Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-01T09:19:18.057Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 October 2010

Matthew Wright
Affiliation:
University of Southampton
Richard Weaver
Affiliation:
University of Illinois, Urbana-Champaign
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
New Directions in Linear Acoustics and Vibration
Quantum Chaos, Random Matrix Theory and Complexity
, pp. 251 - 270
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. (1972), Handbook of Mathematical Functions, Dover.Google Scholar
Achenbach, J. D., Gautesen, A. K. & McMaken, H. (1982), Ray Methods for Waves in Elastic Solids, Pitman, Boston.Google Scholar
Adler, R. J. (1981), The Geometry of Random Fields, Wiley, New York.Google Scholar
Aki, K. (1992), “Scattering conversions P to S versus S to P,” Bull. Seism. Soc. Am. 82(4), 1969–1972.Google Scholar
Aki, K. & Chouet, B. (1975), “Origin of coda waves: Source, attenuation, and scattering effects,” J. Geophys. Res. 80(23), 3322–3342.CrossRefGoogle Scholar
Aki, K. & Richards, P. G. (2002), Quantitative Seismology, Theory and Methods, University Science Books, New York.Google Scholar
Akolzin, A. & Weaver, R. L. (2004), “Generalized Berry conjecture and mode correlation in chaotic plates,” Phys. Rev. E 70, 046212.CrossRefGoogle Scholar
Albeverio, S. & Šeba, P. (1991), “Wave chaos in quantum systems with point interactions,” J. Stat. Phys. 64(1–2), 369–383.CrossRefGoogle Scholar
Andersen, A., Ellegaard, C., Jackson, A. D. & Schaadt, K. (2001), “Random matrix theory and acoustic resonances in plates with an approximate symmetry,” Phys. Rev. E 63, 066204.CrossRefGoogle ScholarPubMed
Anderson, T. W. (1958), Introduction to Multivariate Statistical Analysis, John Wiley, New York.Google Scholar
Apresyan, L. A. & Kravstov, Y. A. (1996), Radiation Transfer: Statistical and Wave Aspects, Gordon and Breach, Amsterdam.Google Scholar
Argaman, N., Imry, Y. & Smilansky, U. (1993), “Semiclassical analysis of spectral correlations in mesoscopic systems,” Phys. Rev. B 47(8), 4440–4447.CrossRefGoogle ScholarPubMed
Arnol'd, V. I. (1978), Mathematical Methods of Classical Mechanics, Springer, Berlin.CrossRefGoogle Scholar
Arnst, M., Clouteau, D., Chebli, H., Othman, R. & Degrande, G. (2006), “A nonparametric probabilistic model for ground-borne vibrations in buildings,” Probab. Eng. Mech. 21(1), 18–34.CrossRefGoogle Scholar
Auld, B. A. (1973), Acoustic Fields and Waves in Solids I, II, Wiley, New York.Google Scholar
Aurich, R., Bäcker, A., Schubert, R. & Taglieber, M. (1999), “Maximum norms of chaotic quantum eigenstates and random waves,” Physica D 129, 1–14.CrossRefGoogle Scholar
Babic, V. M. & Buldyrev, V. S. (1991), Short Wavelength Diffraction Theory, Springer, Berlin.CrossRefGoogle Scholar
Balazs, N. L. & Voros, A. (1989), “The quantized Baker's transformation,” Ann. Phys. 190(1), 1–31.CrossRefGoogle Scholar
Balian, R. (1968), “Random matrices and information theory,” Il Nuovo Cimento B 57, 183–193.CrossRefGoogle Scholar
