Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-04-30T22:27:57.236Z Has data issue: false hasContentIssue false

11 - Ocean Acoustics: A Novel Laboratory for Wave Chaos

Published online by Cambridge University Press:  05 October 2010

Steven Tomsovic
Affiliation:
Department of Physics and Astronomy, Washington State University, Pullman, WA, USA
Michael Brown
Affiliation:
Rosenstiel School of Marine and Atmospheric Science, University of Miami, Coral Gables, FL, USA
Matthew Wright
Affiliation:
University of Southampton
Richard Weaver
Affiliation:
University of Illinois, Urbana-Champaign
Get access

Summary

One of the fascinating aspects of the field known colloquially as quantum chaos is the immense variety of physical contexts in which it appears. In the late 1980s it was recognized that ocean acoustics was one such context. It was discovered that the internal state of the ocean leads to multiple scattering of sound as it propagates and leads to an underlying ray dynamics which is predominantly unstable, that is, chaotic. This development helped motivate a resurgence of interest in extending dynamical systems theory suitably for applying ray theory in its full form to a “chaotic” wave mechanical propagation problem. A number of theoretical tools are indispensable, including semiclassical methods, action-angle variables, canonical perturbation theory, ray stability analysis and Lyapunov exponents, mode approximations, and various statistical methods. In the current work, we focus on these tools and how they enter into an analysis of the propagating sound.

Introduction

Acoustic wave propagation through the ocean became a topic of immense physical interest in the latter half of the twentieth century. Beyond the evident sonar applications, acoustic waves offer a means with which to probe the ocean itself. It is possible to monitor bulk mean ocean temperatures over time, which gives important information for studying global warming, and to obtain other information about the internal state of the ocean, that is, currents, eddies, internal waves, seafloor properties, and the like (Flatté et al. 1979, Munk et al. 1995).

Type
Chapter
Information
New Directions in Linear Acoustics and Vibration
Quantum Chaos, Random Matrix Theory and Complexity
, pp. 169 - 187
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×