Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-29T05:13:27.867Z Has data issue: false hasContentIssue false

17 - Normal values and laboratory methods

Published online by Cambridge University Press:  10 August 2009

Pedro A. de Alarcón
Affiliation:
University of Tennessee
Eric J. Werner
Affiliation:
Eastern Virginia Medical School
J. Lawrence Naiman
Affiliation:
Stanford University School of Medicine, California
Get access

Summary

Introduction

Profound changes in the normal values for blood components occur during gestation and the first few months of life. The developmental aspects of hematopoiesis must be considered in the evaluation of the neonatal blood picture. Additionally, the timing and site of blood sampling can affect the results. Because of a broad normal range for many factors, the clinician should be aware that the presence of an abnormal condition is not always excluded by a normal laboratory test.

Red blood cell measurements

Complete blood counts (CBC) are performed routinely on automated cell counters, which function by one of two principles: voltage pulse-impedance or light scatter. For the interested reader, the operation of these instruments has been described [1]. The red blood cell count (RBC) and mean cell volume (MCV) are measured directly by these instruments, while the hematocrit is calculated from these values. Alternatively, the hematocrit also can be measured by direct centrifugation of blood in a microhematocrit tube filled by capillary action. Hemoglobin (Hb) is measured directly by automated cell counters [1]. The mean cell hemoglobin (MCH) and mean cell hemoglobin concentration (MCHC) are calculated values. Most automated cell counters also create histograms of red-blood-cell size and determine the red-cell distribution of width (RDW), a quantitative measure of the variation in red-cell size.

Normal values for Hb, hematocrit (Hct), RBC, and indices for fetuses and infants on the first day of life are shown in Table 17.1 [2–4].

