Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-05T05:05:02.248Z Has data issue: false hasContentIssue false

23 - Stem cells and cell-based therapy in neurodegenerative disease

from Part III - Therapeutic approaches in neurodegeneration

Published online by Cambridge University Press:  04 August 2010

M. Flint Beal
Affiliation:
Cornell University, New York
Anthony E. Lang
Affiliation:
University of Toronto
Albert C. Ludolph
Affiliation:
Universität Ulm, Germany
Eva Chmielnicki
Affiliation:
Department of Neurology and Neuroscience, Cornell University Medical College, USA
Steven A. Goldman
Affiliation:
Department of Neurology, University of Rochester Medical Center, NY, USA
Get access

Summary

Neurodegenerative diseases are characterized by the gradual loss of functional neuronal populations within the nervous system (Cummings et al., 1998; Jenner & Olanow, 1998; Kowall et al., 1987). While all other organs of the body typically replace lost cells by proliferation and differentiation of resident tissue-specified stem cell populations, the adult central nervous system does not appear capable of regenerating dying neurons to any clinically significant degree. Historically, this inability of the mammalian nervous system to regenerate had led to the conclusion that the adult CNS did not contain competent neuronal progenitor or stem cells. However, a number of studies over the past two decades have refuted this dogma, by identifying significant and heterogeneous populations of both neural stem and progenitor cells in the adult brain (Altman & Das, 1966; Bayer et al., 1982; Goldman & Nottebohm, 1983; Goldman et al., 1992; Kirschenbaum et al., 1994; Lois & Alvarez-Buylla, 1993; Luskin, 1993; Reynolds & Weiss, 1992; Richards et al., 1992). These discoveries have led to the suggestion that induced compensatory neurogenesis by endogenous progenitor cells should be experimentally and therapeutically feasible, regardless of whether compensatory neurogenesis proves to be a natural occurrence of any clinical significance (Gage, 2000; Goldman et al., 2002; Goldman & Luskin, 1998; Weiss et al., 1996b).

Type
Chapter
Information
Neurodegenerative Diseases
Neurobiology, Pathogenesis and Therapeutics
, pp. 347 - 362
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aberg, M., Aberg, D., Hedbacker, H., Oscarsson, J. & Eriksson, P. (2000). Peripheral infusion of IGF-1 selectively induces neurogenesis in the adult rat hippocampus. J. Neurosci., 20, 2896–903CrossRefGoogle ScholarPubMed
Ahmed, S., Reynolds, B. A. & Weiss, S. (1995). BDNF enhances the differentiation but not the survival of CNS stem cell- derived neuronal precursors. J. Neurosci., 15, 5765–78CrossRefGoogle Scholar
Altman, J. & Das, G. D. (1965). Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J. Comp. Neurol., 124, 319–35CrossRefGoogle ScholarPubMed
Altman, J. & Das, G. D. (1966). Autoradiographic and histological studies of postnatal neurogenesis. I. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in neonate rats, with special reference to postnatal neurogenesis in some brain regions. J. Comp. Neurol., 127, 337–90CrossRefGoogle Scholar
Alvarez-Buylla, A., Herrera, D. G. & Wichterle, H. (2000). The subventricular zone: source of neuronal precursors for brain repair. Prog. Brain Res., 127, 1–11CrossRefGoogle ScholarPubMed
Alvarez-Buylla, A. & Lois, C. (1995). Neuronal stem cells in the brain of adult vertebrates. Stem Cells, 13, 263–72CrossRefGoogle ScholarPubMed
Anchan, R. M., Reh, T. A., Angello, J., Balliet, A. & Walker, M. (1991). EGF and TGF-alpha stimulate retinal neuroepithelial cell proliferation in vitro. Neuron, 6, 923–36CrossRefGoogle ScholarPubMed
Arsenijevic, Y., Villemure, J., Brunet, J.et al. (2001). Isolation of multipotent neural precursors residing in the cortex of the adult human brain. Exp. Neurol., 170, 48–62CrossRefGoogle ScholarPubMed
