Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T22:59:12.114Z Has data issue: false hasContentIssue false

9 - Toward a Physiologic Explanation of Behavioral Data on Human Memory: The Role of Theta-Gamma Oscillations and NMDAR-Dependent LTP

Published online by Cambridge University Press:  13 October 2009

Christian Hölscher
Affiliation:
University of Oxford
Get access

Summary

SUMMARY

Psychological studies of list learning provide a quantitative behavioral description of human episodic memory. Our goal here is to describe this literature and to attempt, insofar as possible, to relate these finding to underlying physiologic processes. One prominent hypothesis to emerge from psychological studies is that of a short-term memory (STM) buffer (e.g., Atkinson and Shiffrin, 1968). It is thought that this buffer stores a small number of items (e.g., 7 ± 2 digits) using maintained neural activity. The repetitive firing produced by the STM buffer is important for the transfer to long-term memory (LTM). The rapid formation of LTM is revealed by the pre-recency part of the serial position curve in free-recall experiments. The information stored in LTM include intraitem associations, asymmetric interitem heteroassociations, and associations of items to context. Despite the success of buffer models, some observations, particularly long-term recency, argue against two-store models and alternative models have been developed. Additional information relevant to this controversy comes from neuropsychological, pharmacologic, physiologic, and computational studies. In free-recall studies, hippocampal lesions selectively reduce the recall of early list items consistent with a selective effect on LTM. Furthermore, the rapid formation of LTM (within seconds) and the selective inhibition of this process by cholinergic antagonists is consistent with what is known about the induction of long-term potentiation (LTP) and further supports the distinction between LTM and STM.

A second hypothesis to emerge from behavioral studies (the Sternberg task) is the idea of rapid serial search of the STM buffer. A model has been developed that relates these findings to brain oscillations.

Type
Chapter
Information
Neuronal Mechanisms of Memory Formation
Concepts of Long-term Potentiation and Beyond
, pp. 195 - 223
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×