Type
Chapter
Information
Neonatal Hematology , pp. 406 - 430
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Morris, M. W., Davey, F. R. Basic examination of blood. In Henry, J. B., ed. Clinical Diagnosis and Management by Laboratory Methods. Philadelphia: W. B. Saunders, 2001: 479–519Google Scholar
Forestier, F., Daffos, F., Galacteros, F., et al.Hematological values of 163 normal fetuses between 18 and 30 weeks of gestation. Pediatr Res 1986; 20: 342–346CrossRefGoogle ScholarPubMed
Alur, P., Devapatla, S. S., Super, D. M., et al.Impact of race and gestational age on red blood cell indices in very low birth weight infants. Pediatrics 2000; 106: 306–310CrossRefGoogle ScholarPubMed
Zaizov, R., Matoth, Y.Red cell values on the first postnatal day during the last 16 weeks of gestation. Am J Hematol 1976; 1: 275–278CrossRefGoogle ScholarPubMed
Schmaier, A. H., Maurer, H. M., Johnston, C. L., Scott, R. B.Alpha thalassemia screening in neonates by mean corpuscular volume and mean corpuscular hemoglobin determination. J Pediatr 1973; 83: 794–797CrossRefGoogle ScholarPubMed
Matoth, Y., Zaizov, R., Varsano, I.Postnatal changes in some red cell parameters. Acta Paediatr Scand 1971; 60: 317–323CrossRefGoogle ScholarPubMed
Galanello, R., Melis, M. A., Ruggeri, R., Cao, A.Prospective study of red blood cell indices, hemoglobin A2, and hemoglobin F in infants heterozygous for Beta-thalassemia. J Pediatr 1981; 99: 105–108CrossRefGoogle ScholarPubMed
Kling, P. J., Roberts, R. A., Widness, J. A.Plasma transferrin receptor levels and indices of erythropoiesis and iron status in healthy term infants. J Pediatr Hematol Oncol 1998; 20: 309–314CrossRefGoogle ScholarPubMed
Stockman, J. A. 3rd, Oski, F. A.RBC values in low-birth-weight infants during the first seven weeks of life. Am J Dis Child 1980; 134: 945–946Google ScholarPubMed
Blanchette, V. S., Zipursky, A.Assessment of anemia in newborn infants. Clin Perinatol 1984; 11: 489–510CrossRefGoogle ScholarPubMed
Rivera, L. M., Rudolph, N.Postnatal persistence of capillary-venous differences in hematocrit and hemoglobin values in low-birth-weight and term infants. Pediatrics 1982; 70: 956–957Google ScholarPubMed
Thurlbeck, S. M., McIntosh, N.Preterm blood counts vary with sampling site. Arch Dis Child 1987; 62: 74–75CrossRefGoogle ScholarPubMed
Shohat, M., Merlob, P., Reisner, S. H.Neonatal polycythemia. I. Early diagnosis and incidence relating to time of sampling. Pediatrics 1984; 73: 7–10Google ScholarPubMed
Yao, A. C., Lind, J.Placental transfusion. Am J Dis Child 1974; 127: 128–141Google ScholarPubMed
Usher, R., Shephard, M., Lind, J.The blood volume of the newborn infant and placental transfusion. Acta Paediatr 1963; 52: 497–512CrossRefGoogle ScholarPubMed
Low, J. A., Kerr, N. D., Cochon, A. R.Plasma and blood volume of the normal newborn infant and patterns of adjustment in initial 24 hours of the neonatal period. Am J Obstet Gynecol 1963; 86: 886–892CrossRefGoogle ScholarPubMed
Zipursky, A., Brown, E., Palko, J., Brown, E. J.The erythrocyte differential count in newborn infants. Am J Pediatr Hematol Oncol 1983; 5: 45–51Google ScholarPubMed
Holroyde, C. P., Oski, F. A., Gardner, F. H.The “pocked” erythrocyte: red-cell surface alterations in reticuloendothelial immaturity of the neonate. N Engl J Med 1969; 281: 516–520CrossRefGoogle ScholarPubMed
DeMarsh, Q. B., Alt, H. A., Windle, W. F.Factors influencing the blood picture of the newborn. Am J Dis Child 1948; 75: 860–871CrossRefGoogle ScholarPubMed
Paes, B., Andrew, M., Milner, R., Ali, M. A.Developmental changes in red cell creatine and free erythrocyte protoporphyrin in healthy premature infants during the first six months of life. J Pediatr 1987; 111: 745–747CrossRefGoogle ScholarPubMed
Paes, B., Andrew, M., Milner, R., Ali, M. A.Developmental changes in red cell creatine and free erythrocyte protoporphyrin in healthy full-term infants during the first 6 months of life. J Pediatr 1986; 108: 732–734CrossRefGoogle ScholarPubMed
