 389–398CrossRefGoogle Scholar
Berry, C. L., Keeling, J., Hilton, C.Teratomata in infancy and childhood: a review of 91 cases. J Pathol 1969; 98: 241–252CrossRefGoogle ScholarPubMed
Conklin, J., Abell, M. R.Germ cell neoplasms of sacrococcygeal region. Cancer 1967; 20: 2105–21173.0.CO;2-6>CrossRefGoogle ScholarPubMed
Noseworthy, J., Lack, E. E., Kozakewich, H. P., Vawter, G. F., Welch, K. J.Sacrococcygeal germ cell tumors in childhood: an updated experience with 118 patients. J Pediatr Surg 1981; 16: 358–364CrossRefGoogle ScholarPubMed
Ein, S. H., Mancer, K., Adeyemi, S. D.Malignant sacrococcygeal teratoma – endodermal sinus, yolk sac tumor – in infants and children: a 32-year review. J Pediatr Surg 1985; 20: 473–477CrossRefGoogle ScholarPubMed
Hawkins, E. P., Finegold, M. J., Hawkins, H. K., et al.Nongerminomatous malignant germ cell tumors in children: a review of 89 cases from the Pediatric Oncology Group, 1971–1984. Cancer 1986; 58: 2579–25843.0.CO;2-V>CrossRefGoogle ScholarPubMed
Rescorla, F. J., Sawin, R. S., Coran, A. G., Dillon, P. W., Azizkhan, R. G.Long-term outcome for infants and children with sacrococcygeal teratoma: a report from the Children's Cancer Group. J Pediatr Surg 1998; 33: 171–176CrossRefGoogle Scholar
Schropp, K. P., Lobe, T. E., Rao, B., et al.Sacrococcygeal teratoma: the experience of four decades. J Pediatr Surg 1992; 27: 1075–1078CrossRefGoogle ScholarPubMed
Hawkins, E., Issacs, H., Cushing, B., Rogers, P.Occult malignancy in neonatal sacrococcygeal teratomas: a report from a combined Pediatric Oncology Group and Children's Cancer Group study. Am J Pediatr Hematol Oncol 1993; 15: 406–409Google ScholarPubMed
Bilik, R., Shandling, B., Pope, M., et al.Malignant benign neonatal sacrococcygeal teratoma. J Pediatr Surg 1993; 28: 1158–1160CrossRefGoogle ScholarPubMed
Raney, R. B. Jr, Chatten, J., Littman, P., et al.Treatment strategies for infants with malignant sacrococcygeal teratoma. J Pediatr Surg 1981; 16: 573–577CrossRefGoogle ScholarPubMed
Dewan, P. A., Davidson, P. M., Campbell, P. E., Tiedemann, K., Jones, P. G.Sacrococcygeal teratoma: has chemotherapy improved survival?J Pediatr Surg 1987; 22: 274–277CrossRefGoogle ScholarPubMed
Diez, B., Richard, L.Malignant germ cell sacrococcygeal tumors in children: improved prognosis after introduction of cisplatin-containing multiple drug treatment. Acta Oncol 1989; 28: 249–251CrossRefGoogle ScholarPubMed
Rescorla, F., Billmire, D., Stolar, C., et al.The effect of cisplatin dose and surgical resection in children with malignant germ cell tumors at the sacrococcygeal region: a pediatric intergroup trial (POG 9049/CCG 8882). J Pediatr Surg 2001; 36: 12–17CrossRefGoogle Scholar
Marina, N. M., Cushing, B., Giller, R., et al.Complete surgical excision is effective treatment for children with immature teratomas with or without malignant elements: a Pediatric Oncology Group/Children's Cancer Group Intergroup Study. J Clin Oncol 1999; 17: 2137–2143CrossRefGoogle ScholarPubMed
Schneider, D. T., Wessalowski, R., Calaminus, G., et al.Treatment of recurrent malignant sacrococcygeal germ cell tumors: analysis of 22 patients registered in the German protocols MAKEI 83/86, 89, and 96. J Clin Oncol 2001; 19: 1951–1960CrossRefGoogle ScholarPubMed
Beckwith, J. B., Perrin, E. V.In situ neuroblastomas: contribution to the natural history of neural crest tumors. Am J Pathol 1963; 43: 1089–1100Google ScholarPubMed
Guin, G. H., Gilbert, E. F., Jones, B.Incidental neuroblastoma in infants. Am J Clin Pathol 1969; 51: 126–136CrossRefGoogle ScholarPubMed
Jennings, R. W., LaQuaglia, M. P., Leong, K., Hendren, W. H., Adzick, N. S.Fetal neuroblastoma: prenatal diagnosis and natural history. J Pediatr Surg 1993; 28: 1168–1174CrossRefGoogle ScholarPubMed
Ho, P. T., Estroff, J. A., Kozakewich, H., et al.Prenatal detection of neuroblastoma: a ten-year experience from the Dana-Farber Cancer Institute and Children's Hospital. Pediatrics 1993; 92: 358–364Google ScholarPubMed
Saylors, R. L III, Cohn, S. L., Morgan, E. R., Brodeur, G. M.Prenatal detection of neuroblastoma by fetal ultrasonography. Am J Pediatr Hematol Oncol 1994; 16: 356–360Google ScholarPubMed
Acharya, S., Jayabose, S., Kogan, S. J., et al.Prenatally diagnosed neuroblastoma. Cancer 1997; 80: 304–3103.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Voute, P. A. Jr, Wadman, S. K., Putten, W. J.Congenital neuroblastoma. Symptoms in the mother during pregnancy. Clin Pediatr (Phila) 1970; 9: 206–207CrossRefGoogle ScholarPubMed
Laug, W. E., Siegel, S. E., Shaw, K. N., et al.Initial urinary catecholamine metabolite concentrations and prognosis in neuroblastoma. Pediatrics 1978; 62: 77–83Google ScholarPubMed
D'Angio, G. J., Evans, A. E., Koop, C. E.Special pattern of widespread neuroblastoma with a favourable prognosis. Lancet 1971; 1: 1046–1049CrossRefGoogle ScholarPubMed
Evans, A. E., D'Angio, G. J., Randolph, J.A proposed staging for children with neuroblastoma: Children's cancer study group A. Cancer 1971; 27: 374–3783.0.CO;2-G>CrossRefGoogle ScholarPubMed