Balian, R. & Bloch, C. (1972), “Distribution of eigenfrequencies for the wave equation in a finite domain: III. Eigenfrequency density oscillations,” Ann. Phys. 69, 76–160.CrossRefGoogle Scholar
Balian, R. & Bloch, C. (1974), “Solution of the Schrödinger equation in terms of classical paths,” Ann. Phys. 85(2), 514–545.CrossRefGoogle Scholar
Baltes, H. P. & Hilf, E. R. (1976), Spectra of Finite Systems, Bibliographisches Insititut Wissenschaftsverlag, Mannheim.Google Scholar
Baranger, H. U., Jalabert, R. A. & Stone, A. D. (1993), “Quantum-chaotic scattering effects in semiconductor microstructures,” Chaos 3(4), 665–682.CrossRefGoogle ScholarPubMed
Baranger, H. U. & Mello, P. A. (1994), “Mesoscopic transport through chaotic cavities: A random s-matrix theory approach,” Phys. Rev. Lett. 73(1), 142–145.CrossRefGoogle ScholarPubMed
Barthélemy, J., Legrand, O. & Mortessagne, F. (2005), “Inhomogeneous resonance broadening and statistics of complex wave functions in a chaotic microwave cavity,” Europhys. Lett. 70, 162–168.CrossRefGoogle Scholar
Beenakker, C. W. J. (1993), “Universality in the random-matrix theory of quantum transport,” Phys. Rev. Lett. 70(8), 1155–1158.CrossRefGoogle ScholarPubMed
Beenakker, C. W. J. (1997), “Random matrix theory of quantum transport,” Rev. Mod. Phys. 69(3), 731–808.CrossRefGoogle Scholar
Berkolaiko, G., Harrison, J. M. & Novaes, M. (2008), “Full counting statistics of chaotic cavities from classical action correlations,” J. Phys. A 41(36), 365102.CrossRefGoogle Scholar
Beron-Vera, F. J. & Brown, M. G. (2003), “Ray stability in weakly range-dependent sound channels,” J. Acoust. Soc. Am. 114, 122–130.CrossRefGoogle ScholarPubMed
Beron-Vera, F. J. & Brown, M. G. (2004), “Travel time stability in weakly range-dependent sound channels,” J. Acoust. Soc. Am. 115, 1068–1077.CrossRefGoogle Scholar
Beron-Vera, F. J. & Brown, M. G. (2009), “Underwater acoustic beam dynamics,” J. Acoust. Soc. Am. 126(1), 80–91.CrossRefGoogle ScholarPubMed
Beron-Vera, F. J., Brown, M. G., Colosi, J. A., Tomsovic, S., Virovlyansky, A. L., Wolfson, M. A. & Zaslavsky, G. M. (2003), “Ray dynamics in a long-range acoustic propagation experiment,” J. Acoust. Soc. Am. 114, 1226–1242.CrossRefGoogle Scholar
Berry, M. V. (1977), “Regular and irregular semiclassical wave functions,” J. Phys. A 10, 2083–2091.CrossRefGoogle Scholar
Berry, M. V. (1981a), “Quantizing a classically ergodic system: Sinai's billiard and the KKR method,” Ann. Phys. 131, 163–216.CrossRefGoogle Scholar
Berry, M. V. (1981b), “Regularity and chaos in classical mechanics, illustrated by three deformations of a circular billiard,” Eur. J. Phys. 2, 91–102.CrossRefGoogle Scholar
Berry, M. V. (1983), “Semiclassical mechanics of regular and irregular motion,” in G., Iooss, R. H. G., Helleman & R., Stora, eds, Chaotic Behavior of Deterministic Systems Les Houches Lecture Series, Vol. 36, North Holland, Amsterdam, pp. 171–271.Google Scholar
Berry, M. V. (1985), “Semiclassical theory of spectral rigidity,” Proc. R. Soc. A 400, 229–251.CrossRefGoogle Scholar
Berry, M. V. (1987), “Quantum chaology (the Bakerian lecture),” Proc. R. Soc. A 413, 183–198.CrossRefGoogle Scholar
