Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-29T16:40:38.034Z Has data issue: false hasContentIssue false

14 - Transfusion practices

Published online by Cambridge University Press:  10 August 2009

Pedro A. de Alarcón
Affiliation:
University of Tennessee
Eric J. Werner
Affiliation:
Eastern Virginia Medical School
J. Lawrence Naiman
Affiliation:
Stanford University School of Medicine, California
Get access

Summary

Transfusion therapy in the neonatal population requires an understanding of the dynamic interactions of the fetomaternal unit, the physiologic changes that accompany the transition from fetus to neonate and from neonate to infant, and the underlying pathophysiology of different hematologic disorders. Blood products utilized in neonates include packed red blood cells (PRBC), platelet concentrates, granulocyte concentrates, fresh frozen plasma (FFP), and cryoprecipitate, but modifications of the components are often required to compensate for the small blood volume, immunologic immaturity, and compromised organ function of the transfusion recipients, who may be premature and/or sick. Extremely low-birth-weight infants (birth weight <1000 g) invariably receive one or more RBC transfusions, especially in the first few weeks of life [1]. Intensive blood-bank support with PRBCs, platelets, and FFP is vital for neonates undergoing extracorporeal membrane oxygenation (ECMO) or cardiopulmonary bypass [2, 3].

Although the transfusion of blood products has been an integral part of supportive care of critically ill neonates for decades, guidelines for transfusions remain controversial, since most have been extrapolated from evidence in adults or based on small studies in neonates with marginal statistical validity. The growing awareness of the hazards of blood transfusion, both among medical professionals and in the lay public, has led to a re-evaluation of this hitherto commonly accepted practice, with the development of strategies to minimize risk and improve benefits.

Type
Chapter
Information
Neonatal Hematology , pp. 349 - 375
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Widness, J. A., Seward, V. J., Kromer, I. J., et al. Changing patterns of red blood cell transfusion in very low birth weight infants. J Pediatr 1996; 129: 680–687CrossRefGoogle ScholarPubMed
Rosenberg, E. M., Chambers, L. A., Gunter, J. M., Good, J. A.A program to limit donor exposures to neonates undergoing extracorporeal membrane oxygenation. Pediatrics 1994; 94: 341–346Google ScholarPubMed
Petaja, J., Lundstrom, U., Leijala, M., et al. Bleeding and use of blood products after heart operations in infants. J Thorac Cardiovasc Surg 1995; 109: 524–529CrossRefGoogle ScholarPubMed
Leistikow, E. A., Collin, M. F., Savastano, G. D., Sierra, T. M., Leistikow, B. N.Wasted health care dollars: routine cord blood type and Coombs' testing. Arch Pediatr Adolesc Med 1995; 149: 1147–1151CrossRefGoogle ScholarPubMed
American Association of Blood Banks. Standards for Blood Banks and Transfusion Services, 22nd edn. Bethesda, MD: American Association of Blood Banks, 2003
Stockman, J. A.Anemia of prematurity: current concepts in the issue of when to transfuse. Pediatr Clin North Am 1986; 33: 111–128CrossRefGoogle ScholarPubMed
Obladen, M., Sachsenweger, M., Stahnke, M.Blood sampling in very low birth weight infants receiving different levels of intensive care. Eur J Pediatr 1988; 147: 399–404CrossRefGoogle ScholarPubMed
Bifano, E. M., Curran, T. R.Minimizing blood donor exposure in the neonatal intensive care unit: current trends and future prospects. Clin Perinatol 1995; 22: 657–669CrossRefGoogle ScholarPubMed
Hume, H., Bard, H.Small volume red blood cell transfusions for neonatal patients. Trans Med Rev 1995; 9: 187–189CrossRefGoogle ScholarPubMed
Kling, P. J., Sullivan, T. M., Leftwich, M. E., Roe, D. J.Score for neonatal acute physiology and phlebotomy loss predict erythrocyte transfusions in premature infants. Arch Pediatr Adolesc Med 1997; 151: 27–31CrossRefGoogle ScholarPubMed
Maier, R. F., Obladen, M., Mesinger, D., et al. Factors related to transfusion in very low birthweight infants treated with erythropoietin. Arch Dis Child 1996; 74: F182–F186CrossRefGoogle ScholarPubMed
Ringer, S. A., Richardson, D. K., Sacher, R. A., Kezler, M., Churchill, W. H.Variations in transfusion practice in neonatal intensive care. Pediatrics 1998; 101: 194–200CrossRefGoogle ScholarPubMed
Bednarek, F. J., Weisberger, S., Richardson, D. K., et al. Variations in blood transfusion among newborn intensive care units. J Pediatr 1998; 133: 601–607CrossRefGoogle ScholarPubMed
Holman, P., Blajchman, M. A., Heddle, N.Noninfectious adverse effects of blood transfusion in the neonate. Trans Med Rev 1995; 9: 277–287Google ScholarPubMed
Maier, R. F., Metze, B., Obladen, M.Low degree of regionalization and high transfusion rates in very low birth weight infants: a survey in Germany. J Perinat Med 1998; 26: 43–48CrossRefGoogle ScholarPubMed