Brodeur, G. M., Pritchard, J., Berthold, F., et al.Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol 1993; 11: 1466–1477CrossRefGoogle ScholarPubMed
Tuchman, M., Morris, C. L., Ramnaraine, M. L., Bowers, L. D., Krivit, W.Value of random urinary homovanillic acid and vanillylmandelic acid levels in the diagnosis and management of patients with neuroblastoma: comparison with 24-hour urine collections. Pediatrics 1985; 75: 324–328Google ScholarPubMed
Tuchman, M., Ramnaraine, M. L., Woods, W. G., Krivit, W.Three years of experience with random urinary homovanillic and vanillylmandelic acid levels in the diagnosis of neuroblastoma. Pediatrics 1987; 79: 203–205Google Scholar
Shimada, H., Chatten, J., Newton, W. A. Jr, et al.Histopathologic prognostic factors in neuroblastic tumors: definition of subtypes of ganglioneuroblastoma and an age-linked classification of neuroblastomas. J Natl Cancer Inst 1984; 73: 405–416CrossRefGoogle ScholarPubMed
Look, A. T., Hayes, F. A., Shuster, J. J., et al.Clinical relevance of tumor cell ploidy and N-myc gene amplification in childhood neuroblastoma: a Pediatric Oncology Group study. J Clin Oncol 1991; 9: 581–591CrossRefGoogle ScholarPubMed
Brodeur, G. M., Maris, J. M., Yamashiro, D. J., Hogarty, M. D., White, P. S.Biology and genetics of human neuroblastomas. J Pediatr Hematol Oncol 1997; 19: 93–101CrossRefGoogle ScholarPubMed
Seeger, R. C., Brodeur, G. M., Sather, H., et al.Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N Engl J Med 1985; 313: 1111–1116CrossRefGoogle ScholarPubMed
Caron, H., Sluis, P., Kraker, J., et al.Allelic loss of chromosome 1p as a predictor of unfavorable outcome in patients with neuroblastoma. N Engl J Med 1996; 334: 225–230CrossRefGoogle ScholarPubMed
Haase, G. M., Atkinson, J. B., Stram, D. O., Lukens, J. N., Matthay, K. K.Surgical management and outcome of locoregional neuroblastoma: comparison of the Children's Cancer Group and the international staging systems. J Pediatr Surg 1995; 30: 289–294CrossRefGoogle ScholarPubMed
Matthay, K. K., Sather, H. N., Seeger, R. C., Haase, G. M., Hammond, G. D.Excellent outcome of stage II neuroblastoma is independent of residual disease and radiation therapy. J Clin Oncol 1989; 7: 236–244CrossRefGoogle ScholarPubMed
Nitschke, R., Smith, E. I., Shochat, S., et al.Localized neuroblastoma treated by surgery: a Pediatric Oncology Group Study. J Clin Oncol 1988; 6: 1271–1279CrossRefGoogle ScholarPubMed
Noesel, M. M., Hahlen, K., Hakvoort-Cammel, F. G., Egeler, R. M.Neuroblastoma 4S: a heterogeneous disease with variable risk factors and treatment strategies. Cancer 1997; 80: 834–8433.0.CO;2-L>CrossRefGoogle ScholarPubMed
Evans, A. E., Chatten, J., D'Angio, G. J., et al.A review of 17 IV-S neuroblastoma patients at the Children's Hospital of Philadelphia. Cancer 1980; 45: 833–8393.0.CO;2-U>CrossRefGoogle ScholarPubMed
Hsu, L. L., Evans, A. E., D'Angio, G. J.Hepatomegaly in neuroblastoma stage 4s: criteria for treatment of the vulnerable neonate. Med Pediatr Oncol 1996; 27: 521–5283.0.CO;2-N>CrossRefGoogle ScholarPubMed
Bernardi, B., Pianca, C., Boni, L., et al.Disseminated neuroblastoma (stage IV and IV-S) in the first year of life: outcome related to age and stage. Italian Cooperative Group on Neuroblastoma. Cancer 1992; 70: 1625–16333.0.CO;2-6>CrossRefGoogle ScholarPubMed
Matthay, K. K., Perez, C., Seeger, R, C., et al.Successful treatment of stage III neuroblastoma based on prospective biologic staging: a Children's Cancer Group study. J Clin Oncol 1998; 16: 1256–1264CrossRefGoogle ScholarPubMed
Strother, D., Shuster, J. J., McWilliams, N., et al.Results of pediatric oncology group protocol 8104 for infants with stages D and DS neuroblastoma. J Pediatr Hematol Oncol 1995; 17: 254–259CrossRefGoogle Scholar
Holgersen, L. O., Subramanian, S., Kirpekar, M., Mootabar, H., Marcus, J. R.Spontaneous resolution of antenatally diagnosed adrenal masses. J Pediatr Surg 1996; 31: 153–155CrossRefGoogle ScholarPubMed
Woods, W. G., Tuchman, M., Robison, L. L., et al.A population-based study of the usefulness of screening for neuroblastoma. Lancet 1996; 348: 1682–1687CrossRefGoogle ScholarPubMed
Woods, W. G., Gao, R. N., Shuster, J. J., et al.Screening of infants and mortality due to neuroblastoma. N Engl J Med 2002; 346: 1041–1046CrossRefGoogle ScholarPubMed
Schilling, F. H., Spix, C., Berthold, F., et al.Neuroblastoma screening at one year of age. N Engl J Med 2002; 346: 1047–1053CrossRefGoogle ScholarPubMed
Yamamoto, K., Ohta, S., Ito, E., et al.Marginal decrease in mortality and marked increase in incidence as a result of neuroblastoma screening at 6 months of age: cohort study in seven prefectures in Japan. J Clin Oncol 2002; 20: 1209–1214CrossRefGoogle ScholarPubMed
Yamamoto, K., Hanada, R., Kikuchi, A., et al.Spontaneous regression of localized neuroblastoma detected by mass screening. J Clin Oncol 1998; 16: 1265–1269CrossRefGoogle ScholarPubMed