Arsenijevic, Y. & Weiss, S. (1998). Insulin-like growth factor-I is a differentiation factor for postmitotic CNS stem cell-derived neuronal precursors: distinct actions from those of brain-derived neurotrophic factor. J. Neurosci., 18, 2118–28CrossRefGoogle ScholarPubMed
Arvidsson, A., Collin, T., Kirik, D., Kokaia, Z. & Lindvall, O. (2002). Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat. Med., 8, 963–70CrossRefGoogle ScholarPubMed
Bachoud-Levi, A. C., Remy, P., Nguyen, J. P.et al. (2000). Motor and cognitive improvements in patients with Huntington's disease after neural transplantation. Lancet, 356, 1975–9CrossRefGoogle ScholarPubMed
Bajocchi, G., Feldman, S., Crystal, R. & Mastrangeli, A. (1993). Direct in vivo gene transfer to ependymal cells in the central nervous system using recombinant adenovirus vectors. Nat. Genet., 3, 229–34CrossRefGoogle ScholarPubMed
Bayer, S., Yackel, J. & Puri, P. (1982). Neurons in the rat dentate gyrus granular layer substantially increase during juvenile and adult life. Science, 216, 890–2CrossRefGoogle ScholarPubMed
Behar, T., Dugich-Djordjevic, Li Y.et al. (1997). Neurotrophins stimulate chemotaxis of embryonic cortical neurons. Eur. J. Neurosci., 9, 2561–70CrossRefGoogle ScholarPubMed
Benraiss, A., Chmielnicki, E., Lerner, K., Roh, D. & Goldman, S. A. (2001). Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. J. Neurosci., 21, 6718–31CrossRefGoogle ScholarPubMed
Biffo, S., Offenhauser, N., Carter, B. D. & Barde, Y. A. (1995). Selective binding and internalisation by truncated receptors restrict the availability of BDNF during development. Development, 121, 2461–70Google ScholarPubMed
Bjorklund, A. & Lindvall, O. (2000). Cell replacement therapies for central nervous system disorders. Nat. Neurosci., 3, 537–44CrossRefGoogle ScholarPubMed
Bjorklund, L., Sanchez-Pernaute, R., Chung, S.et al. (2002). Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc. Natl Acad. Sci., USA, 99, 2344–9CrossRefGoogle Scholar
Blackshaw, S. & Cepko, C. (2002). Stem cells that know their place. Nat. Neurosci., 5, 1251–2CrossRefGoogle ScholarPubMed
Borghesani, P. R., Peyrin, J. M., Klein, R.et al. (2002). BDNF stimulates migration of cerebellar granule cells. Development, 129, 1435–42Google ScholarPubMed
Brezun, J. & Daszuta, A. (2000). Serotonin may stimulate granule cell proliferation in the adult hippocampus, as observed in rats grafted with foetal raphe neurons. Eur. J. Neurosci., 12, 391–6CrossRefGoogle ScholarPubMed
Brooker, G. J., Kalloniatis, M., Russo, V. C., Murphy, M., Werther, G. A. & Bartlett, P. F. (2000). Endogenous IGF-1 regulates the neuronal differentiation of adult stem cells. J. Neurosci. Res., 59, 332–413.0.CO;2-2>CrossRefGoogle ScholarPubMed
Caldwell, M. A., He, X., Wilkie, N.et al. (2001). Growth factors regulate the survival and fate of cells derived from human neurospheres. Nat. Biotechnol., 19, 475–9CrossRefGoogle ScholarPubMed
Cameron, H. & Gould, E. (1994). Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus. Neuroscience, 61, 203–9CrossRefGoogle ScholarPubMed
Campbell, K., Kalen, P., Wictorin, K., Lundberg, C., Mandel, R. J. & Bjorklund, A. (1993). Characterization of GABA release from intrastriatal striatal transplants: dependence on host-derived afferents. Neuroscience, 53, 403–15CrossRefGoogle ScholarPubMed
Canals, J., Checa, N., Marco, S.et al. (2001). Expression of BDNF in cortical neurons is regulated by striatal target area. J. Neurosci. 21, 117–24CrossRefGoogle ScholarPubMed
Chmielnicki, E., Benraiss, A., Rosenow, J.et al. (2001). Adenoviral infection of the adult rat ventricular zone to overexpress noggin and BDNF increases neuronal recruitment from endogenous progenitor cells. Soc. Neurosci. Abstr., 361–4Google Scholar
Chmielnicki, E. & Goldman, S. A. (2002). Induced neurogenesis by endogenous progenitor cells in the adult mammalian brain. Prog. Brain Res., 138, 451–64CrossRefGoogle ScholarPubMed
Collazo, D., Takahashi, H. & McKay, R. D. (1992). Cellular targets and trophic functions of neurotrophin-3 in the developing rat hippocampus. Neuron, 9, 643–56CrossRefGoogle ScholarPubMed