Sacks, L. M., Delivoria-Papadopoulos, M.Hemoglobin-oxygen interactions. Semin Perinatol 1984; 8: 168–183Google ScholarPubMed
Alverson, D. C.The physiological impact of anemia in the neonate. Clin Perinatol 1995; 22: 609–625CrossRefGoogle Scholar
Ramasethu, J., Luban, N. L. C.Red cell transfusions in the newborn. Semin Neonatol 1999; 4: 5–16CrossRefGoogle Scholar
Mock, D. M., Bell, E. F., Lankford, G. L., Widness, J. A.Hematocrit correlates well with circulating red blood cell volume in very low birth weight infants. Pediatr Res 2001; 50: 525–531CrossRefGoogle ScholarPubMed
Wardle, S. P., Garr, R., Yoxall, C. W., Weindling, A. M.A pilot randomised controlled trial of peripheral functional oxygen extraction to guide blood transfusion in preterm infants. Arch Dis Child Fetal Neonatal Ed 2002; 86: F22–F27CrossRefGoogle Scholar
Blanchette, V. S., Hume, H. A., Levy, G. J., Luban, N. L. C., Strauss, R. G.Guidelines for auditing pediatric blood transfusion practices. Am J Dis Child 1991; 145: 787–796Google ScholarPubMed
Fetus and Newborn Committee, Canadian Pediatric Society. Guidelines for transfusion of erythrocytes to neonates and premature infants; position statement. Can Med Assoc J 1992; 147: 1781–1786
Boulton, F., et al. Transfusion guidelines for neonates and older children. Br J Haem 2004; 124: 433–453Google Scholar
Shannon, K. M., Keith, J. F., Mentzer, W. C., et al. Recombinant human erythropoietin stimulates erythropoiesis and reduces erythrocyte transfusions in very low birth weight preterm infants. Pediatrics 1995; 95: 1–8Google ScholarPubMed
Simon, T. L., Alverson, D. C., AuBochon, J., et al. Practice parameter for the use of red blood cell transfusions: developed by the red blood cell administration practice guideline development task force of the College of American Pathologists. Arch Pathol Lab Med 1998; 122: 130–138Google ScholarPubMed
Luban, N. L. C., Strauss, R. G., Hume, H. A.Commentary on the safety of red cells preserved in extended-storage media for neonatal transfusion. Transfusion 1991; 31: 229–235CrossRefGoogle Scholar
Strauss, R. G., Sacher, R. A., Blazina, J. F.Commentary on small volume red cell transfusions for neonatal patients. Transfusion 1990; 30: 565–570CrossRefGoogle ScholarPubMed
Delivoria-Papadopoulis, M., Marrow, G., Oski, F. A., et al. Exchange transfusion of the newborn infant with fresh and ‘old’ blood: the role of storage on 2,3-diphosphoglycerate, hemoglobin-oxygen affinity, and oxygen release. J Pediatr 1971; 70: 898CrossRefGoogle Scholar
Heaton, A., Keegan, T., Holme, S.In vivo regeneration of red cell 2,3-diphosphoglycerate following transfusion of DPG-depleted AS-1, AS-3 and CPDA-1 red cells. Br J Haematol 1989; 71: 131–136CrossRefGoogle ScholarPubMed
Strauss, R. G.Blood banking issues pertaining to neonatal red blood cell transfusions. Transfus Sci 1999; 21: 7–19CrossRefGoogle ScholarPubMed
Harris, B., Lumadue, J. A., Luban, N. L. C., Pollack, M.Transfusion related hyperkalemic arrest from irradiated packed red blood cells. Transfusion 1998; 38: 69SGoogle Scholar
Lee, D. A., Slagle, T. A., Jackson, T. M., Evans, C. S.Reducing blood donor exposures in low birth weight infants by the use of older, unwashed packed red blood cells. J Pediatr 1995; 126: 280–286CrossRefGoogle ScholarPubMed
Strauss, R. G., Burmeister, L. F., Johnson, K., et al. AS-1 red blood cells for neonatal transfusions: a randomized trial assessing donor exposure and safety. Transfusion 1996; 36: 873–878CrossRefGoogle ScholarPubMed
Goodstein, M. H., Herman, J. H., Smith, J. F., Rubenstein, S. D.Metabolic consequences in very low birth weight infants transfused with older AS-1 preserved erythrocytes. Pediatr Pathol Molec Med 1999; 18: 173–185Google Scholar
Goodstein, M. H., Locke, R. G., Wlodarczyk, D., et al. Comparison of two preservation solutions for erythrocyte transfusions in newborn infants. J Pediatr 1993; 133: 783–788CrossRefGoogle Scholar
Rock, G., Poon, A., Haddad, S., et al. Nutricel as an additive solution for neonatal transfusion. Transfus Sci 1999; 20: 29–36CrossRefGoogle ScholarPubMed
Strauss, R. G., Burmeister, L. F., Cordle, D. G.Feasibility and safety of AS-3 red blood cells stored up to 42 days for neonatal transfusions. Transfusion 1999; 39: 111SGoogle Scholar
Oloya, R. O., Feick, H. J., Bozynski, M. E.Impact of venous catheters on packed red cells. Am J Perinatol 1991; 8: 280–283CrossRefGoogle Scholar
Herrera, A. J., Corless, J.Blood transfusions: effect of speed of infusion and of needle gauge on hemolysis. J Pediatr 1981; 99: 757–758CrossRefGoogle ScholarPubMed
Wilcox, G. J., Barnes, A., Modanlou, H.Does transfusion using a syringe infusion pump and small gauge needle cause hemolysis. Transfusion 1981; 21: 750–751CrossRefGoogle ScholarPubMed
Miller, M. A., Schlecter, A. J., Transfusion via hand-held syringes and small gauge needles as risk factors for hyperkalemia. Transfusion 2004; 44: 373–381CrossRefGoogle ScholarPubMed