Millot, F., Robert, A., Bertrand, Y., et al.Cutaneous involvement in children with acute lymphoblastic leukemia or lymphoblastic lymphoma. The Children's Leukemia Cooperative Group of the European Organization of Research and Treatment of Cancer (EORTC). Pediatrics 1997; 100: 60–64CrossRefGoogle Scholar
Gottesfeld, E., Silverman, R. A., Coccia, P. F., Jacobs, G., Zaim, M. T.Transient blueberry muffin appearance of a newborn with congenital monoblastic leukemia. J Am Acad Dermatol 1989; 21: 347–351CrossRefGoogle ScholarPubMed
Attal, H., Kowal-Vern, A., Husain, A. N., Reddy, V. B.Newborn infant with multiple purple skin nodules. Arch Dermatol 1996; 132: 343–346CrossRefGoogle ScholarPubMed
Dinulos, J. G., Hawkins, D. S., Clark, B. S., Francis, J. S.Spontaneous remission of congenital leukemia. J Pediatr 1997; 131: 300–303CrossRefGoogle ScholarPubMed
Seo, I. S., McGuire, W. A., Heerema, N. A., Mirkin, L. D., Weetman, R. M.Congenital monoblastic leukemia cutis: a case report with chromosomal abnormality: del (10p). Am J Pediatr Hematol Oncol 1986; 8: 158–162Google Scholar
Felix, C. A., Reaman, G. H., Korsmeyer, S. J., et al.Immunoglobulin and T cell receptor gene configuration in acute lymphoblastic leukemia of infancy. Blood 1987; 70: 536–541Google Scholar
Crist, W., Pullen, J., Boyett, J., et al.Clinical and biologic features predict a poor prognosis in acute lymphoid leukemias in infants: a Pediatric Oncology Group Study. Blood 1986; 67: 135–140Google ScholarPubMed
Pui, C. H., Kane, J. R., Crist, W. M.Biology and treatment of infant leukemias. Leukemia 1995; 9: 762–769Google ScholarPubMed
Frankel, L. S., Ochs, J., Shuster, J. J., et al.Therapeutic trial for infant acute lymphoblastic leukemia: the Pediatric Oncology Group experience (POG 8493). J Pediatr Hematol Oncol 1997; 19: 35–42CrossRefGoogle Scholar
Heerema, N. A., Sather, H. N., Ge, J., et al.Cytogenetic studies of infant acute lymphoblastic leukemia: poor prognosis of infants with t(4;11): a report of the Children's Cancer Group. Leukemia 1999; 13: 679–686CrossRefGoogle Scholar
Behm, F. G., Raimondi, S. C., Frestedt, J. L., et al.Rearrangement of the MLL gene confers a poor prognosis in childhood acute lymphoblastic leukemia, regardless of presenting age. Blood 1996; 87: 2870–2877Google ScholarPubMed
Rubnitz, J. E., Link, M. P., Shuster, J. J., et al.Frequency and prognostic significance of HRX rearrangements in infant acute lymphoblastic leukemia: a Pediatric Oncology Group study. Blood 1994; 84: 570–573Google ScholarPubMed
MacMahon, B. L., Levy, M. A.Prenatal origin of childhood leukemia: evidence from twins. N Engl J Med 1964; 270: 1082–1085CrossRefGoogle ScholarPubMed
Clarkson, B. D., Boyse, E. A.Possible explanation of the high concordance for acute leukaemia in monozygotic twins. Lancet 1971; 1: 699–701CrossRefGoogle Scholar
Ford, A. M., Ridge, S. A., Cabrera, M. E., et al.In utero rearrangements in the trithorax-related oncogene in infant leukaemias. Nature 1993; 363: 358–360CrossRefGoogle ScholarPubMed
Ford, A. M., Bennett, C. A., Price, C. M., et al.Fetal origins of the TEL-AML1 fusion gene in identical twins with leukemia. Proc Natl Acad Sci USA 1998; 95: 4584–4588CrossRefGoogle ScholarPubMed
Gale, K. B., Ford, A. M., Repp, R., et al.Backtracking leukemia to birth: identification of clonotypic gene fusion sequences in neonatal blood spots. Proc Natl Acad Sci USA 1997; 94: 13950–13954CrossRefGoogle ScholarPubMed
Odom, L. F., Gordon, E. M.Acute monoblastic leukemia in infancy and early childhood: successful treatment with an epipodophyllotoxin. Blood 1984; 64: 875–882Google ScholarPubMed
Pui, C. H., Kalwinsky, D. K., Schell, M. J., et al.Acute nonlymphoblastic leukemia in infants: clinical presentation and outcome. J Clin Oncol 1988; 6: 1008–1013CrossRefGoogle ScholarPubMed
Berger, R., Bernheim, A., Weh, H. J., Daniel, M. T., Flandrin, G.Cytogenetic studies on acute monocytic leukemia. Leuk Res 1980; 4: 119–127CrossRefGoogle ScholarPubMed
Niemeyer, C. M., Arico, M., Basso, G., et al.Chronic myelomonocytic leukemia in childhood: a retrospective analysis of 110 cases. European Working Group on Myelodysplastic Syndromes in Childhood (EWOG-MDS). Blood 1997; 89: 3534–3543Google Scholar
Arico, M., Biondi, A., Pui, C. H.Juvenile myelomonocytic leukemia. Blood 1997; 90: 479–488Google ScholarPubMed
Pinkel, D.Differentiating juvenile myelomonocytic leukemia from infectious disease. Blood 1998; 91: 365–367Google ScholarPubMed
Kirby, M. A., Weitzman, S., Freedman, M. H.Juvenile chronic myelogenous leukemia: differentiation from infantile cytomegalovirus infection. Am J Pediatr Hematol Oncol 1990; 12: 292–296CrossRefGoogle ScholarPubMed
Herrod, H. G., Dow, L. W., Sullivan, J. L.Persistent Epstein–Barr virus infection mimicking juvenile chronic myelogenous leukemia: immunologic and hematologic studies. Blood 1983; 61: 1098–1104Google ScholarPubMed