Berry, M. V. (1989), “Quantum scars of classical closed orbits in phase space,” Proc. R. Soc. A 423, 219–231.CrossRefGoogle Scholar
Berry, M. V. (1991), “Some quantum-to-classical asymptotics,” in M.-J., Giannoni, A., Voros, & J., Zinn-Justin, eds, Chaos and Quantum Physics, Vol. 52 of Les Houches Lecture Series, North Holland, Amsterdam, pp. 251–304.Google Scholar
Berry, M. V. (2002), “Statistics of nodal lines and points in chaotic quantum billiards: Perimeter corrections, fluctuations, curvature,” J. Phys. A 35, 3025–3038.CrossRefGoogle Scholar
Berry, M. V. & Dennis, M. R. (2008), “Boundary-condition-varying circle billiards and gratings: The Dirichlet singularity,” J. Phys. A 41, 135203.CrossRefGoogle Scholar
Berry, M. V. & Ishio, H. (2002), “Nodal densities of Gaussian random waves satisfying mixed boundary condition,” J. Phys. A 35, 5961–5972.CrossRefGoogle Scholar
Berry, M. V. & Ishio, H. (2005), “Nodal-line densities of chaotic quantum billiard modes satisfying mixed boundary conditions,” J. Phys. A 38, L513–L518.CrossRefGoogle Scholar
Berry, M. V. & Keating, J. P. (1990), “Arule for quantizing chaos,” J. Phys. A 23, 4839–4849.CrossRefGoogle Scholar
Berry, M. V. & Mount, K. E. (1972), “Semiclassical approximations in wave mechanics,” Rep. Prog. Phys. 35, 315–97.CrossRefGoogle Scholar
Berry, M. V. & Robnik, M. (1986), “Statistics of energy levels without time-reversal symmetry: Aharonov–Bohm chaotic billiards,” J. Phys. A 19, 649–668.CrossRefGoogle Scholar
Berry, M. V. & Tabor, M. (1976), “Closed orbits and the regular bound spectrum,” Proc. R. Soc. A 349, 101–23.CrossRefGoogle Scholar
Berry, M. V. & Tabor, M. (1977), “Level clustering in the regular spectrum,” Proc. R. Soc. A 356, 375–94.CrossRefGoogle Scholar
Bertelsen, P. (1997), Quantum chaos and vibration of elastic plates, MSc thesis, Niels Bohr Institute, University of Copenhagen.
Bertelsen, P., Ellegaard, C. & Hugues, E. (2000), “Distribution of eigenfrequencies for vibrating plates,” Eur. Phys. J. B 15(1), 87–96.CrossRefGoogle Scholar
Bies, W. E. & Heller, E. J. (2002), “Nodal structure of chaotic eigenfunction,” J. Phys. A 35, 5673–5685.CrossRefGoogle Scholar
Biham, O. & Kvale, M. (1992), “Unstable periodic orbits in the stadium billiard,” Phys. Rev. A 46(10), 6334–6339.CrossRefGoogle ScholarPubMed
Birkhoff, G. D. (1927), “On the periodic motions of dynamical systems,” Acta Math. 50, 359–379.CrossRefGoogle Scholar
Blomgren, P., Papanicolaou, G. & Zhao, H. (2002), “Super-resolution in time-reversal acoustics,” J. Acoust. Soc. Am. 111(1), 230–248.CrossRefGoogle ScholarPubMed
Blum, G., Gzutzmann, S. & Smilansky, U. (2002), “Nodal domain statistics: A criterion for quantum chaos,” Phys. Rev. Lett. 88(11), 114101.CrossRefGoogle Scholar
Blümel, R. & Smilansky, U. (1988), “Classical irregular scattering and its quantummechanical implications,” Phys. Rev. Lett. 60(6), 477–480.CrossRefGoogle ScholarPubMed
Blümel, R. & Smilansky, U. (1990), “Random matrix description of chaotic scattering: Semiclassical approach,” Phys. Rev. Lett. 64(3), 241–244.CrossRefGoogle ScholarPubMed