Craig, C. G., Tropepe, V., Morshead, C. M., Reynolds, B. A., Weiss, S. & Kooy, D. (1996). In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J. Neurosci., 16, 2649–58CrossRefGoogle ScholarPubMed
Cummings, J. L., Vinters, H. V., Cole, G. M. & Khachaturian, Z. S. (1998). Alzheimer's disease: etiologies, pathophysiology, cognitive reserve, and treatment opportunities. Neurology, 51, S2–17; discussion S65–17CrossRefGoogle ScholarPubMed
D'Ercole, A. J. (1993). Expression of insulin-like growth factor-I in transgenic mice. Ann. NY Acad. Sci., 692, 149–60CrossRefGoogle ScholarPubMed
Dunnett, S. (1990). Neural transplantation in animal models of dementia. Eur. J. Neurosci., 2, 567–87CrossRefGoogle Scholar
Eriksson, P. S., Perfilieva, E., Bjork-Eriksson, T.et al. (1998). Neurogenesis in the adult human hippocampus. Nat. Med., 4, 1313–17CrossRefGoogle ScholarPubMed
Fallon, J., Reid, S., Kinyamu, R.et al. (2000). In vivo induction of massive proliferation, directed migration, and differentiation of neural cells in the adult mammalian brain. Proc. Natl Acad. Sci., USA, 97, 14686–91CrossRefGoogle ScholarPubMed
Fine, A., Dunnett, S. B., Bjorklund, A.et al. (1985). Cholinergic ventral forebrain grafts into the neocortex improve passive avoidance memory in a rat model of Alzheimer disease. Proc. Natl Acad. Sci., USA, 82, 5227–30CrossRefGoogle Scholar
Gage, F. (2000). Mammalian neural stem cells. Science, 287, 1433–8CrossRefGoogle ScholarPubMed
Gage, F. H., Kempermann, G., Palmer, T. D., Peterson, D. A. & Ray, J. (1998). Multipotent progenitor cells in the adult dentate gyrus. J. Neurobiol., 36, 249–663.0.CO;2-9>CrossRefGoogle ScholarPubMed
Gensburger, C., Labourdette, G. & Sensenbrenner, M. (1987). Brain basic fibroblast growth factor stimulates the proliferation of rat neuronal precursor cells in vitro. FEBS Lett., 217, 1–5CrossRefGoogle ScholarPubMed
Ghosh, A. & Greenberg, M. (1995). Distinct roles for bFGF and NT3 in the regulation of neurogenesis. Neuron, 15, 89–103CrossRefGoogle Scholar
Goldman, S. (1998). Adult neurogenesis: from canaries to the clinic. J. Neurobiol., 36, 267–863.0.CO;2-B>CrossRefGoogle ScholarPubMed
Goldman, S., Benraiss, A., Chmielnicki, E.et al. (2002). Isolation and induction of adult neural progenitor cells. Clin. Neurosci. Res., 2, 70–9CrossRefGoogle Scholar
Goldman, S. A., Kirschenbaum, B., Harrison-Restelli, C. & Thaler, H. T. (1997). Neuronal precursors of the adult rat subependymal zone persist into senescence, with no decline in spatial extent or response to BDNF. J. Neurobiol., 32, 554–663.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Goldman, S. A. & Luskin, M. B. (1998). Strategies utilized by migrating neurons of the postnatal vertebrate forebrain. Trends Neurosci., 21, 107–14CrossRefGoogle ScholarPubMed
Goldman, S. A. & Nottebohm, F. (1983). Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proc. Natl. Acad. Sci., USA, 80, 2390–4CrossRefGoogle Scholar
Goldman, S. A., Zaremba, A. & Niedzwiecki, D. (1992). In vitro neurogenesis by neuronal precursor cells derived from the adult songbird brain. J. Neurosci., 12, 2532–41CrossRefGoogle ScholarPubMed
Goridis, C. & Rohrer, H. (2002). Specification of catecholaminergic and serotonergic neurons. Nat. Neurosci., 3, 531–41CrossRefGoogle ScholarPubMed
Gould, E. (1999). Serotonin and hippocampal neurogenesis. Neuropsychopharmacology, 21, 46S–51SCrossRefGoogle ScholarPubMed
Gould, E., Cameron, H., Daniels, D., Wooley, C. & McEwen, B. (1992). Adrenal hormones suppress cell division in the adult rat dentate gyrus. J. Neurosci., 12, 3642–50CrossRefGoogle ScholarPubMed
Gritti, A., Parati, E. A., Cova, L.et al. (1996). Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J. Neurosci., 16, 1091–100CrossRefGoogle ScholarPubMed
Gross, R. E., Mehler, M. F., Mabie, P. C., Zang, Z., Santschi, L. & Kessler, J. A. (1996). Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron, 17, 595–606CrossRefGoogle ScholarPubMed