Lorenzana, A., Lyons, H., Sawaf, H., et al.Human herpesvirus 6 infection mimicking juvenile myelomonocytic leukemia in an infant. J Pediatr Hematol Oncol 2002; 24: 136–141CrossRefGoogle ScholarPubMed
Gamis, A., Hilden, J.Transient myeloproliferative disorder: a disorder with too little data and many unanswered questions: does it contain an important piece of the puzzle to understanding hematopoiesis and AML?J Pediatr Hemat Oncol 2002; 24: 2–5CrossRefGoogle Scholar
Brodeur, G., Dahl, G., Williams, D., Tipton, R., Kalwinsky, D.Transient leukemoid reaction and trisomy 21 mosaicism in a phenotypically normal newborn. Blood 1980; 55: 691–693Google Scholar
Slayton, W., Spangrudr, G., Chen, Z., Greene, W., Virshup, D.Lineage-specific trisomy 21 in a neonate with resolving transient myeloproliferative syndrome. J Pediatr Hematol Oncol 2002; 24: 224–226CrossRefGoogle Scholar
Hayashi, Y., Eguchi, M., Sugita, K., et al.Cytogenetic findings and clinical features in acute leukemia and transient myeloproliferative disorder in Down's syndrome. Blood 1988; 72: 15Google ScholarPubMed
Zipursky, A., Rose, T., Skidmore, M., Thorner, P., Doyle, J.Hydrops fetalis and neonatal leukemia in Down syndrome. Pediatr Hematol Oncol 1996; 13: 81–87CrossRefGoogle ScholarPubMed
Miyauchi, J., Ito, Y., Kawano, T., Tsunematsu, Y., Shimizu, K.Unusual diffuse liver fibrosis accompanying transient myeloproliferative disorder in Down's syndrome: a report of four autopsy cases and proposal of a hypothesis. Blood 1992; 80: 1521–1527Google ScholarPubMed
Schwab, M., Niemeyer, C., Schwarzer, U.Down syndrome, transient myeloproliferative disorder, and infantile liver fibrosis. Med Pediatr Oncol 1998; 31: 159–1653.0.CO;2-A>CrossRefGoogle ScholarPubMed
Al-Kasim, F., Doyle, J., Massey, G., Weinstein, H., Zipursky, A.Incidence and treatment of potentially lethal diseases in transient leukemia of Down syndrome: pediatric oncology study. J Pediatr Hematol Oncol 2002; 24: 9–13CrossRefGoogle Scholar
Homans, A., Verissimo, A., Vlacha, V.Transient abnormal myelopoiesis of infancy associated with trisomy 21. Am J Pediatr Hematol Oncol 1993; 15: 392–399Google ScholarPubMed
Nijhawan, A., Bselga, E., Gonzalez-Ensenat, A., et al.Vesiculopustular eruptions in Down syndrome neonates with myeloproliferative disorders. Arch Dermatol 2001; 137: 760–763Google ScholarPubMed
Zipursky, A., Poon, A., Doyle, J.Leukemia in Down syndrome: a review. Pediatr Hematol Oncol 1992; 9: 139–149CrossRefGoogle ScholarPubMed
Creutzig, U., Ritter, J., Vormoor, J., et al.Myelodysplasia and acute myelogenous leukemia in Down's syndrome: a report of 40 children of the AML-BFM Study Group. Leukemia 1996; 10: 1677–1686Google ScholarPubMed
Ravindranath, Y., Abella, E., Krischer, J. P., et al.Acute myeloid leukemia (AML) in Down's syndrome is highly responsive to chemotherapy: experience on Pediatric Oncology Group AML Study 8498. Blood 1992; 80: 2210Google ScholarPubMed
Lange, B. J., Kobrinsky, N., Barnard, D. R., et al.Distinctive demography, biology, and outcome of acute myeloid leukemia and myelodysplastic syndrome in children with Down syndrome: Children's Cancer Group Studies 2861 and 2891. Blood 1998; 91: 608Google ScholarPubMed
Lange, B. J.The management of neoplastic disorders of haematopoiesis in children with Down's syndrome. Br J Hematol 2000; 110: 512–524CrossRefGoogle ScholarPubMed
Gamis, A., Woods, W., Alonzo, T., et al.Increased age at diagnosis has a significantly negative effect on outcome in children with Down syndrome and acute myeloid leukemia: a report from the Children's Cancer Group Study CCG 2981. J Clin Oncol 2003; 21: 3385–3387CrossRefGoogle Scholar
Kurahashi, H., Hara, J., Yumura-Yagi, K., et al.Monoclonal nature of transient abnormal myelopoiesis in Down's syndrome. Blood 1991; 77: 1161–1163Google ScholarPubMed
Groet, J., McElwaine, S., Spinelli, M., et al.Acquired mutations in GATA1 in neonates with Down's syndrome with transient myeloid disorder. Lancet 2003; 361: 1617–1620CrossRefGoogle ScholarPubMed
Mundschau, G., Gurbuxani, S., Gamis, A. S., et al.Mutagenesis of GATA1 is an initiating event in Down syndrome leukemogenesis. Blood 2003; 101: 4298–4300CrossRefGoogle ScholarPubMed
Hitzler, J. K., Cheung, J., Li, Y., Scherer, S. W., Zipursky, A.GATA1 mutations in transient leukemia and acute megakaryoblastic leukemia of Down syndrome. Blood 2003; 101: 4301–4304CrossRefGoogle ScholarPubMed
Vyas, P., Ault, K., Jackson, C. W., Orkin, S. H., Shivdasani, R. A.Consequences of GATA-1 deficiency in megakaryocytes and platelets. Blood 1999; 93: 2867–2875Google ScholarPubMed
Holt, S. E., Brown, E. J., Zipursky, A.Telomerase and the benign and malignant megakaryoblastic leukemias of Down syndrome. J Pediatr Hematol Oncol 2002; 24: 14–17CrossRefGoogle ScholarPubMed
Duflos-Delaplace, D., Lai, J. L., Nelken, B., et al.Transient leukemoid disorder in a newborn with Down syndrome followed 19 months later by an acute myeloid leukemia: demonstration of the same structural change in both instances with clonal evolution. Cancer Genet Cytogenet 1999; 113: 166–171CrossRefGoogle Scholar