Thomas, R. M., Canning, C. E., Cotes, P. M., et al.Erythropoietin and cord blood haemoglobin in the regulation of human fetal erythropoiesis. Br J Obstet Gynaecol 1983; 90: 795–800CrossRefGoogle ScholarPubMed
Eckardt, K. U., Hartmann, W., Vetter, U., et al.Serum immunoreactive erythropoietin of children in health and disease. Eur J Pediatr 1990; 149: 459–464CrossRefGoogle ScholarPubMed
Brown, M. S., Phibbs, R. H., Garcia, J. F., Dallman, P. R.Postnatal changes in erythropoietin levels in untransfused premature infants. J Pediatr 1983; 103: 612–617CrossRefGoogle ScholarPubMed
Carpani, G., Buscaglia, M., Ghisoni, L., et al.Soluble transferrin receptor in the study of fetal erythropoietic activity. Am J Hematol 1996; 52: 192–1963.0.CO;2-I>CrossRefGoogle Scholar
Brugnara, C., Zurakowski, D., DiCanzio, J., Boyd, T., Platt, O.Reticulocyte hemoglobin content to diagnose iron deficiency in children. J Am Med Assoc 1999; 281: 2225–2230CrossRefGoogle ScholarPubMed
Bjorke Monsen, A. L., Ueland, P. M., Vollset, S. E., et al.Determinants of cobalamin status in newborns. Pediatrics 2001; 108: 624–630CrossRefGoogle ScholarPubMed
Bizzaro, N. Pseudothrombocytopenia. In Michaelson, A., ed. Platelets. Amsterdam: Academic Press, 2002: 659–665Google Scholar
Aballi, A. J., Puapondh, Y., Desposito, F.Platelet counts in thriving premature infants. Pediatrics 1968; 42: 685–689Google ScholarPubMed
Ablin, A., Kushner, J., Murphy, A., Zippin, C.Platelet enumeration in the neonatal period. Pediatrics 1961; 28: 822–824Google ScholarPubMed
Sell, E. J., Corrigan, J. J. Jr.Platelet counts, fibrinogen concentrations, and factor V and factor VIII levels in healthy infants according to gestational age. J Pediatr 1973; 82: 1028–1032CrossRefGoogle ScholarPubMed
Appleyard, W. J., Brinton, A.Venous platelet counts in low birth weight infants. Biol Neonate 1971; 17: 30–34CrossRefGoogle ScholarPubMed
Fogel, B. J., Arias, D., Kung, F.Platelet counts in healthy premature infants. J Pediatr 1968; 73: 108–110CrossRefGoogle ScholarPubMed
Naiman, J. L. Disorders of platelets. In Oski, F. A., Naiman, J. L., eds. Hematologic Problems in the Newborn, Vol. 1. Philadelphia: W. B. Saunders, 1982: 175–222Google ScholarPubMed
White, J. G.Use of the electron microscope for diagnosis of platelet disorders. Semin Thromb Hemost 1998; 24: 163–168CrossRefGoogle ScholarPubMed
Patrick, C. H., Lazarchick, J., Stubbs, T., Pittard, W. B.Mean platelet volume and platelet distribution width in the neonate. Am J Pediatr Hematol Oncol 1987; 9: 130–132CrossRefGoogle ScholarPubMed
Peterec, S. M., Brennan, S. A., Rinder, H. M., Wnek, J. L., Beardsley, D. S.Reticulated platelet values in normal and thrombocytopenic neonates. J Pediatr 1996; 129: 269–274CrossRefGoogle ScholarPubMed
Sola, M. C., Juul, S. E., Meng, Y. G., et al.Thrombopoietin (Tpo) in the fetus and neonate: Tpo concentrations in preterm and term neonates, and organ distribution of Tpo and its receptor (c-mpl) during human fetal development. Early Hum Dev 1999; 53: 239–250CrossRefGoogle ScholarPubMed
Albert, T. S., Meng, Y. G., Simms, P., Cohen, R. L., Phibbs, R. H.Thrombopoietin in the thrombocytopenic term and preterm newborn. Pediatrics 2000; 105: 1286–1291CrossRefGoogle ScholarPubMed
Andrew, M., Castle, V., Mitchell, L., Paes, B.Modified bleeding time in the infant. Am J Hematol 1989; 30: 190–191CrossRefGoogle ScholarPubMed
Feusner, J. H.Normal and abnormal bleeding times in neonates and young children utilizing a fully standardized template technic. Am J Clin Pathol 1980; 74: 73–77CrossRefGoogle Scholar
Lind, S. E.The bleeding time does not predict surgical bleeding. Blood 1991; 77: 2547–2552Google Scholar
Francis, J. L. Platelet function analyzer (PFA)-100. In Michaelson, A., ed. Platelets. Amsterdam: Academic Press, 2002: 325–335Google Scholar
Carcao, M. D., Blanchette, V. S., Dean, J. A., et al.The Platelet Function Analyzer (PFA-100): a novel in-vitro system for evaluation of primary haemostasis in children. Br J Haematol 1998; 101: 70–73CrossRefGoogle ScholarPubMed