Gusella, J., Wexler, N., Conneally, P.et al. (1983). A polymorphic DNA marker genetically linked to Huntington's disease. Nature, 306, 234–8CrossRefGoogle ScholarPubMed
Hagell, P., Piccini, P., Bjorklund, A.et al. (2002). Dyskinesias following neural transplantation in Parkinson's disease. Nat. Neurosci., 5, 627–8CrossRefGoogle ScholarPubMed
Hantraye, P., Riche, D., Maziere, M. & Isacson, O. (1992). Intrastriatal transplantation of cross-species fetal striatal cells reduces abnormal movements in a primate model of Huntington disease. Proc. Natl Acad. Sci., USA, 89, 4187–91CrossRefGoogle Scholar
Hauser, R., Freeman, T., Snow, B.et al. (1999). Long-term evaluation of bilateral fetal nigral transplantation in Parkinson disease. Arch. Neurol., 56, 179–87CrossRefGoogle ScholarPubMed
Hauser, R. A., Furtado, S., Cimino, C. R.et al. (2002). Bilateral human fetal striatal transplantation in Huntington's disease. Neurology, 58, 687–95CrossRefGoogle ScholarPubMed
Hughes, S. M., Lillien, L. E., Raff, M. C., Rohrer, H. & Sendtner, M. (1988). Ciliary neurotrophic factor induces type-2 astrocyte differentiation in culture. Nature, 335, 70–3CrossRefGoogle ScholarPubMed
Hyman, C., Hofer, M., Barde, Y. A.et al. (1991). BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature, 350, 230–2CrossRefGoogle ScholarPubMed
Isacson, O., Brundin, P., Kelly, P., Gage, F. & Bjorklund, A. (1984). Functional neuronal replacement by grafted striatal neurons in the ibotenic acid-lesioned rat striatum. Nature, 311, 458–60CrossRefGoogle Scholar
Ivkovic, S. & Ehrlich, M. (1999). Expression of the striatal DARPP-32/ ARPP-21 phenotype in GABAergic neurons requires neurotrophins in vivo and in vitro. J. Neurosci., 19, 5409–19CrossRefGoogle ScholarPubMed
Ivkovic, S., Polonskaia, O., Farinas, I. & Ehrlich, M. E. (1997). Brain-derived neurotrophic factor regulates maturation of the DARPP-32 phenotype in striatal medium spiny neurons: studies in vivo and in vitro. Neuroscience, 79, 509–16CrossRefGoogle ScholarPubMed
Jenner, P. & Olanow, C. W. (1998). Understanding cell death in Parkinson's disease. Ann. Neurol., 44, S72–84CrossRefGoogle ScholarPubMed
Jiang, J., McMurtry, J., Niedzwiecki, D. & Goldman, S. A. (1998). Insulin-like growth factor-1 is a radial cell-associated neurotrophin that promotes neuronal recruitment from the adult songbird edpendyma/subependyma. J. Neurobiol., 36, 1–153.0.CO;2-6>CrossRefGoogle ScholarPubMed
Jiang, W., McMurtry, J. & Goldman, S. A. (1997). IGF-1 is a radial cell-associated neurotrophin in the adult songbird forebrain. Soc. Neurosci. Abstr., 23Google Scholar
Johansson, S. & Stromberg, I. (2002). Guidance of dopaminergic neuritic growth by immature astrocytes in organotypic cultures of rat fetal ventral mesencephalon. J. Comp. Neurol., 443, 237–49CrossRefGoogle ScholarPubMed
Keyoung, H. M., Roy, N., Louissant, A.et al. (2001). Specific identification, selection and extraction of neural stem cells from the fetal human brain. Nat. Biotechnol. 19, 843–50CrossRefGoogle Scholar
Kilpatrick, T. J. & Bartlett, P. F. (1993). Cloning and growth of multipotential neural precursors: requirements for proliferation and differentiation. Neuron, 10, 255–65CrossRefGoogle ScholarPubMed
Kilpatrick, T. J. & Bartlett, P. F. (1995). Cloned multipotential precursors from the mouse cerebrum require FGF-2, whereas glial restricted precursors are stimulated with either FGF-2 or EGF. J. Neurosci., 15, 3653–61CrossRefGoogle ScholarPubMed
Kim, J., Auerbach, J., Rodriguez-Gomez, J.et al. (2002). Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature, 418, 50–6CrossRefGoogle Scholar
Kirschenbaum, B. & Goldman, S. A. (1995). Brain-derived neurotrophic factor promotes the survival of neurons arising from the adult rat forebrain subependymal zone. Proc. Natl Acad. Sci., 92, 210–14CrossRefGoogle ScholarPubMed