Kounami, S., Aoyagi, N., Tsuno, H., et al.Myelodysplastic syndrome after regression of transient abnormal myelopoiesis in a Down syndrome infant: different clonal origin?Cancer Genet Cytogenet 1998; 104: 115–118CrossRefGoogle Scholar
Jooma, R., Kendall, B. E., Hayward, R. D.Intracranial tumors in neonates: a report of seventeen cases. Surg Neurol 1984; 21: 165–170CrossRefGoogle ScholarPubMed
Jooma, R., Kendall, B. E.Intracranial tumours in the first year of life. Neuroradiology 1982; 23: 267–274CrossRefGoogle ScholarPubMed
Wakai, S., Arai, T., Nagai, M.Congenital brain tumors. Surg Neurol 1984; 21: 597–609CrossRefGoogle ScholarPubMed
Radkowski, M. A., Naidich, T. P., Tomita, T., Byrd, S. E., McLone, D. G.Neonatal brain tumors: CT and MR findings. J Comput Assist Tomogr 1988; 12: 10–20CrossRefGoogle ScholarPubMed
Raisanen, J. M., Davis, R. L.Congenital brain tumors. Pathology (Phila) 1993; 2: 103–116Google ScholarPubMed
Buetow, P. C., Smirniotopoulos, J. G., Done, S.Congenital brain tumors: a review of 45 cases. Am J Neuroradiol 1990; 11: 793–799Google ScholarPubMed
Oi, S., Kokunai, T., Matsumoto, S.Congenital brain tumors in Japan (ISPN Cooperative Study): specific clinical features in neonates. Childs Nerv Syst 1990; 6: 86–91CrossRefGoogle ScholarPubMed
Takaku, A., Kodama, N., Ohara, H., Hori, S.Brain tumor in newborn babies. Childs Brain 1978; 4: 365–375Google ScholarPubMed
Heckel, S., Favre, R., Gasser, B., Christmann, D.Prenatal diagnosis of a congenital astrocytoma: a case report and literature review. Ultrasound Obstet Gynecol 1995; 5: 63–66CrossRefGoogle ScholarPubMed
Rickert, C. H., Probst-Cousin, S., Louwen, F., Feldt, B., Gullotta, F.Congenital immature teratoma of the fetal brain. Childs Nerv Syst 1997; 13: 556–559CrossRefGoogle ScholarPubMed
Robson, C. D., Price, D. L., Barnes, P. D., Taylor, G. A.Radiologic-pathologic conference of Children's Hospital Boston: pineal region mass in a neonate. Pediatr Radiol 1997; 27: 829–831Google Scholar
Storr, U., Rupprecht, T., Bornemann, A., et al.Congenital intracerebral teratoma: a rare differential diagnosis in newborn hydrocephalus. Pediatr Radiol 1997; 27: 262–264CrossRefGoogle ScholarPubMed
Wienk, M. A., Geijn, H. P., Copray, F. J., Brons, J. T.Prenatal diagnosis of fetal tumors by ultrasonography. Obstet Gynecol Surv 1990; 45: 639–653CrossRefGoogle ScholarPubMed
Dillon, P. W., Whalen, T. V., Azizkhan, R. G., et al.Neonatal soft tissue sarcomas: the influence of pathology on treatment and survival. Children's Cancer Group Surgical Committee. J Pediatr Surg 1995; 30: 1038–1041CrossRefGoogle ScholarPubMed
Koscielniak, E., Harms, D., Schmidt, D., et al.Soft tissue sarcomas in infants younger than 1 year of age: a report of the German Soft Tissue Sarcoma Study Group (CWS-81). Med Pediatr Oncol 1989; 17: 105–110CrossRefGoogle Scholar
Coffin, C. M., Dehner, L. P.Soft tissue tumors in first year of life: a report of 190 cases. Pediatr Pathol 1990; 10: 509–526CrossRefGoogle ScholarPubMed
Ragab, A. H., Heyn, R., Tefft, M., et al.Infants younger than 1 year of age with rhabdomyosarcoma. Cancer 1986; 58: 2606–26103.0.CO;2-T>CrossRefGoogle ScholarPubMed
King, D. R., Clatworthy, H. W. Jr.The pediatric patient with sarcoma. Semin Oncol 1981; 8: 215–221Google ScholarPubMed
Grosfeld, J. L., Weber, T. R., Weetman, R. M., Baehner, R. L.Rhabdomyosarcoma in childhood: analysis of survival in 98 cases. J Pediatr Surg 1983; 18: 141–146CrossRefGoogle ScholarPubMed
Barr, F. G.Molecular genetics and pathogenesis of rhabdomyosarcoma. J Pediatr Hematol Oncol 1997; 19: 483–491CrossRefGoogle ScholarPubMed
Maurer, H. M., Gehan, E. A., Beltangady, M., et al.The Intergroup Rhabdomyosarcoma Study-II. Cancer 1993; 71: 1904–19223.0.CO;2-X>CrossRefGoogle ScholarPubMed
Crist, W., Gehan, E. A., Ragab, A. H., et al.The Third Intergroup Rhabdomyosarcoma Study. J Clin Oncol 1995; 13: 610–630CrossRefGoogle ScholarPubMed
Crist, W. M., Anderson, J. R., Meza, J. L., et al.Intergroup rhabdomyosarcoma study-IV: results for patients with nonmetastatic disease. J Clin Oncol 2001; 19: 3091–3102CrossRefGoogle ScholarPubMed
Zucman, J., Melot, T., Desmaze, C., et al.Combinatorial generation of variable fusion proteins in the Ewing family of tumours. EMBO J 1993; 12: 4481–4487Google ScholarPubMed
Grier, H. E., Krailo, M. D., Tarbell, N. J., et al.Addition of ifosfamide and etoposide to standard chemotherapy for Ewing's sarcoma and primitive neuroectodermal tumor of bone. N Engl J Med 2003; 348: 694–701CrossRefGoogle ScholarPubMed
Maygarden, S. J., Askin, F. B., Siegal, G. P., et al.Ewing sarcoma of bone in infants and toddlers: a clinicopathologic report from the Intergroup Ewing's Study. Cancer 1993; 71: 2109–21183.0.CO;2-1>CrossRefGoogle ScholarPubMed
Knezevich, S. R., McFadden, D. E., Tao, W., Lim, J. F., Sorensen, P. H.A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet 1998; 18: 184–187CrossRefGoogle ScholarPubMed