Nakamura, K. T., Sato, Y., Erenberg, A.Evaluation of a percutaneously placed 27-gauge central venous catheter in neonates weighing <1200 grams. J Parenter Enteral Nutr 1990; 14: 295–299CrossRefGoogle ScholarPubMed
Strauss, R. G., Bell, E. F., Snyder, E. L., et al. Effects of environmental warming on blood components dispensed in syringes for neonatal transfusions. J Pediatr 1986; 109: 109–113CrossRefGoogle ScholarPubMed
Luban, N. L., Mikesell, G., Sacher, R. A.Techniques for warming red blood cells packaged in different containers for neonatal use. Clin Pediatr (Phila) 1985; 24: 642–644CrossRefGoogle ScholarPubMed
Steneker, I., Pietersz, R. N. I., Reesink, H. W. Mechanisms of leukodepletion by filtration. In Sweeney, J., Heaton, A., eds. Medical Intelligence Unit Clinical Benefits of Leukodepleted Blood Products. Austin, TX: RG Landes Company, 1995CrossRefGoogle Scholar
British Committee for Standards in Haematology, Blood Transfusion Task Force. Guidelines on the clinical use of leukocyte depleted blood components. Transfus Med 1998; 8: 59–71CrossRef
Paul, D. A., Leef, K. H., Locke, R., Stefano, J. L.Transfusion volume in very low birth weight infants: a randomized study of 10 vs 20 cc/kg. Pediatrics 1999; 104 (Suppl): 741Google Scholar
Manno, C. S., Hedberg, K. W., Kim, H. C.Comparison of the hemostatic effects of fresh whole blood, stored whole blood, and components after open heart surgery in children. Blood 1991; 77: 930–936Google ScholarPubMed
Luban, N. L. C.Massive transfusion in the neonate. Transfus Med Rev 1995; 9: 200CrossRefGoogle ScholarPubMed
Strauss, R. G.Transfusion therapy in neonates. Am J Dis Child 1991; 145: 904–911Google ScholarPubMed
Strauss, R. G., Villhauer, P. J., Cordle, D. G.A method to collect, store and issue multiple aliquots of packed red blood cells for neonatal transfusions. Vox Sang 1995; 68: 77–81CrossRefGoogle ScholarPubMed
Liu, E. A., Mannino, F. L., Lane, T. A.Prospective randomized trial of the safety and efficacy of a limited donor exposure transfusion program for premature neonates. J Pediatr 1994; 125: 92–96CrossRefGoogle ScholarPubMed
Wang-Rodriguez, J., Mannino, F. L., Lane, T. A.A novel strategy to limit blood donor exposure and blood waste in multiply transfused premature infants. Transfusion 1996; 36: 64–70CrossRefGoogle ScholarPubMed
Chambers, L. A.Evaluation of a filter-syringe set for preparation of packed cell aliquots for neonatal transfusion. Am J Clin Pathol 1995; 104: 253–257CrossRefGoogle ScholarPubMed
Hilsenrath, P., Nemechek, J., Widness, J. A., Cordle, D. G., Strauss, R. G.Cost-effectiveness of a limited-donor blood program for neonatal red cell transfusion. Transfusion 1999; 39: 938–943CrossRefGoogle Scholar
Baud, O., Lacaze-Masmonteil, T., Monsaingeon-Lion, A., et al. Single blood donor exposure programme for preterm infants: a large open study and an analysis of the risk factors to multiple donor exposure. Eur J Pediatr 1998; 157: 579–582CrossRefGoogle ScholarPubMed
Elbert, C., Strauss, R. G., Barrett, F.Biological mothers may be dangerous blood donors for their neonates. Acta Haematol 1991; 85: 189–191CrossRefGoogle ScholarPubMed
Strauss, R. G., Barnes, A. Jr, Blanchette, V. S., et al. Directed and limited-exposure blood donations for infants and children. Transfusion 1990; 30: 68–72CrossRefGoogle ScholarPubMed
Strauss, R. G., Burmeister, L. F., Cordle, D. G.Randomized trial assessing feasibility and safety of biological parents as red blood cell donors for their preterm infants. Transfusion 2000; 40: 450–456CrossRefGoogle Scholar
Ohls, R. K., Ehrenkranz, R. A., Wright, L. L., et al. Effects of early erythropoietin therapy on the transfusion requirements of preterm infants below 1250 grams birth weight: a multicenter, randomized, controlled trial. Pediatrics 2001; 108: 934–942CrossRefGoogle ScholarPubMed
Maier, R. F., Obladen, M., Muller-Hansen, I., et al. Early treatment with erythropoietin β ameliorates anemia and reduces transfusion requirements in infants with birth weights below 1000g. J Pediatr 2002; 141: 8–15CrossRefGoogle Scholar
Maier, R. F., Obladen, M., Scigalla, P., et al. The effect of epoetin beta (recombinant human erythropoietin) on the need for transfusion in very low birth weight infants. N Engl J Med 1994; 330: 1173–1178CrossRefGoogle ScholarPubMed
Meyer, M. P., Meyer, J. H., Commerford, A., et al. Recombinant human erythropoietin in the treatment of the anemia of prematurity: results of a double-blind placebo-controlled study. Pediatrics 1994; 93: 918–923Google ScholarPubMed
Ohls, R. K., Harcum, J., Schibler, K. R., Christensen, R. D.The effect of erythropoietin on the transfusion requirements of preterm infants weighing 750g or less: a randomized, double blind, placebo controlled study. J Pediatr 1997; 131: 661–665CrossRefGoogle ScholarPubMed