Kirschenbaum, B., Nedergaard, M., Preuss, A., Barami, K., Fraser, R. A. & Goldman, S. A. (1994). In vitro neuronal production and differentiation by precursor cells derived from the adult human forebrain. Cereb. Corte., 4, 576–89CrossRefGoogle ScholarPubMed
Kondo, T. & Raff, M. (2000). Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science, 289, 1754–7CrossRefGoogle ScholarPubMed
Kordower, J., Freeman, T., Chen, E.et al. (1998). Fetal nigral grafts survive and mediate clinical benefit in a patient with Parkinson's disease. Mov. Disord., 13, 383–93CrossRefGoogle Scholar
Kordower, J., Freeman, T., Snow, B.et al. (1995). Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson's disease. N. Engl. J. Med., 332, 1118–24CrossRefGoogle Scholar
Kowall, N. W., Ferrante, R. & Martin, J. B. (1987). Patterns of cell loss in Huntington's disease. Trends in Neurosci., 10, 24–9CrossRefGoogle Scholar
Kuhn, H. G., Winkler, J., Kempermann, G., Thal, L. & Gage, F. (1997). Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J. Neurosci., 17, 5820–9CrossRefGoogle ScholarPubMed
Lai, K., Kaspar, B., Gage, F. & Schaffer, D. (2003). Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat. Neurosci., 6, 21–7CrossRefGoogle ScholarPubMed
Lee, S.-H., Lumelsky, N., Studer, L., Auerbach, J. & McKay, R. (2000). Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat. Biotechnol., 18, 675–9CrossRefGoogle ScholarPubMed
Li, M., Pevny, L., Lovell-Badge, R. & Smith, A. (1998). Generation of purified neural precursors from embryonic stem cells by lineage selection. Curr. Biol., 8, 971–4CrossRefGoogle ScholarPubMed
Lie, D., Dziewczapolski, G., Willhoite, A., Kaspar, B., Shults, C. & Gage, F. (2002). The adult substantia nigra contains progenitor cells with neurogenic potential. J. Neurosci., 22, 6639–49CrossRefGoogle ScholarPubMed
Lillien, L. E., Sendtner, M., Rohrer, H., Hughes, S. M. & Raff, M. C. (1988). Type-2 astrocyte development in rat brain cultures is initiated by a CNTF-like protein produced by type-1 astrocytes. Neuron, 1, 485–94CrossRefGoogle ScholarPubMed
Lim, D., Tramontin, A., Trevejo, J., Herrera, D., Garcia-Verdugo, J. & Alvarez-Buylla, A. (2000). Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron, 28, 713–26CrossRefGoogle ScholarPubMed
Lindsay, R. M., Thoenen, H. & Barde, Y. A. (1985). Placode and neural crest-derived sensory neurons are responsive at early developmental stages to brain-derived neurotrophic factor. Dev. Biol., 112, 319–28CrossRefGoogle ScholarPubMed
Lindsay, R. M., Wiegand, S. J., Altar, C. A. & DiStefano, P. S. (1994). Neurotrophic factors: from molecule to man. Trends in Neurosci., 17, 182–90CrossRefGoogle Scholar
Lindvall, O. (1999). Cerebral implantation in movement disorders: state of the art. Mov. Disord., 14, 201–53.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Liu, J. P., Baker, J., Perkins, A. S., Robertson, E. J. & Efstratiadis, A. (1993). Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell, 75, 59–72Google Scholar
Lois, C. & Alvarez-Buylla, A. (1993). Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc. Natl Acad. Sci., USA, 90, 2074–7CrossRefGoogle ScholarPubMed
Louissaint, A., Rao, S., Leventhal, C. & Goldman, S. A. (2002). Coordinated interaction of angiogenesis and neurogenesis in the adult songbird brain. Neuron, 34, 945–60CrossRefGoogle ScholarPubMed
Luskin, M. B. (1993). Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron, 11, 173–89CrossRefGoogle ScholarPubMed
Luskin, M. B. (1998). Neuroblasts of the postnatal mammalian forebrain: their phenotype and fate. J. Neurobiol., 36, 221–333.0.CO;2-3>CrossRefGoogle ScholarPubMed
Magavi, S., Leavitt, B. & Macklis, J. (2000). Induction of neurogenesis in the neocortex of adult mice. Nature, 405, 951–5CrossRefGoogle ScholarPubMed
Malberg, J., Eisch, A., Nestler, E. & Duman, R. (2000). Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J. Neurosci., 20, 9104–10CrossRefGoogle ScholarPubMed
Mangiarini, L., Sathasivam, K., Seller, M.et al. (1996). Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell, 87, 493–506CrossRefGoogle Scholar