Rubin, B. P., Chen, C. J., Morgan, T. W., et al.Congenital mesoblastic nephroma t(12;15) is associated with ETV6-NTRK3 gene fusion: cytogenetic and molecular relationship to congenital (infantile) fibrosarcoma. Am J Pathol 1998; 153: 1451–1458CrossRefGoogle Scholar
Soule, E. H., Pritchard, D. J.Fibrosarcoma in infants and children: a review of 110 cases. Cancer 1977; 40: 1711–17213.0.CO;2-9>CrossRefGoogle ScholarPubMed
Blocker, S., Koenig, J., Ternberg, J.Congenital fibrosarcoma. J Pediatr Surg 1987; 22: 665–670CrossRefGoogle ScholarPubMed
Ninane, J., Gosseye, S., Panteon, E., et al.Congenital fibrosarcoma: preoperative chemotherapy and conservative surgery. Cancer 1986; 58: 1400–14063.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Chung, E. B., Enzinger, F. M.Infantile fibrosarcoma. Cancer 1976; 38: 729–7393.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Kynaston, J. A., Malcolm, A. J., Craft, A. W., et al.Chemotherapy in the management of infantile fibrosarcoma. Med Pediatr Oncol 1993; 21: 488–493CrossRefGoogle ScholarPubMed
Grier, H. E., Perez-Atayde, A. R., Weinstein, H. J.Chemotherapy for inoperable infantile fibrosarcoma. Cancer 1985; 56: 1507–15103.0.CO;2-7>CrossRefGoogle ScholarPubMed
Dryja, T. P., Cavenee, W., White, R., et al.Homozygosity of chromosome 13 in retinoblastoma. N Engl J Med 1984; 310: 550–553CrossRefGoogle ScholarPubMed
Cavenee, W., Leach, R., Mohandas, T., Pearson, P., White, R.Isolation and regional localization of DNA segments revealing polymorphic loci from human chromosome 13. Am J Hum Genet 1984; 36: 10–24Google ScholarPubMed
Cavenee, W. K., Dryja, T. P., Phillips, R. A., et al.Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 1983; 305: 779–784CrossRefGoogle ScholarPubMed
Godbout, R., Dryja, T. P., Squire, J., Gallie, B. L., Phillips, R. A.Somatic inactivation of genes on chromosome 13 is a common event in retinoblastoma. Nature 1983; 304: 451–453CrossRefGoogle ScholarPubMed
Knudson, A. G. Jr.Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 1971; 68: 820–823CrossRefGoogle ScholarPubMed
Bonaiti-Pellie, C., Briard-Guillemot, M. L.Segregation analysis in hereditary retinoblastoma. Hum Genet 1981; 57: 411–419CrossRefGoogle ScholarPubMed
Hethcote, H. W., Knudson, A. G. Jr.Model for the incidence of embryonal cancers: application to retinoblastoma. Proc Natl Acad Sci USA 1978; 75: 2453–2457CrossRefGoogle ScholarPubMed
Dryja, T. P., Mukai, S., Petersen, R., et al.Parental origin of mutations of the retinoblastoma gene. Nature 1989; 339: 556–558CrossRefGoogle ScholarPubMed
Zhu, X. P., Dunn, J. M., Phillips, R. A., et al.Preferential germline mutation of the paternal allele in retinoblastoma. Nature 1989; 340: 312–313CrossRefGoogle ScholarPubMed
Eng, C., Li, F. P., Abramson, D. H., et al.Mortality from second tumors among long-term survivors of retinoblastoma. J Natl Cancer Inst 1993; 85: 1121–1128CrossRefGoogle ScholarPubMed
Pawlak, B. R.Retinoblastoma: an epidemiological study (survey and review). J Surg Oncol 1975; 7: 45–55CrossRefGoogle Scholar
Yeole, B. B., Advani, S.Retinoblastoma: an epidemiological appraisal with reference to a population in Mumbai, India. Asian Pac J Cancer Prev 2002; 3: 17–21Google ScholarPubMed
Wessels, G., Hesseling, P. B.Incidence and frequency rates of childhood cancer in Namibia. S Afr Med J 1997; 87: 885–889Google ScholarPubMed
Erwenne, C. M., Franco, E. L.Age and lateness of referral as determinants of extra-ocular retinoblastoma. Ophthalmic Paediatr Genet 1989; 10: 179–184CrossRefGoogle ScholarPubMed
Magramm, I., Abramson, D. H., Ellsworth, R. M.Optic nerve involvement in retinoblastoma. Ophthalmology 1989; 96: 217–222CrossRefGoogle ScholarPubMed
Shields, C. L., Shields, J. A., Needle, M., et al.Combined chemoreduction and adjuvant treatment for intraocular retinoblastoma. Ophthalmology 1997; 104: 2101–2111CrossRefGoogle ScholarPubMed
Shields, J. A., Shields, C. L.Current management of retinoblastoma. Mayo Clin Proc 1994; 69: 50–56CrossRefGoogle ScholarPubMed
Dudgeon, J.Retinoblastoma: trends in conservative management. Br J Ophthalmol 1995; 79: 104CrossRefGoogle ScholarPubMed
Roarty, J. D., McLean, I. W., Zimmerman, L. E.Incidence of second neoplasms in patients with bilateral retinoblastoma. Ophthalmology 1988; 95: 1583–1587CrossRefGoogle ScholarPubMed
Abramson, D. H., Frank, C. M.Second nonocular tumors in survivors of bilateral retinoblastoma: a possible age effect on radiation-related risk. Ophthalmology 1998; 105: 573–579CrossRefGoogle ScholarPubMed
Doz, F., Neuenschwander, S., Plantaz, D., et al.Etoposide and carboplatin in extraocular retinoblastoma: a study by the Société Française d'Oncologie Pédiatrique. J Clin Oncol 1995; 13: 902–909CrossRefGoogle ScholarPubMed
Pratt, C. B., Fontanesi, J., Chenaille, P., et al.Chemotherapy for extraocular retinoblastoma. Pediatr Hematol Oncol 1994; 11: 301–309CrossRefGoogle ScholarPubMed