Vamvakas, E. C., Strauss, R. G.Meta-analysis of controlled clinical trials studying the efficacy of rHu EPO in reducing blood transfusions in the anemia of prematurity. Transfusion 2001; 41: 406–415CrossRefGoogle Scholar
Garcia, M. G., Hutson, A. D., Christensen, R. D.Effect of recombinant erythropoietin on “late” transfusions in the neonatal intensive care unit: a meta-analysis. J Perinatol 2002; 22: 108–111CrossRefGoogle ScholarPubMed
Meyer, M. P., Sharma, E., Carsons, M.Recombinant erythropoietin and blood transfusion in selected preterm infants. Arch Dis Child Fetal Neonatal Ed 2003; 88: F41–F45CrossRefGoogle ScholarPubMed
Ovali, F., Samanchi, N., Dagoglu, T.Management of late anemia in rhesus hemolytic disease: use of recombinant human erythropoietin (a pilot study). Pediatr Res 1996; 39: 831–834CrossRefGoogle Scholar
Kinmond, S., Aitchison, T. C., Holland, B. M.Umbilical cord clamping and preterm infants: a randomised trial. Br Med J 1993; 306: 172–175CrossRefGoogle ScholarPubMed
Linderkamp, O. L., Nelle, M., Kraus, M., Zilow, E. P.The effects of early and late cord-clamping on blood viscosity and other hemorheological parameters in full-term neonates. Acta Pediatr 1992; 81: 745–750CrossRefGoogle Scholar
Paxson, C. L.Collection and use of autologous fetal blood. Am J Obstet Gynecol 1979; 134: 708–710CrossRefGoogle ScholarPubMed
Golden, S. M., O'Brien, W. F., Metz, S. A.Anticoagulation of autologous cord blood for neonatal resuscitation. Am J Obstet Gynecol 1982; 144: 103–104CrossRefGoogle ScholarPubMed
Ballin, A., Kenet, G., Berar, M., et al. Autologous umbilical cord blood transfusion. Arch Dis Child 1995; 73: F181–F183CrossRefGoogle ScholarPubMed
Anderson, S., Fangman, J., Wagner, G., Uden, D.Retrieval of placental blood from the umbilical vein to determine volume sterility and presence of clot formation. Am J Dis Child 1992; 146: 36–39Google ScholarPubMed
Bifano, E. M., Dracker, R. A., Lorah, K., Palit, A.Collection and 28-day storage of human placental blood. Pediatr Res 1994; 36: 90–94CrossRefGoogle ScholarPubMed
Brune, T., Garritson, H., Hentschel, R.Efficacy, recovery and safety of analogous placental blood: clinical experiences in 52 newborns. Transfusion 2003; 43: 1210–1216CrossRefGoogle Scholar
Eichler, H., Schaible, T., Richter, E., et al. Cord blood as a source of autologous RBCs for transfusion to preterm infants. Transfusion 2000; 40: 1111–1117CrossRefGoogle ScholarPubMed
Imura, K., Kawahara, H., Kitayama, Y., et al. Usefulness of cord-blood harvesting for autologous transfusion in surgical newborns with antenatal diagnosis of congenital anomalies. J Pediatr Surg 2001; 36: 851–854CrossRefGoogle ScholarPubMed
Ramasethu, J., Luban, N. L. C. Alloimmune hemolytic disease of the newborn. In Beutler, E., Lichtman, M. A., Coller, B. S., Kipps, T. J., Seligsohn, U., eds. Williams' Hematology, 6th edn. New York: McGraw-Hill, 2001: 665–675Google Scholar
Lorch, V., Jones, F. S., Hoersten, I. R.Treatment of hyperkalemia with exchange transfusion. Transfusion 1985; 25: 390–391CrossRefGoogle ScholarPubMed
Osborn, H. H., Henry, G., Wax, P., et al. Theophylline toxicity in a premature neonate-elimination kinetics of exchange transfusion. J Toxicol Clin Toxicol 1993; 31: 639–644CrossRefGoogle Scholar
Sancak, R., Kucukoduk, S., Tasdemir, H. A., Belet, N.Exchange transfusion treatment in a newborn with phenobarbital intoxication. Pediatr Emerg Care 1999; 15: 268–270CrossRefGoogle Scholar
Gross, S. J., Filston, H. C., Anderson, J. C.Controlled study of treatment for disseminated intravascular coagulation in the neonate. J Pediatr 1982; 3: 445CrossRefGoogle Scholar
Mathur, N. B., Subramanian, B. K. M., Sharma, V. K., Puri, R. K.Exchange transfusion in neutropenic septicemic neonates: effect on granulocyte functions. Acta Paediatr 1993; 82: 939–943CrossRefGoogle ScholarPubMed
Vain, N. E., Mazlumian, J. R., Swarner, O. W., Cha, C. C.Role of exchange transfusion in the treatment of severe septicemia. Pediatrics 1980; 66: 693–697Google ScholarPubMed
Sadana, S., Mathur, N. B., Thakur, A.Exchange transfusion in septic neonates with sclerema: effect on immunoglobulin and complement levels. Ind Pediatr 1997; 34: 20–25Google ScholarPubMed
Ramasethu, J. Exchange transfusions. In MacDonald, M. G., Ramasethu, R., eds. Atlas of Procedures in Neonatology, 3rd edn. Philadelphia: JB Lippincott, 2002Google Scholar
Bor, M., Benders, M. J. N. L., Dorrepaal, C. A., Bel, F., Brand, R.Cerebral blood volume changes during exchange transfusions in infants born at or near term. J Pediatr 1994; 125: 617–621Google ScholarPubMed
Jackson, J. C.Adverse events associated with exchange transfusion in healthy and ill newborns. Pediatrics 1997; 99: e7CrossRefGoogle ScholarPubMed
Togari, T., Mikawa, M., Iwanaga, T., et al. Endotoxin clearance by exchange blood transfusion in septic shock neonates. Acta Paediatr Scand 1983; 72: 87–91CrossRefGoogle ScholarPubMed