Boasman, P. A. (1994), “Semiclassical accuracy for billiards,” Nonlinearity 7, 485–537.CrossRefGoogle Scholar
Bogomolny, E. B. (1992), “Semiclassical quantization of multidimensional systems,” Nonlinearity 5(4), 805–866.CrossRefGoogle Scholar
Bogomolny, E. B. (1988), “Smoothed wave-functions of chaotic quantum systems,” Physica D 31(2), 169–189.CrossRefGoogle Scholar
Bogomolny, E. B. & Keating, J. P. (1996), “Gutzwiller's trace formula and spectral statistics: Beyond the diagonal approximation,” Phys. Rev. Lett. 77(8), 1472–1475.CrossRefGoogle ScholarPubMed
Bogomolny, E., Gerland, U. & Schmit, C. (2001), “Singular statistics,” Phys. Rev. E 63, 036206.CrossRefGoogle ScholarPubMed
Bogomolny, E. & Hugues, E. (1998), “Semiclassical theory of flexural vibrations of plates,” Phys. Rev. E 57, 5404–5424.CrossRefGoogle Scholar
Bogomolny, E., Lebœuf, P. & Schmit, C. (2000), “Spectral statistics of chaotic systems with a pointlike scatterer,” Phys. Rev. Lett. 85(12), 2486–2489.CrossRefGoogle ScholarPubMed
Bogomolny, E. & Schmit, C. (2002), “Percolation model of nodal line of nodal domains of chaotic wave functions,” Phys. Rev. Lett. 88(11), 114102.CrossRefGoogle Scholar
Bohigas, O. (1991), “Random matrix theories and chaotic dynamics,” in M.-J., Giannoni, A., Voros & J., Zinn-Justin, eds, Chaos and Quantum Physics, Vol. 52 of Les Houches Lecture Series, North Holland, Amsterdam, pp. 89–199.Google Scholar
Bohigas, O., Giannoni, M. J. & Schmit, C. (1984), “Characterization of chaotic quantum spectra and universality of level fluctuation laws,” Phys. Rev. Lett. 52(1), 1–4.CrossRefGoogle Scholar
Bohigas, O., Legrand, O., Schmit, C. & Sornette, D. (1991), “Comment on spectral statistics in elastodynamics,” J. Acoust. Soc. Am. 89(3), 1456–1458.CrossRefGoogle Scholar
Bolt, R. H. (1947), “Normal frequency spacing statistics,” J. Acoust. Soc. Am. 19(1), 79–90.CrossRefGoogle Scholar
Bolt, R. H. & Roop, R. W. (1950), “Frequency response fluctuations in rooms,” J. Acoust. Soc. Am. 22(2), 280–289.CrossRefGoogle Scholar
Bonnet, M. (1995), Boundary Integral Equation Methods for Solids and Fluids, Wiley, Chichester.Google Scholar
Born, M. & Wolf, E. (1959), Principles of Optics, Pergamon, Oxford.Google Scholar
Borondo, F., Vergini, E., Wisniacki, D. A., Zembekov, A.A. & Benito, R.M. (2005), “Homoclinic motions in the vibrational spectra of floppy systems: The LiCN molecule,” J. Chem. Phys. 122(11), 111101.CrossRefGoogle ScholarPubMed
Brack, M. & Bhaduri, R. K. (1997), Semiclassical Physics, Addison–Wesley, Reading, MA.Google Scholar
Brenguier, F., Shapiro, N. M., Campillo, M., Ferrazzini, V., Duputel, Z., Coutant, O. & Nercessian, A. (2008), “Towards forecasting volcanic eruptions using seismic noise,” Nature Geosci. 1(2), 126–130.CrossRefGoogle Scholar
Brodier, O., Neicu, T. & Kudrolli, A. (2001), “Eigenvalues and eigenfunctions of a clover plate,” Eur. Phys. J. B 23(3), 365–372.CrossRefGoogle Scholar