Refaai, M. A., Laposata, M. Platelet count. In Michaelson, A., ed. Platelets. Amsterdam: Academic Press, 2002: 279–282Google Scholar
Knofler, R., Weissbach, G., Kuhlisch, E.Platelet function tests in childhood: measuring aggregation and release reaction in whole blood. Semin Thromb Hemost 1998; 24: 513–521CrossRefGoogle ScholarPubMed
Bockenstedt, P. L. Laboratory methods in hemostasis. In Loscalzo, J., Schafer, A. I., eds. Thrombosis and Hemorrhage. Philadelphia: Lippincott Williams & Wilkins, 2003: 363–423Google Scholar
Gordon, N., Thom, J., Cole, C., Baker, R.Rapid detection of hereditary and acquired platelet storage pool deficiency by flow cytometry. Br J Haematol 1995; 89: 117–123CrossRefGoogle ScholarPubMed
Andrew, M., Paes, B., Milner, R., et al.Development of the human coagulation system in the full-term infant. Blood 1987; 70: 165–172Google ScholarPubMed
Andrew, M., Paes, B., Milner, R., et al.Development of the human coagulation system in the healthy premature infant. Blood 1988; 72: 1651–1657Google ScholarPubMed
Andrew, M., Paes, B., Johnston, M.Development of the hemostatic system in the neonate and young infant. Am J Pediatr Hematol Oncol 1990; 12: 95–104CrossRefGoogle ScholarPubMed
Lingen, R. A., Hofhuis, W. J., Dekker, I., et al.The effect of heparin in arterial catheters on the coagulation in preterm infants. J Perinat Med 1992; 20: 39–46CrossRefGoogle ScholarPubMed
DePalma, L., Rush, R. A., Luban, N. L.The precision of duplicate prothrombin time and partial thromboplastin time assays in neonates. Arch Pathol Lab Med 1992; 116: 657–659Google ScholarPubMed
Montgomery, R. Structure and function of von Willebrand factor. In Colman, R. W., Hirsh, J., Marder, V. J., Clowes, A. W., George, J. N., eds. Hemostasis and Thrombosis: Basic Principles and Clinical Practice. Philadelphia: Lippincott Williams & Wilkins, 2001: 249–274Google Scholar
Ginsburg, D.Molecular genetics of von Willebrand disease. Thromb Haemost 1999; 82: 585–591Google ScholarPubMed
Charache, S., Nelson, L., Saw, D., Keyser, E., Wingfield, S.Accuracy and utility of differential white blood cell count in the neonatal intensive care unit. Am J Clin Pathol 1992; 97: 338–344CrossRefGoogle ScholarPubMed
Johannessen, B., Ommundsen, T., Minde, T. E., Haneberg, B., Sandberg, S.Automated differential leukocyte counts in newborn infants: comparison of Coulter VCS and Technicon H1 with manual counts. Eur J Haematol Suppl 1990; 53: 41–44Google ScholarPubMed
Minde, T. E., Vallanger, M., Haneberg, B., Sandberg, S.Improved automated differential counts of leukocytes from newborn infants using pre-dilution of blood samples. Eur J Haematol Suppl 1990; 53: 54–56Google ScholarPubMed
Manroe, B. L., Weinberg, A. G., Rosenfeld, C. R., Browne, R.The neonatal blood count in health and disease. I. Reference values for neutrophilic cells. J Pediatr 1979; 95: 89–98CrossRefGoogle ScholarPubMed
Lloyd, B. W., Oto, A.Normal values for mature and immature neutrophils in very preterm babies. Arch Dis Child 1982; 57: 233–235CrossRefGoogle ScholarPubMed
Mouzinho, A., Rosenfeld, C. R., Sanchez, P. J., Risser, R.Revised reference ranges for circulating neutrophils in very-low-birth-weight neonates. Pediatrics 1994; 94: 76–82Google ScholarPubMed
Scott-Emuakpor, A. B., Okolo, A. A., Omene, J. A., Ukpe, S. I.Pattern of leukocytes in the blood of healthy African neonates. Acta Haematol 1985; 74: 104–107CrossRefGoogle ScholarPubMed
Christensen, R. D., Rothstein, G.Pitfalls in the interpretation of leukocyte counts of newborn infants. Am J Clin Pathol 1979; 72: 608–611CrossRefGoogle ScholarPubMed
Peevy, K. J., Grant, P. H., Hoff, C. J.Capillary venous differences in neonatal neutrophil values. Am J Dis Child 1982; 136: 357–358Google ScholarPubMed
Gessler, P., Kirchmann, N., Kientsch-Engel, R., et al.Serum concentrations of granulocyte colony-stimulating factor in healthy term and preterm neonates and in those with various diseases including bacterial infections. Blood 1993; 82: 3177–3182Google ScholarPubMed