Martinez-Serrano, A. & Bjorklund, A. (1996). Protection of the neostriatum against excitotoxic damage by neurotrophin-producing, genetically modified neural stem cells. J. Neurosci., 16, 4604–16CrossRefGoogle ScholarPubMed
Mehler, M. F., Mabie, P. C., Zhu, G., Gokhan, S. & Kessler, J. A. (2000). Developmental changes in progenitor cell responsiveness to bone morphogenetic proteins differentially modulate progressive CNS lineage fate. Dev. Neurosci., 22, 74–85CrossRefGoogle ScholarPubMed
Mitchell, I. J., Cooper, A. J. & Griffiths, M. R. (1999). The selective vulnerability of striatopallidal neurons. Prog. Neurobiol., 59, 691–719CrossRefGoogle ScholarPubMed
Morshead, C. M., Craig, C. G. & Kooy, D. (1998). In vivo clonal analyses reveal the properties of endogenous neural stem cell proliferation in the adult mammalian forebrain. Development, 125, 2251–61Google ScholarPubMed
Nait-Oum esmar, B., Decker, L., Lachapelle, F., Avellana-Adalid, V., Bachelin, C. & Evercooren, A. B. (1999). Progenitor cells of the adult mouse subventricular zone proliferate, migrate and differentiate into oligodendrocytes after demyelination. Eur. J. Neurosci., 11, 4357–66CrossRefGoogle Scholar
Nakao, N., Brundin, P., Funa, K., Lindvall, O. & Odin, P. (1995). Trophic and protective actions of brain-derived neurotrophic factor on striatal DARPP-32- containing neurons in vitro. Brain Res. Dev. Brain Res., 90, 92–101CrossRefGoogle ScholarPubMed
Nakatomi, H., Kuriu, T., Okbe, S.et al. (2002). Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous progenitors. Cell, 110, 429–41CrossRefGoogle Scholar
Nilsson, M., Perfilieva, E., Johansson, U., Orwar, O. & Eriksson, P. (1999). Enriched environment increases neurogenesis in the adult rat dentate gyrus and improves spatial memory. J. Neurobiol., 39, 569–783.0.CO;2-F>CrossRefGoogle ScholarPubMed
Nixon, K. & Crews, F. (2002). Binge ethanol exposure decreases neurogenesis in adult rat hippocampus. J. Neurochem., 83, 1087–93CrossRefGoogle ScholarPubMed
Nunes, M., Roy, N. S., Keyoung, H. M.et al. (2003). Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat. Med., 9, 439–47CrossRefGoogle ScholarPubMed
Olanow, C., Kordower, J. & Freeman, T. (1996). Fetal nigral transplantation as a therapy for Parkinson's disease. Trends Neurosci., 19, 102–9CrossRefGoogle ScholarPubMed
Ouimet, C. C., Langley-Gullion, K. C. & Greengard, P. (1998). Quantitative immunocytochemistry of DARPP-32- expressing neurons in the rat caudatoputamen. Brain Res., 808, 8–12CrossRefGoogle ScholarPubMed
Palmer, T., Willhoite, A. & Gage, F. (2000). Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol., 425, 479–943.0.CO;2-3>CrossRefGoogle ScholarPubMed
Palmer, T. D., Ray, J. & Gage, F. H. (1995). FGF-2-res ponsive neuronal progenitors reside in proliferative and quiescent regions of the adult rodent brain. Mol. Cell Neurosci., 6, 474–86CrossRefGoogle Scholar
Palmer, T. D., Takahashi, J. & Gage, F. H. (1997). The adult rat hippocampus contains primordial neural stem cells. Mol. Cell Neurosci., 8, 389–404CrossRefGoogle ScholarPubMed
Parent, J., Vexler, Z., Gong, C., Derugin, N. & Ferriero, D. (2002). Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann. Neurol., 52, 802–13CrossRefGoogle ScholarPubMed
Pencea, V., Bingaman, K. D., Wiegand, S. J. & Luskin, M. B. (2001). Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J. Neurosci., 21, 6706–17CrossRefGoogle ScholarPubMed
Perez-Na varro, E., Canudas, A. M., Akerund, P., Alberch, J. & Arenas, E. (2000). Brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5 prevent the death of striatal projection neurons in a rodent model of Huntington's disease. J. Neurochem., 75, 2190–9CrossRefGoogle Scholar
Pham, K., Nacher, J., Hof, P. & McEwen, B. (2003). Repeated restraint stress suppresses neurogenesis and induces biphasic PSA-NCAM expression in the adult rat dentate gyrus. Eur. J. Neurosci., 17, 879–86CrossRefGoogle ScholarPubMed