Brody, T. A., Flores, J., French, J. B., Mello, P. A., Pandey, A. & Wong, S. S. M. (1981), “Random-matrix physics – spectrum and strength fluctuations,” Rev. Mod. Phys. 53, 385–479.CrossRefGoogle Scholar
Brouwer, P. W. (2003), “Wave function statistics in open chaotic billiards,” Phys. Rev. E 68(4), 046205.CrossRefGoogle ScholarPubMed
Brouwer, P. W. & Rahav, S. (2006), “Semiclassical theory of the Ehrenfest time dependence of quantum transport in ballistic quantum dots,” Phys. Rev. B 74(7), 075322.CrossRefGoogle Scholar
Brown, M. G., Colosi, J. A., Tomsovic, S., Virovlyansky, A. L., Wolfson, M. A. & Zaslavsky, G. M. (2003), “Ray dynamics in long-range deep ocean sound propagation,” J. Acoust. Soc. Am. 113, 2533. nlin.CD/0109027.CrossRefGoogle ScholarPubMed
Bunimovich, L. A. (1974), “On the ergodic properties of some billiards,” Funct. Anal. App. 8, 73–74.Google Scholar
Burkhardt, J. (1997), “Experimental studies of diffuse decay curvature (a),” J. Acoust. Soc. Am. 101(5), 3168.CrossRefGoogle Scholar
Campillo, M. (2006), “Phase and correlation in ‘random’ seismic fields and the reconstruction of the Green function,” Pure Appl. Geophys. 163(2–3), 475–502.CrossRefGoogle Scholar
Campillo, M. & Paul, A. (2003), “Long-range correlations in the diffuse seismic coda,” Science 299(5606), 547–549.CrossRefGoogle ScholarPubMed
Cao, J. & Worsley, K. J. (2001), Spatial Statistics: Methodological Aspects and Applications, Springer Lecture Notes in Statistics, Springer, Berlin, pp. 169–182.CrossRefGoogle Scholar
Capiez-Lernout, E., Pellissetti, M., Pradlwarter, H., Schueller, G. & Soize, C. (2006), “Data and model uncertainties in complex aerospace engineering systems,” J. Sound Vib. 295(3–5), 923–938.CrossRefGoogle Scholar
Capiez-Lernout, E. & Soize, C. (2008a), “Design optimization with an uncertain vibroacoustic model,” ASME J. Vib. Acoust. 130(2), 021001.CrossRefGoogle Scholar
Capiez-Lernout, E. & Soize, C. (2008b), “Robust design optimization in computational mechanics,” J. Appl. Mech. 75(2), 021001.CrossRefGoogle Scholar
Capiez-Lernout, E., Soize, C., Lombard, J.-P., Dupont, C. & Seinturier, E. (2005), “Blade manufacturing tolerances definition for a mistuned industrial bladed disk,” J. Eng. Gas Turbines and Power 127(3), 621–628.CrossRefGoogle Scholar
Carlo, G. G., Vergini, E. G. & Lustemberg, P. (2002), “Scar functions in the Bunimovich stadium billiard,” J. Phys. A 35, 7965–7982.CrossRefGoogle Scholar
Casati, G., Maspero, G. & Shepelyansky, D. L. (1999), “Quantum fractal eigenstates,” Physica D 131(1–4), 311–316.CrossRefGoogle Scholar
Casati, G., Valz-Gris, F. & Guarneri, L. (1980), “On the connection between quantization of nonintegrable systems and statistical theory of spectra,” Lett. Nuovo Cimenti 28(8), 279–282.CrossRefGoogle Scholar
Cassereau, D. & Fink, M. (1992), “Time reversal of ultrasonic fields 3 theory of the closed time-reversal cavity,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 39(5), 579–592.CrossRefGoogle ScholarPubMed
Cerruti, N. R. & Tomsovic, S. (2002), “Sensitivity of wave field evolution and manifold stability in chaotic systems,” Phys. Rev. Lett. 88, 054103.CrossRefGoogle ScholarPubMed