Werner, E. J.Neonatal polycythemia and hyperviscosity. Clin Perinatol 1995; 22: 693–710CrossRefGoogle ScholarPubMed
Bada, H. S., Korones, S. B., Pourcyrous, M., et al.Asymptomatic syndrome of polycythemic hyperviscosity: effect of partial plasma exchange transfusion. J Pediatr 1992; 120: 579–585CrossRefGoogle ScholarPubMed
Black, V. D., Lubchenco, L. O., Koops, B. L., et al. Neonatal hyperviscosity: randomized study of effect of partial plasma exchange transfusion on long term outcome. Pediatrics 1985; 75: 1048–1053Google ScholarPubMed
Delaney-Black, V., Camp, B. W., Lubchenco, L. O., et al. Neonatal hyperviscosity association with lower achievement and IQ scores at school age. Pediatrics 1989; 83: 662–667Google ScholarPubMed
Wong, W., Fok, T. F., Lee, C. H., et al. Randomized controlled trial: comparison of colloid or crystalloid for partial exchange transfusion for treatment of neonatal polycythemia. Arch Dis Child 1997; 77: F115–F118CrossRefGoogle ScholarPubMed
Fok, T. F., So, L. Y., Leung, K. W., et al. Use of peripheral vessels for exchange transfusion. Arch Dis Child 1990; 65: 676–678CrossRefGoogle ScholarPubMed
Black, V. D., Rumack, C. M., Lubchenco, L. O., Koops, B. L.Gastrointestinal injury in polycythemic term infants. Pediatrics 1985; 76: 225–231Google ScholarPubMed
Schumacher, B., Moise, K. J. Jr.Fetal transfusion for red blood cell alloimmunization in pregnancy. Obstet Gynecol 1996; 88: 137–150CrossRefGoogle ScholarPubMed
Radunovic, N., Lockwood, C. J., Alvarez, M., et al. The severely anemic and hydropic isoimmune fetus: changes in fetal hematocrit associated with fetal intrauterine death. Obstet Gynecol 1992; 79: 390–393CrossRefGoogle Scholar
Hallak, M., Moise, K. J., Hesketh, De., , et al. Intravascular transfusion of fetuses with rhesus incompatibility: predicton of fetal outcome by changes in umbilical venous pressure. Obstet Gynecol 1992; 80: 286–290Google Scholar
Chambers, L. A., Luban, N. C. Neonatal and intrauterine transfusion. In Mintz, P. D., ed. Transfusion Therapy: Clinical Principles and Practice.Bethesda, MD: AABB Press, 1999, 1998, pp. 299–311Google Scholar
Janssens, H. M., deHaan, M. J. J., Kamp, I. L.et al. Outcome for children treated with fetal intravascular transfusions because of severe blood group antagonism. J Pediatr 1997; 131: 373–380CrossRefGoogle ScholarPubMed
Millard, D. D., Gidding, S. S., Socol, M. L., et al. Effects of intravascular intrauterine transfusion on prenatal and postnatal hemolysis and erythropiesis in severe fetal isoimmunization. J Pediatr 1990; 117: 447–454CrossRefGoogle Scholar
Saade, G. R., Moise, K. J., Belfort, M. A., Hedsketh, D. E., Carpenter, R. J.Fetal and neonatal hematologic parameters in red cell alloimmunization: predicting the need for late neonatal transfusions. Fetal Diagn Ther 1993; 8: 161–164CrossRefGoogle ScholarPubMed
Sainio, S., Teramo, K., Kekomaki, R.Prenatal treatment of severe fetomaternal alloimmune thrombocytopenia. Transfus Med 1999; 9: 321–330CrossRefGoogle ScholarPubMed
Johnson, J.-A., , Ryan, G., Al-Musa, A., et al. Prenatal diagnosis and management of neonatal alloimmune thrombocytopenia. Semin Perinatol 1997; 21: 45–52CrossRefGoogle Scholar
Murphy, M. F., Metcalfe, P., Waters, A. H., et al. Antenatal management of severe feto-maternal alloimmune thrombocytopenia: HLA incompatibility may affect responses to fetal platelet transfusions. Blood 1993; 15: 2174–2179Google Scholar
Castle, V., Andrew, M., Kelton, J., et al. Frequency and mechanism of neonatal thrombocytopenia. J Pediatr 1986; 108: 749–755CrossRefGoogle ScholarPubMed
Oren, H., Irken, G., Oren, B., et al. Assessment of clinical impact and predisposing factors for neonatal thrombocytopenia. Ind J Pediatr 1994; 61: 551CrossRefGoogle ScholarPubMed
Andrew, M., Castle, V., Saigal, S., et al. Clinical impact of neonatal thrombocytopenia. J Pediatr 1987; 110: 457–464CrossRefGoogle ScholarPubMed
Andrew, M., Vegh, P., Caco, C., et al. A randomized, controlled trial of platelet transfusions in thrombocytopenic premature infants. J Pediatr 1993; 123: 285–291CrossRefGoogle ScholarPubMed
Del Vecchio, A., Sola, M., Theriaque, D. W., et al. Platelet transfusions in the neonatal intensive care unit: factors predicting which patients will require multiple transfusions. Transfusion 2001; 41: 803–808CrossRefGoogle ScholarPubMed
Blanchette, V. S., Kuhne, T., Hume, H., Hellman, J.Platelet transfusion therapy in newborn infants. Trans Med Rev 1995; 9: 215–230CrossRefGoogle ScholarPubMed
Letsky, E. A., Greaves, M.Guidelines on the investigation and management of thrombocytopenia in pregnancy and neonatal alloimmune thrombocytopenia. Br J Haematol 1996; 95: 21–26Google ScholarPubMed
McGill, M., Mayhaus, C., Hoff, R., Carey, P.Frozen maternal platelets for neonatal thrombocytopenia. Transfusion 1987; 27: 347–349CrossRefGoogle ScholarPubMed
Murphy, M. F., Verjee, S., Greaves, M.Inadequacies in the postnatal management of fetomaternal alloimmune thrombocytopenia (FMAIT). Br J Haematol 1999; 105: 123–126Google Scholar