Pincus, D., Harrison, C., Goodman, R.et al. (1996). Sequential treatment with FGF2 and BDNF permits the production of new neurons by precursors derived from the adult human epileptic temporal lobe. Ann. Neurol., 40, 550Google Scholar
Pritzel, M., Isacson, O., Brundin, P., Wiklund, L. & Bjorklund, A. (1986). Afferent and efferent connections of striatal grafts implanted into the ibotenic acid lesioned neostriatum in adult rats. Exp. Brain Res., 65, 112–26CrossRefGoogle ScholarPubMed
Pundt, L. L., Kondoh, T., Conrad, J. A. & Low, W. C. (1996). Transplantation of human fetal striatum into a rodent model of Huntington's disease ameliorates locomotor deficits. Neurosci. Res., 24, 415–20CrossRefGoogle ScholarPubMed
Rao, M. & Mayer-Proschel, M. (1997). Glial-restricted precursors are derived from multipotential neuroepithelial stem cells. Dev. Biol., 188, 48–63CrossRefGoogle ScholarPubMed
Reynolds, B. A. & Weiss, S. (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 255, 1707–10CrossRefGoogle ScholarPubMed
Reynolds, B. A. & Weiss, S. (1996). Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev. Biol., 175, 1–13CrossRefGoogle ScholarPubMed
Reynolds, B. A., Tetzlaff, W. & Weiss, S. (1992). A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J. Neurosci., 12, 4565–74CrossRefGoogle ScholarPubMed
Richards, L. J., Kilpatrick, T. J. & Bartlett, P. F. (1992). De novo generation of neuronal cells from the adult mouse brain. Proc. Natl Acad. Sci., USA, 89, 8591–5CrossRefGoogle ScholarPubMed
Rowitch, D. H., B, S. J., Lee, S. M., Flax, J. D., Snyder, E. Y. & McMahon, A. P. (1999). Sonic hedgehog regulates proliferation and inhibits differentiation of CNS precursor cells. J. Neurosci., 19, 8954–65CrossRefGoogle ScholarPubMed
Roy, N. S., Benraiss, A., Wang, S.et al. (2000a). Promoter-targeted selection and isolation of neural progenitor cells from the adult human ventricular zone. J. Neurosci. Res., 59, 321–313.0.CO;2-9>CrossRefGoogle Scholar
Roy, N. S., Wang, S., Jiang, L.et al. (2000b). In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Nat. Med., 6, 271–7CrossRefGoogle Scholar
Samdani, A., Chmielnicki, E., Benraiss, A. & Goldman, S. A. (2002). Adenoviral BDNF induces neostriatal neuronal recruitment from endogenous progenitor cells in transgenic R6/2 huntingtin mice. Mol. Ther (Abstr. 5Google Scholar
Sawamoto, K., Nakao, N., Kakishita, K.et al. (2001). Generation of dopaminergic neurons in the adult brain from mesencephalic precursor cells labeled with a nestin-GFP transgene. J. Neurosci., 21, 3895–903CrossRefGoogle ScholarPubMed
Scharff, C., Kirn, J., Grossman, M., Macklis, J. & Nottebohm, F. (2000). Targeted neuronal death affects neuronal replacement and vocal behavior in adult songbirds. Neuron, 25, 481–92CrossRefGoogle ScholarPubMed
Seaberg, R. M. & Kooy, D. (2002). Adult rodent neurogenic regions: the ventricular subependyma contains neural stem cells, but the dentate gyrus contains restricted progenitors. J. Neurosci., 22, 1784–93CrossRefGoogle ScholarPubMed
Shah, N. M., Groves, A. K. & Anderson, D. J. (1996). Alternative neural crest cell fates are instructively promoted by TGFbeta superfamily members. Cell, 85, 331–43CrossRefGoogle ScholarPubMed
Shetty, A. K. & Turner, D. A. (1998). In vitro survival and differentiation of neurons derived from epidermal growth factor-responsive postnatal hippocampal stem cells: inducing effects of brain-derived neurotrophic factor. J. Neurobiol., 35, 395–4253.0.CO;2-U>CrossRefGoogle ScholarPubMed
Studer, L., Tabar, V. & McKay, R. (1998). Transplantation of expanded mesencephalic precursors leads to recovery in Parkinsonian rats. Nat. Neurosci., 1, 290–5CrossRefGoogle ScholarPubMed
Studer, L., Csete, M., Lee, S.et al. (2000). Enhanced proliferation, survival and dopaminergic differentiation of CNS precursors in lowered oxygen. J. Neurosci., 20, 7377–8CrossRefGoogle ScholarPubMed