Chandrasekhar, S. (1960), Radiative Transfer, Dover, New York.Google Scholar
Charpentier, A., Cotoni, V. & Fukui, K. (2006), “Using the hybrid FE–SEA method to predict structure-borne noise in a car body-in-white,” in Proceedings of Inter-Noise 2006.Google Scholar
Chebli, H. & Soize, C. (2004), “Experimental validation of a nonparametric probabilistic model of nonhomogeneous uncertainties for dynamical systems,” J. Acoust. Soc. Am. 115(2), 697–705.CrossRefGoogle ScholarPubMed
Chen, C., Duhamel, D. & Soize, C. (2006), “Probabilistic approach for model and data uncertainties and its experimental identification in structural dynamics: Case of composite sandwich panels,” J. Sound Vib. 294, 64–81.CrossRefGoogle Scholar
Cherroret, N. & Skipetrov, S. E. (2008), “Microscopic derivation of self-consistent equations of Anderson localization in a disordered medium of finite size,” Phys. Rev. E 77(4), 046608.CrossRefGoogle Scholar
Ching, E. S. C., Leung, P. T., van den Brink, A. M., Suen, W. M., Tong, S. S. & Young, K. (1998), “Quasinormal-mode expansion for waves in open systems,” Rev. Mod. Phys. 70(4), 1545–1554.CrossRefGoogle Scholar
Chirikov, B. V. (1959), “Resonance processes in magnetic traps,” Atomic Energy 6, 630. Russian; English J. Nucl. Energy Part C: Plasma Phys.1, 253 (1960).Google Scholar
Chirikov, B. V. (1979), “A universal instability of many-dimensional oscillator systems,” Phys. Rep. 52, 263–379.CrossRefGoogle Scholar
Colin de Verdière, Y. (1985), “Ergodicité et fonctions propres du laplacien,” Commun. Math. Phys. 102(3), 497–502.CrossRefGoogle Scholar
Colin de Verdière, Y. (2006), “Mathematical models for passive imaging I: General background,” Mathematical Physics, e-prints ArXiv: math-ph/0610043.
Colosi, J. A. & Brown, M. G. (1998), “Efficient numerical simulation of stochastic internal-wave induced sound-speed perturbation fields,” J. Acoust. Soc. Am. 103, 2232–2235.CrossRefGoogle Scholar
Colosi, J. A., Scheer, E. K., Flatté, S. M., Cornuelle, B. D., Dzieciuch, M. A., Munk, W. H., Worcester, P. F., Howe, B. M., A.Mercer, J., Spindel, R. C., Metzger, K., Birdsall, T. & Baggeroer, A. B. (1999), “Comparisons of measured and predicted acoustic fluctuations for a 3250-km propagation experiment in the eastern north Pacific Ocean,” J. Acoust. Soc. Am. 105, 3202–3218.CrossRefGoogle Scholar
Cotoni, V., Langley, R. S. & Kidner, M. R. F. (2005), “Numerical and experimental validation of variance prediction in the statistical energy analysis of built-up systems,” J. Sound Vib. 288(3), 701–728.CrossRefGoogle Scholar
Cotoni, V., Shorter, P. J. & Langley, R. S. (2008), “Numerical and experimental validation of a hybrid finite element – Statistical energy analysis method,” J. Acoust. Soc. Am. 122(1), 259–270.CrossRefGoogle Scholar
Cottereau, R., Clouteau, D. & Soize, C. (2006), “Probabilistic nonparametric model of impedance matrices: Application to the seismic design of a structure,” Eur. J. Comput. Mech. 15(1–3), 131–142.CrossRefGoogle Scholar