Payne, S. D., Resnik, R., Moore, T. R., et al. Maternal characteristics and risk of severe neonatal thrombocytopenia and intracranial hemorrhage in pregnancies complicated by autoimmune thrombocytopenia. Am J Obstet Gynecol 1997; 177: 149–155CrossRefGoogle ScholarPubMed
Iyori, H., Fujisawa, K., Akatsuka, J.Thrombocytopenia in neonates born to women with autoimmune thrombocytopenic pupura. Pediatr Hematol Oncol 1997; 14: 367–373Google Scholar
Bianco, C.Choice of human plasma preparations for transfusion. Transfus Med Rev 1999; 13: 84–88CrossRefGoogle ScholarPubMed
Klein, H. G., Dodd, R. Y., Dzik, W. H., et al. Current status of solvent/detergent treated frozen plasma. Transfusion 1998; 38: 102–107CrossRefGoogle ScholarPubMed
Chalmers, E. A., Gibson, B. E. S.Clinical aspects of paediatric and perinatal transfusion: plasma products. Vox Sang 1994; 67: 54–58CrossRefGoogle ScholarPubMed
British Committee for Standards in Hematology. Guidelines for the use of fresh frozen plasma. Transfus Med 1992; 2: 57–63CrossRef
Development task force of the College of American Pathologists. Practice parameter for the use of fresh frozen plasma, cryoprecipitate, and platelets. J Am Med Assoc 1994; 271: 777–781CrossRef
Northern Neonatal Nursing Initiative Trial Group. Randomized trial of prophylactic early fresh-frozen plasma or gelatin or glucose in preterm babies: outcome at 2 years. Lancet 1996; 348: 229–232CrossRef
Acunas, B. A., Peakman, M., Liossis, G., et al. Effect of fresh frozen plasma and gammaglobulin on humoral immunity in neonatal sepsis. Arch Dis Child Fetal Neonatal Ed 1994; 70: F182–F187CrossRefGoogle ScholarPubMed
Krediet, T. G, Beurskens, F. J., Dijk, H., Gerards, L. J., Fleer, A.Antibody responses and opsonic activity in sera of preterm neonates with coagulase-negative staphylococcal septicemia and the effect of the administration of fresh frozen plasma. Pediatr Res 1998; 43: 645–651CrossRefGoogle ScholarPubMed
Kern, F. H., Morana, N. J., Sears, J. J., Hickey, P. R.Coagulation defects in neonates during cardiopulmonary bypass. Ann Thorac Surg 1992; 54: 541–546CrossRefGoogle ScholarPubMed
Chan, A. K., Leaker, M., Burrows, F. A., et al. Coagulation and fibrinolytic profile of paediatric patients undergoing cardiopulmonary bypass. Thromb Haemost 1997; 77: 270–277Google ScholarPubMed
Miller, B. E., Mochizuki, T., Levy, J. H., et al. Predicting and treating coagulopathies after cardiopulmonary bypass in children. Anesth Analg 1997; 85: 1196–1202CrossRefGoogle ScholarPubMed
Robinson, T., Kickler, T., Walker, L. K., et al. The effect of extracorporeal membrane oxygenation upon platelets in newborns. Crit Care Med 1993; 21: 1029–1034CrossRefGoogle ScholarPubMed
Zavadil, D. P., Stammers, A. H., Willett, L. D., et al. Hematological abnormalities in neonatal patients treated with extracorporeal membrane oxygenation (ECMO). J Extra Corpor Technol 1998; 30: 83–90Google Scholar
McCune, S., Short, B. L., Miller, M. K., et al. Extracorporeal membrane oxygenation therapy in neonates with septic shock. J Pediatr Surg 1990; 25: 479–482CrossRefGoogle ScholarPubMed
Meyer, D. M., Jessen, M. E.Results of extracorporeal membrane oxygenation in neonates with sepsis: the Extracorporeal Life Support Organization experience. J Thorac Cardiovasc Surg 1995; 109: 419–425CrossRefGoogle ScholarPubMed
Bjerke, H. S., Kelly, R. E. Jr, Foglia, R. P., et al. Decreasing transfusion exposure risk during extracorporeal membrane oxygenation (ECMO). Transfus Med 1992; 2: 43–49CrossRefGoogle Scholar
Minifee, P. K., Daeschner, C. W. 3rd, Griffin, M. P., et al. Decreasing blood donor exposure in neonates on extracorporeal membrane oxygenation. J Pediatr Surg 1990; 25: 38–42CrossRefGoogle ScholarPubMed
Shigeoka, A., Santos, J., Hill, H.Functional analysis of neutrophil granulocytes from healthy, infected and stressed newborns. J Pediatr 1979; 95: 454–460CrossRefGoogle Scholar
Laurenti, F., Ferro, R., Isacchi, G., et al. Polymorphonuclear leukocyte transfusion for the treatment of sepsis in the newborn infant. J Pediatr 1981; 98: 118–122CrossRefGoogle ScholarPubMed
Christensen, R. D., Rothstein, G., Anstall, H. B., et al. Granulocyte transfusions in neonates with bacterial infection, neutropenia and depletion of mature marrow neutrophils. Pediatrics 1982; 70: 1–6Google ScholarPubMed
Cairo, M. S., Worcester, C., Rucker, R., et al. Role of circulating complement and polymorphonuclear leukocyte transfusion in treatment and outcome in critically ill neonates with sepsis. J Pediatr 1987; 110: 935–941CrossRefGoogle ScholarPubMed
Cairo, M. S., Worcester, C. C., Rucker, R. W., et al. Randomized trial of granulocyte transfusions versus intravenous immune globulin therapy for neonatal neutropenia and sepsis. J Pediatr 1992; 120: 281–285Google ScholarPubMed