Svendsen, C., Caldwell, M. & Ostenfeld, T. (1999). Human neural stem cells: isolation, expansion and transplantation. Brain Pathol., 9, 499–513CrossRefGoogle ScholarPubMed
Temple, S. & Davis, A. A. (1994). Isolated rat cortical progenitor cells are maintained in division in vitro by membrane-associated factors. Development, 120, 999–1008Google ScholarPubMed
Tuszynski, M. H. (2000). Intraparenchymal NGF infusions rescue degenerating cholinergic neurons. Cell Transpl., 9, 629–36CrossRefGoogle ScholarPubMed
Uchida, N., Buck, D. W., He, D.et al. (2000). Direct isolation of human central nervous system stem cells. Proc. Natl Acad. Sci., USA, 97, 14720–5CrossRefGoogle ScholarPubMed
Praag, H., Kempermann, G. & Gage, F. (1999). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat. Neurosci., 2, 266–70CrossRefGoogle ScholarPubMed
Vescovi, A., Parati, E., Gritti, A.et al. (1999). Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human stem cells lines by epigenetic stimulation. Exp. Neurol., 156, 71–83CrossRefGoogle ScholarPubMed
Wang, S., Wu, H., Jiang, J., Delohery, T. M., Isdell, F. & Goldman, S. A. (1998). Isolation of neuronal precursors by sorting embryonic forebrain transfected with GFP regulated by the T alpha 1 tubulin promoter [published erratum appears in Nat. Biotechnol. 1998 May; 16(5):478]. Nat. Biotechnol., 16, 196–201CrossRefGoogle Scholar
Wang, S., Roy, N., Benraiss, A., Harrison-Restelli, C. & Goldman, S. (2000). Promoter-based isolation and purification of mitotic neuronal progenitor cells from the adult mammalian ventricular zone. Dev. Neurosci. in press
Weiss, S., Dunne, C., Hewson, J.et al. (1996a). Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J. Neurosci., 16, 7599–609CrossRefGoogle Scholar
Weiss, S., Reynolds, B. A., Vescovi, A. L., Morshead, C., Craig, C. G. & Kooy, D. (1996b). Is there a neural stem cell in the mammalian forebrain?Trends Neurosci., 19, 387–93CrossRefGoogle Scholar
Welner, S., Dunnett, S., Salamone, J.et al. (1988). Transplantation of embryonic ventral forebrain grafts to the neocortex of rats with bilateral lesions of the nucleus basalis magnocellularis ameliorates a lesion-induced deficit in spatial memory. Brain Res., 463, 192–7CrossRefGoogle ScholarPubMed
Wichterle, H., Lieberam, I., Porter, J. & Jessell, T. (2002). Directed differentiation of embryonic stem cells into motor neurons. Cell, 110, 385–97CrossRefGoogle ScholarPubMed
Wilcock, G., Esiri, M., Bowen, D. & Smith, C. (1982). Alzheimer's disease. Correlation of cortical choline acetyltransferase activity with the severity of dementia and histological abnormalities. J. Neurol. Sci., 57, 407–17CrossRefGoogle ScholarPubMed
Winkler, J., Suhr, S., Gage, F.et al. (1995). Essential role of neocortical acetylcholine in spatial memory. Nature, 375, 484–7CrossRefGoogle ScholarPubMed
Wu, P., Tarasenko, Y., Gu, Y., Huang, L., Coggeshall, R. & Yu, Y. (2002). Region-specific generation of cholinergic neurons from fetal human neural stem cells grafted into adult rat. Nat. Neurosci., 12, 1271–8CrossRefGoogle Scholar
Yan, Q., Matheson, C., Sun, J., Radeke, M. J., Feinstein, S. C. & Miller, J. A. (1994). Distribution of intracerebral ventricularly administered neurotrophins in rat brain and its correlation with trk receptor expression. Exp. Neurol., 127, 23–36CrossRefGoogle ScholarPubMed
Ye, W., Shimamura, K., Rubenstein, J., Hynes, M. & Rosenthal, A. (1998). FGF and Shh signals control dopaminergic and serontinergic cell fate in the anterior neural plate. Cell, 93, 755–66CrossRefGoogle ScholarPubMed
Yoon, S. O., Lois, C., Alvirez, M., Alvarez-Buylla, A., Falck-Pedersen, E. & Chao, M. V. (1996). Adenovirus-mediated gene delivery into neuronal precursors of the adult mouse brain. Proc. Natl Acad. Sci., USA, 93, 11974–9CrossRefGoogle ScholarPubMed
Zimmerman, L., Jesus-Escobar, J. & Harlan, R. (1996). The Spemann organizer signal Noggin binds and inactivates bone morphogenetic protein 4. Cell, 86, 599–606CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×