Kingston, J. E., Hungerford, J. L., Plowman, P. N.Chemotherapy in metastatic retinoblastoma. Ophthalmic Paediatr Genet 1987; 8: 69–72CrossRefGoogle ScholarPubMed
Schweinitz, D., Gluer, S., Mildenberger, H.Liver tumors in neonates and very young infants: diagnostic pitfalls and therapeutic problems. Eur J Pediatr Surg 1995; 5: 72–76CrossRefGoogle Scholar
Randolph, J. G., Altman, R. P., Arensman, R. M., Matlak, M. E., Leikin, S. L.Liver resection in children with hepatic neoplasms. Ann Surg 1978; 187: 599–605CrossRefGoogle ScholarPubMed
Ein, S. H., Stephens, C. A.Malignant liver tumors in children. J Pediatr Surg 1974; 9: 491–494CrossRefGoogle ScholarPubMed
Clatworthy, H. W. Jr, Schiller, M., Grosfeld, J. L.Primary liver tumors in infancy and childhood. 41 cases variously treated. Arch Surg 1974; 109: 143–147CrossRefGoogle ScholarPubMed
Berry, C. L., Keeling, J., Hilton, C.Coincidence of congenital malformation and embryonic tumours of childhood. Arch Dis Child 1970; 45: 229–231CrossRefGoogle ScholarPubMed
Fraumeni, J. F Jr, Miller, R. W.Adrenocortical neoplasms with hemihypertrophy, brain tumors, and other disorders. J Pediatr 1967; 70: 129–138CrossRefGoogle ScholarPubMed
Ikeda, H., Hachitanda, Y., Tanimura, M., et al.Development of unfavorable hepatoblastoma in children of very low birth weight: results of a surgical and pathologic review. Cancer 1998; 82: 1789–17963.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Ikeda, H., Matsuyama, S., Tanimura, M.Association between hepatoblastoma and very low birth weight: a trend or a chance?J Pediatr 1997; 130: 557–560CrossRefGoogle ScholarPubMed
Tanimura, M., Matsui, I., Abe, J., et al.Increased risk of hepatoblastoma among immature children with a lower birth weight. Cancer Res 1998; 58: 3032–3035Google ScholarPubMed
Exelby, P. R., Filler, R. M., Grosfeld, J. L.Liver tumors in children in the particular reference to hepatoblastoma and hepatocellular carcinoma: American Academy of Pediatrics Surgical Section Survey – 1974. J Pediatr Surg 1975; 10: 329–337CrossRefGoogle Scholar
Tsuchida, Y., Honna, T., Fukui, M., Sakaguchi, H., Ishiguro, T.The ratio of fucosylation of alpha-fetoprotein in hepatoblastoma. Cancer 1989; 63: 2174–21763.0.CO;2-6>CrossRefGoogle ScholarPubMed
Tsuchida, Y., Endo, Y., Saito, S., et al.Evaluation of alpha-fetoprotein in early infancy. J Pediatr Surg 1978; 13: 155–162CrossRefGoogle ScholarPubMed
Weinblatt, M. E., Siegel, S. E., Siegel, M. M., Stanley, P., Weitzman, J. J.Preoperative chemotherapy for unresectable primary hepatic malignancies in children. Cancer 1982; 50: 1061–10643.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Reynolds, M.Conversion of unresectable to resectable hepatoblastoma and long-term follow-up study. World J Surg 1995; 19: 814–816CrossRefGoogle ScholarPubMed
Fuchs, J., Rydzynski, J., Hecker, H., et al.The influence of preoperative chemotherapy and surgical technique in the treatment of hepatoblastoma: a report from the German Cooperative Liver Tumour Studies HB 89 and HB 94. Eur J Pediatr Surg 2002; 12: 255–261CrossRefGoogle ScholarPubMed
Srinivasan, P., McCall, J., Pritchard, J., et al.Orthotopic liver transplantation for unresectable hepatoblastoma. Transplantation 2002; 74: 652–655CrossRefGoogle ScholarPubMed
Fuchs, J., Rydzynski, J., Schweinitz, D., et al.Pretreatment prognostic factors and treatment results in children with hepatoblastoma: a report from the German Cooperative Pediatric Liver Tumor Study HB 94. Cancer 2002; 95: 172–182CrossRefGoogle ScholarPubMed
Hrabovsky, E. E., Othersen, H. B. Jr, deLorimier, A., et al.Wilms' tumor in the neonate: a report from the National Wilms' Tumor Study. J Pediatr Surg 1986; 21: 385–387CrossRefGoogle ScholarPubMed
Howell, C. G., Othersen, H. B., Kiviat, N. E., et al.Therapy and outcome in 51 children with mesoblastic nephroma: a report of the National Wilms' Tumor Study. J Pediatr Surg 1982; 17: 826–831CrossRefGoogle ScholarPubMed
D'Angio, G. J., Evans, A., Breslow, N., et al.The treatment of Wilms' tumor: results of the Second National Wilms' Tumor Study. Cancer 1981; 47: 2302–23113.0.CO;2-K>CrossRefGoogle ScholarPubMed
Gonzalez-Crussi, F., Sotelo-Avila, C., Kidd, J. M.Malignant mesenchymal nephroma of infancy: report of a case with pulmonary metastases. Am J Surg Pathol 1980; 4: 185–190CrossRefGoogle ScholarPubMed
Varsa, E. W., McConnell, T. S., Dressler, L. G., Duncan, M.Atypical congenital mesoblastic nephroma: report of a case with karyotypic and flow cytometric analysis. Arch Pathol Lab Med 1989; 113: 1078–1080Google ScholarPubMed
Machin, G. A.Persistent renal blastoma (nephroblastomatosis) as a frequent precursor of Wilms' tumor: a pathological and clinical review. Part 2. Significance of nephroblastomatosis in the genesis of Wilms' tumor. Am J Pediatr Hematol Oncol 1980; 2: 253–261Google Scholar
Riccardi, V. M., Sujansky, E., Smith, A. C., Francke, U.Chromosomal imbalance in the Aniridia–Wilms' tumor association: 11p interstitial deletion. Pediatrics 1978; 61: 604–610Google ScholarPubMed