Baley, J. E., Stork, E. K., Warkentin, P. I., Shurin, S. B.Buffy coat transfusions in neutropenic neonates with presumed sepsis: a prospective randomized trial. Pediatrics 1987; 80: 712–720Google ScholarPubMed
Wheeler, J. G., Chauvenet, A. R., Johnson, C. A., et al. Buffy coat transfusions in neonates with sepsis and neutrophil storage pool depletion. Pediatrics 1987; 79: 422–425Google ScholarPubMed
Vamvakas, E. C., Pineda, A. A.Meta-analysis of clinical studies of the efficacy of granulocyte transfusions in the treatment of bacterial sepsis. J Clin Apher 1996; 11: 1–93.0.CO;2-F>CrossRefGoogle ScholarPubMed
O'Connor, J. C., Strauss, R. G., Goeken, N. E., Knox, L. B.A near-fatal reaction during granulocyte transfusion of a neonate. Transfusion 1988; 28: 173–176CrossRefGoogle ScholarPubMed
Zylberberg, R., Schott, R. J., Fort, J., Roberts, J., Friedman, R.Sudden death following white cell transfusion in a premature infant. J Perinatol 1987; 7: 90–92Google Scholar
Paxton, A.Universal leukoreduction: fix or folly?CAP Today 2000; 14: 36–38, 40–42Google ScholarPubMed
Englefriet, C. P., Reesink, H. W., Klein, H. G.International forum; granulocyte transfusions. Vox Sanguinis 2000; 79: 59–66CrossRefGoogle Scholar
Bilgin, K., Yaramis, A., Haspolat, K., et al. A randomized trial of granulocyte-macrophage colony-stimulating factor in neonates with sepsis and neutropenia. Pediatrics 2001; 107: 36–41Google ScholarPubMed
Price, T. H., Bowden, R. A., Boeckh, M.Phase I/II trial of neutrophil transfusions from donors stimulated with G-CSF and dexamethasone for treatment of patients with infections in hematopoietic stem cell transplantation. Blood 2000; 95: 3302–3309Google ScholarPubMed
Strauss, R. G., Cordle, D. G., Quijana, J., Goeken, N. E.Comparing alloimmunization in preterm infants after transfusion of fresh unmodified versus stored leukocyte-reduced red blood cells. J Pediatr Hematol Oncol 1999; 21: 224–230CrossRefGoogle ScholarPubMed
Rodwell, R., Tudehope, D. I.Screening for cryptantigen exposure and polyagglutination in neonates with suspected necrotizing enterocolitis. J Paediatr Child Health 1993; 29: 16–18CrossRefGoogle ScholarPubMed
Osborn, D. A., Lui, K., Pussel, P., et al. T and Tk antigen activation in necrotising enterocolitis: manifestations, severity and effectiveness of testing. Arch Dis Child Fetal Neonatal Ed 1999; 80: F192–F197CrossRefGoogle Scholar
Grant, H. W., Hadley, G. P., Adhikari, M., Fernandes-Costa, F.T-cryptantigen (TCA) activation in surgical neonates: a hidden problem. Pediatr Surg Int 1998; 14: 204–207CrossRefGoogle ScholarPubMed
Ramasethu, J., Luban, N. L. C.T-activation. Br J Haematol 2001; 112: 259–263CrossRefGoogle ScholarPubMed
Wu, T.-J., Teng, R.-J., Yau, K.-I. T.Transfusion-related acute lung injury treated with surfactant in a neonate. Eur J Pediatr 1996; 155: 589–591CrossRefGoogle Scholar
Sanders, M. R., Graeber, J. E.Post-transfusion graft-versus-host disease in infancy. J Pediatr 1990; 117: 159–163CrossRefGoogle Scholar
Ohto, H., Anderson, K. C.Posttransfusion graft-versus-host disease in Japanese newborns. Transfusion 1996; 36: 117–123CrossRefGoogle ScholarPubMed
Berger, R. S., Dixon, S. L.Fulminant transfusion associated graft versus host disease in a premature infant. J Am Acad Dermatol 1989; 20: 945–950CrossRefGoogle Scholar
Funkhouser, A. W., Vogelsang, G., Zehnbauer, B., et al. Graft versus host disease after blood transfusions in a premature infant. Pediatrics 1991; 87: 247–250Google Scholar
Flidel, O., Barak, Y., Lifschitz-Mercer, B., Frumkin, A., Mogilner, B. M.Graft versus host disease in extremely low birth weight neonate. Pediatrics 1992; 89: 689–690Google ScholarPubMed
Hatley, R. M., Reynolds, M., Paller, A. S., Chou, P.Graft versus host disease following ECMO. J Pediatr Surg 1991; 26: 317–319CrossRefGoogle ScholarPubMed
Luban, N. L. C., DePalma, L.Transfusion associated graft versus host disease in the neonate: expanding the spectrum of disease. Transfusion 1996; 36: 101–103CrossRefGoogle Scholar
Hume, H. A., Preiksaitis, J. B.Transfusion associated graft versus host disease, cytomegalovirus infection and HLA alloimmunization in neonatal and pediatric patients. Transfus Sci 1999; 21: 73–95CrossRefGoogle ScholarPubMed
BCSH Transfusion Task Force. Guidelines on gamma irradiation of blood components for the prevention of transfusion-associated graft-versus-host disease. Transfus Med 1996; 6: 261–271CrossRef
Przepiorka, D., Leparc, G. F., Stovall, M. A., Werch, J., Lichtiger, B.Use of irradiated blood components: practice parameter. Am J Clin Pathol 1996; 106: 6–11CrossRefGoogle ScholarPubMed
Hall, T. L., Barnes, A., Miller, J. R., Bethencourt, D. M., Nestor, L.Neonatal mortality following transfusion of red cells with high plasma potassium levels. Transfusion 1993; 33: 606–609CrossRefGoogle ScholarPubMed
Plonait, S. L., Nau, H., Maier, R. F., et al. Exposure of newborn infants to di-(2-ethylhexyl)-phthalate and 2-ethylhexanoic acid following exchange transfusion with polyvinylchloride catheters. Transfusion 1993; 33: 598–605CrossRefGoogle ScholarPubMed