Laver, J., Duncan, E., Abboud, M., et al.High levels of granulocyte and granulocyte-macrophage colony-stimulating factors in cord blood of normal full-term neonates. J Pediatr 1990; 116: 627–632CrossRefGoogle ScholarPubMed
Xanthou, M.Leucocyte blood picture in healthy full-term and premature babies during neonatal period. Arch Dis Child 1970; 45: 242–249CrossRefGoogle ScholarPubMed
Weinberg, A. G., Rosenfeld, C. R., Manroe, B. L., Browne, R.Neonatal blood cell count in health and disease. II. Values for lymphocytes, monocytes, and eosinophils. J Pediatr 1985; 106: 462–466CrossRefGoogle ScholarPubMed
Bhat, A. M., Scanlon, J. W.The pattern of eosinophilia in premature infants: a prospective study in premature infants using the absolute eosinophil count. J Pediatr 1981; 98: 612CrossRefGoogle ScholarPubMed
Gibson, E. L., Vaucher, Y., Corrigan, J. J. Jr.Eosinophilia in premature infants: relationship to weight gain. J Pediatr 1979; 95: 99–101CrossRefGoogle ScholarPubMed
Xanthou, M.Leucocyte blood picture in ill newborn babies. Arch Dis Child 1972; 47: 741–746CrossRefGoogle ScholarPubMed
Comans-Bitter, W. M., Groot, R., Beemd, R., et al.Immunophenotyping of blood lymphocytes in childhood: reference values for lymphocyte subpopulations. J Pediatr 1997; 130: 388–393CrossRefGoogle ScholarPubMed
Buckley, R. H., Dees, S. C., O'Fallon, W. M.Serum immunoglobulins. I. Levels in normal children and in uncomplicated childhood allergy. Pediatrics 1968; 41: 600–611Google ScholarPubMed
Ballow, M., Cates, K. L., Rowe, J. C., Goetz, C., Desbonnet, C.Development of the immune system in very low birth weight (less than 1500 g) premature infants: concentrations of plasma immunoglobulins and patterns of infections. Pediatr Res 1986; 20: 899–904CrossRefGoogle Scholar
Bradley, T. R., Metcalf, D.The growth of mouse bone marrow cells in vitro. Aust J Exp Biol Med Sci 1966; 44: 287–299CrossRefGoogle ScholarPubMed
Stephenson, J. R., Axelrad, A. A., McLeod, D. L., Shreeve, M. M.Induction of colonies of hemoglobin-synthesizing cells by erythropoietin in vitro. Proc Natl Acad Sci USA 1971; 68: 1542–1546CrossRefGoogle ScholarPubMed
Metcalf, D., MacDonald, H. R., Odartchenko, N., Sordat, B.Growth of mouse megakaryocyte colonies in vitro. Proc Natl Acad Sci USA 1975; 72: 1744–1748CrossRefGoogle ScholarPubMed
Gasparoni, A., Ciardelli, L., Avanzini, M. A., et al.Immunophenotypic changes of fetal cord blood hematopoietic progenitor cells during gestation. Pediatr Res 2000; 47: 825–829CrossRefGoogle ScholarPubMed
Murray, N. A., Roberts, I. A.Circulating megakaryocytes and their progenitors (BFU-MK and CFU-MK) in term and pre-term neonates. Br J Haematol 1995; 89: 41–46CrossRefGoogle ScholarPubMed
Wyrsch, A., dalle Carbonare, V., Jansen, W., et al.Umbilical cord blood from preterm human fetuses is rich in committed and primitive hematopoietic progenitors with high proliferative and self-renewal capacity. Exp Hematol 1999; 27: 1338–1345CrossRefGoogle Scholar
Campagnoli, C., Fisk, N., Overton, T., et al.Circulating hematopoietic progenitor cells in first trimester fetal blood. Blood 2000; 95: 1967–1972Google ScholarPubMed
Jin, C. H., Takada, H., Nomura, A., et al.Immunophenotypic and functional characterization of CD33(+)CD34(+) cells in human cord blood of preterm neonates. Exp Hematol 2000; 28: 1174–1180CrossRefGoogle ScholarPubMed
Dommergues, M., Aubeny, E., Dumez, Y., Durandy, A., Coulombel, L.Hematopoiesis in the human yolk sac: quantitation of erythroid and granulopoietic progenitors between 3.5 and 8 weeks of development. Bone Marrow Transplant 1992; 9 (Suppl 1): 23–27Google ScholarPubMed
Sola, M. C., Rimsza, L., Christensen, R. D.A bone marrow biopsy technique suitable for use in neonates. Br J Haematol 1999; 107: 458CrossRefGoogle ScholarPubMed
Rosse, C., Kraemer, M. J., Dillon, T. L., McFarland, R., Smith, N. J.Bone marrow cell populations of normal infants; the predominance of lymphocytes. J Lab Clin Med 1977; 89: 1225–1240Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×