Weksberg, R., Squire, J. A.Molecular biology of Beckwith–Wiedemann syndrome. Med Pediatr Oncol 1996; 27: 462–4693.0.CO;2-C>CrossRefGoogle ScholarPubMed
Grundy, P., Telzerow, P., Moksness, J., Breslow, N. E.Clinicopathologic correlates of loss of heterozygosity in Wilms' tumor: a preliminary analysis. Med Pediatr Oncol 1996; 27: 429–4333.0.CO;2-O>CrossRefGoogle ScholarPubMed
Li, F. P., Breslow, N. E., Morgan, J. M., et al.Germline WT1 mutations in Wilms' tumor patients: preliminary results. Med Pediatr Oncol 1996; 27: 404–4073.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Ritchey, M. L., Azizkhan, R. G., Beckwith, J. B., Hrabovsky, E. E., Haase, G. M.Neonatal Wilms tumor. J Pediatr Surg 1995; 30: 856–859CrossRefGoogle ScholarPubMed
Little, M. H., Clarke, J., Byrne, J., Dunn, R., Smith, P. J.Allelic loss on chromosome 11p is a less frequent event in bilateral than in unilateral Wilms' tumours. Eur J Cancer 1992; 28A: 1876–1880CrossRefGoogle ScholarPubMed
Green, D. M., Breslow, N. E., Beckwith, J. B., et al.Comparison between single-dose and divided-dose administration of dactinomycin and doxorubicin for patients with Wilms' tumor: a report from the National Wilms' Tumor Study Group. J Clin Oncol 1998; 16: 237–245CrossRefGoogle ScholarPubMed
Green, D. M., Breslow, N. E., Beckwith, J. B., et al.Treatment with nephrectomy only for small, stage I/favorable histology Wilms' tumor: a report from the National Wilms' Tumor Study Group. J Clin Oncol 2001; 19: 3719–3724CrossRefGoogle Scholar
Writing Group of the Histiocyte Society. Histiocytosis syndromes in children. Lancet 1987; 1: 208–209
Harrist, T. J., Bhan, A. K., Murphy, G. F., et al.Histiocytosis-X: in situ characterization of cutaneous infiltrates with monoclonal antibodies. Am J Clin Pathol 1983; 79: 294–300CrossRefGoogle ScholarPubMed
Rowden, G., Connelly, E. M., Winkelmann, R. K.Cutaneous histiocytosis X. The presence of S-100 protein and its use in diagnosis. Arch Dermatol 1983; 119: 553–559CrossRefGoogle ScholarPubMed
Grois, N. G., Favara, B. E., Mostbeck, G. H., Prayer, D.Central nervous system disease in Langerhans cell histiocytosis. Hematol Oncol Clin North Am 1998; 12: 287–305CrossRefGoogle ScholarPubMed
Whitsett, S. F., Kneppers, K., Coppes, M. J., Egeler, R. M.Neuropsychologic deficits in children with Langerhans cell histiocytosis. Med Pediatr Oncol 1999; 33: 486–4923.0.CO;2-J>CrossRefGoogle ScholarPubMed
Barthez, M. A., Araujo, E., Donadieu, J.Langerhans cell histiocytosis and the central nervous system in childhood: evolution and prognostic factors. Results of a collaborative study. J Child Neurol 2000; 15: 150–156CrossRefGoogle ScholarPubMed
Willman, C. L., Busque, L., Griffith, B. B., et al.Langerhans'-cell histiocytosis (histiocytosis X): a clonal proliferative disease. N Engl J Med 1994; 331: 154–160CrossRefGoogle ScholarPubMed
Nezelof, C., Frileux-Herbet, F., Cronier-Sachot, J.Disseminated histiocytosis X: analysis of prognostic factors based on a retrospective study of 50 cases. Cancer 1979; 44: 1824–18383.0.CO;2-J>CrossRefGoogle ScholarPubMed
Lahey, M. E.Prognostic factors in histiocytosis X. Am J Pediatr Hematol Oncol 1981; 3: 57–60Google ScholarPubMed
Heyn, R. M., Hamoudi, A., Newton, W. A Jr.Pretreatment liver biopsy in 20 children with histiocytosis X: a clinicopathologic correlation. Med Pediatr Oncol 1990; 18: 110–118CrossRefGoogle ScholarPubMed
Gadner, H., Heitger, A., Grois, N., Gatterer-Menz, I., Ladisch, S.Treatment strategy for disseminated Langerhans cell histiocytosis. DAL HX-83 Study Group. Med Pediatr Oncol 1994; 23: 72–80CrossRefGoogle ScholarPubMed
Gadner, H., Grois, N., Arico, M., et al.A randomized trial of treatment for multisystem Langerhans' cell histiocytosis. J Pediatr 2001; 138: 728–734CrossRefGoogle ScholarPubMed
Stine, K. C., Saylors, R. L., Williams, L. L., Becton, D. L.2-Chlorodeoxyadenosine (2-CDA) for the treatment of refractory or recurrent Langerhans cell histiocytosis (LCH) in pediatric patients. Med Pediatr Oncol 1997; 29: 288–2923.0.CO;2-I>CrossRefGoogle Scholar
Conter, V., Reciputo, A., Arrigo, C., et al.Bone marrow transplantation for refractory Langerhans' cell histiocytosis. Haematologica 1996; 81: 468–471Google ScholarPubMed
Morgan, G.Myeloablative therapy and bone marrow transplantation for Langerhans' cell histiocytosis. Br J Cancer Suppl 1994; 23: S52–S53Google ScholarPubMed
Suminoe, A., Matsuzaki, A., Hattori, H., Ishii, S., Hara, T.Unrelated cord blood transplantation for an infant with chemotherapy-resistant progressive Langerhans cell histiocytosis. J Pediatr Hematol Oncol 2001; 23: 633–636CrossRefGoogle ScholarPubMed
Nagarajan, R., Neglia, J., Ramsay, N., Baker, K. S.Successful treatment of refractory Langerhans cell histiocytosis with unrelated cord blood transplantation. J Pediatr Hematol Oncol 2001; 23: 629–632CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×