Karle, V. A., Short, B. L., Martin, G. R., et al. Extracorporeal membrane oxygenation exposes infants to the plasticizer, di(2-ethylhexyl) phthalate. Crit Care Med 1997; 25: 696–703CrossRefGoogle ScholarPubMed
Shea, K. M.American Academy of Pediatrics Committee on Environmental Health. Pediatric exposure and potential toxicity of phthalate plasticizers. Pediatrics 2003; 111: 1467–1474CrossRefGoogle Scholar
Schreiber, G. B., Busch, M. P., Kleinman, S. H., et al. The risk of transfusion transmitted viral infections. N Engl J Med 1996; 334: 1685–1690CrossRefGoogle ScholarPubMed
Dodd, R. Y., Notari, E. P., Stramer, S. L.Current prevalence and incidence of infectious disease markers and estimated window period risk. Transfusion 2002; 42: 975–979CrossRefGoogle ScholarPubMed
Kleinman, S., Chan, P., Robillard, P.Risk associated with transfusion of cellular blood products in Canada. Transfus Med Rev 2003; 17: 120–162CrossRefGoogle Scholar
Lackritz, E. M.Prevention of HIV transmission in the developing world: achievements and continuing challenges. AIDS 1998; 12 (Suppl A): S81–S86Google ScholarPubMed
Savarit, D., Cock, K. M., Schutz, R., et al. Risk of HIV infection from transfusion with blood negative for HIV antibody in a west African city. Br Med J 1992; 305: 498–502Google Scholar
Frederick, T., Mascola, L., Eller, A., O'Neil, L., Byers, B.Progression of human immunodeficiency virus disease among infants and children infected perinatally with human immunodeficiency virus or through neonatal blood transfusion. Pediatr Infect Dis J 1994; 13: 1091–1097CrossRefGoogle ScholarPubMed
Lieb, L. E., Mundy, T. M., Goldfinger, D., et al. Unrecognized human deficiency virus type 1 infection in a cohort of transfused neonates: a retrospective investigation. Pediatrics 1995; 95: 717–721Google Scholar
Azimi, P. H., Roberto, R. R., Guralnik, J., et al. Transfusion-acquired hepatitis A in a premature infant with secondary nosocomial spread in an intensive care nursery. Am J Dis Child 1986; 140: 23–27Google Scholar
Nelson, S. P., Jonas, M. M.Hepatitis C infection in children who received extracorporeal membrane oxygenation. J Pediatr Surg 1996; 31: 644–648CrossRefGoogle ScholarPubMed
O'Riordan, J. M., Conroy, A., Nourse, C., et al. Risk of hepatitis C infection in neonates transfused with blood from donors infected with hepatitis C. Transfus Med 1998; 8: 303–308CrossRefGoogle ScholarPubMed
Hoshiyama, A., Kimura, A., Fujisawa, T., Kage, M., Kato, H.Clinical and histologic features of chronic hepatitis C virus infection after blood transfusion in Japanese children. Pediatrics 2000; 105: 62–65CrossRefGoogle ScholarPubMed
Tong, M. J., el-Farra, N. S., Reikes, A. R., Co, R. L.Clinical outcomes after transfusion-associated hepatitis C. N Engl J Med 1995; 332: 1463–1466CrossRefGoogle ScholarPubMed
Woelfle, J., Berg, T., Keller, K. M., Schreier, E., Lentze, M. J.Persistent hepatitis G virus infection after neonatal transfusion. J Pediatr Gastroenterol Nutr 1998; 26: 402–407CrossRefGoogle ScholarPubMed
Yeager, A. S.Transfusion-acquired cytomegalovirus infection in newborn infants. Am J Dis Child 1974; 128: 478–483Google ScholarPubMed
Tiernay, A. J., Higa, T. E., Finer, N. N.Disseminated cytomegalovirus infection after extracorporeal membrane oxygenation. Pediatr Infect Dis J 1992; 11: 241–242Google Scholar
Przepiorka, D., LeParc, G., Werch, J., Lichtiger, B.Prevention of transfusion transmitted cytomegalovirus infection-practice parameter. Am J Clin Pathol 1996; 106: 163–169CrossRefGoogle Scholar
Nichols, W. G., Price, T. H., Gooley, T., Corey, L., Boeckh, M.Transfusion transmitted cytomegalovirus infection after receipt of leukoreduced blood products. Blood 2003; 101: 4195–4200CrossRefGoogle ScholarPubMed
Ohto, H., Ujiie, N., Hirai, K.Lack of difference in cytomegalovirus transmission via transfusion of filtered-irradiated and nonfiltered-irradiated blood to newborn infants in an endemic area. Transfusion 1999; 39: 201–205CrossRefGoogle Scholar
Dodd, R. Y.Bacterial contamination and transfusion safety: experience in the United States. Transfus Clin Biol 2003; 10: 6–9CrossRefGoogle ScholarPubMed
Risseeuw-Appel, I. M., Kothe, F. C.Transfusion syphilis: a case report. Sex Transm Dis 1983; 10: 200–201CrossRefGoogle ScholarPubMed
Thapa, B. R., Narang, A., Bhakoo, O. N.Neonatal malaria: a clinical study of congenital and transfusional malaria. J Trop Pediatr 1987; 266–268CrossRefGoogle ScholarPubMed
Shulman, I. A., Saxena, S., Nelson, J. M., Furmanski, M.Neonatal exchange transfusions complicated by transfusion induced malaria. Pediatrics 1984; 73: 330–332Google ScholarPubMed
Busch, M. P., Kleinman, S. H., Nemo, G. J.Current and emerging infectious risks of blood transfusion. JAMA 2003; 289: 959–962CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×