Cottereau, R., Clouteau, D. & Soize, C. (2007), “Construction of a probabilistic model for impedance matrices,” Comput. Meth. Appl. Mech. Eng. 196, 17–20.CrossRefGoogle Scholar
Couchman, L., Ott, E. & Antonsen, T. M. (1992), “Quantum chaos in systems with ray splitting,” Phys. Rev. A 47(10), 6193–6210.CrossRefGoogle Scholar
Creagh, S. C. (1996), “Trace formula for broken symmetry,” Ann. Phys. 248, 60–94.CrossRefGoogle Scholar
Creagh, S. C. & Littlejohn, R. G. (1991), “Semiclassical trace formulas in the presence of continuous symmetries,” Phys. Rev. A 44, 836–850.CrossRefGoogle ScholarPubMed
Creagh, S. C. & Littlejohn, R. G. (1992), “Semiclassical trace formulas for systems with non-Abelian symmetry,” J. Phys. A 25, 1643–1669.CrossRefGoogle Scholar
Cremer, L., Heckl, M. & Ungar, E. E. (1990), Structure Borne Sound: Structural Vibrations and Sound Radiation at Audio Frequencies, 2nd edn, Springer, Berlin.Google Scholar
Cvitanović, P., Artuso, R., Mainieri, R., Tanner, G. & Vattay, G. (2005), Chaos: Classical and Quantum, Niels Bohr Institute, Copenhagen. http://ChaosBook.org.Google Scholar
Cvitanovic, P. & Eckhardt, B. (1989), “Periodic-orbit quantization of chaotic systems,” Phys. Rev. Lett. 63(8), 823–826.CrossRefGoogle ScholarPubMed
Cvitanovic, P. & Eckhardt, B. (1993), “Symmetry decomposition of chaotic dynamics,” Nonlinearity 6(2), 277–311.CrossRefGoogle Scholar
Dainty, A. & Toksöz, M. N. (1990), “Array analysis of seismic scattering,” Bull. Seism. Soc. Am. 80, 2242–2260.Google Scholar
Davy, J. L. (1981), “The relative variance of the transmission function of a reverberation room,” J. Sound Vib. 77(4), 455–479.CrossRefGoogle Scholar
Davy, J. L. (1986), “The ensemble variance of random noise in a reverberation room,” J. Sound Vib. 107(3), 361–373.CrossRefGoogle Scholar
Davy, J. L. (1987), “Improvements to formulae for the ensemble relative variance of random noise in a reverberation room,” J. Sound Vib. 115(1), 145–161.CrossRefGoogle Scholar
Davy, J. L. (1990), “The distribution of modal frequencies in a reverberation room,” in Proceedings of Internoise '90, Vol. 1, Noise Control Foundation, Poughkeepsie, NY, pp. 159–164.Google Scholar
de Rosny, J. & Fink, M. (2002), “Overcoming the diffraction limit in wave physics using a time-reversal mirror and a novel acoustic sink,” Phys. Rev. Lett. 89(12), 124301.CrossRefGoogle Scholar
de Rosny, J., Tourin, A. & Fink, M. (2000), “Coherent backscattering of an elastic wave in a chaotic cavity,” Phys. Rev. Lett. 84(8), 1693–1695.CrossRefGoogle Scholar
Delande, D. (2001), “The semiclassical approach for chaotic systems,” in P., Sebbah, ed., Waves and Imaging through Complex Media, Kluwer Academic, Amsterdam. International Physics School, Cargése, 1999.Google Scholar
Delande, D. & Sornette, D. (1997), “Acoustic radiation from mebranes at high frequencies: The quantum chaos regime,” J. Acoust. Soc. Am. 101(4), 1793–1807.CrossRefGoogle Scholar
Dennis, M. R. (2007), “Nodal densities of planar gaussian random waves,” Eur. Phys. J. Special Topics 145, 191–210.CrossRefGoogle Scholar
Derode, A., Larose, E., Campillo, M. & Fink, M. (2003), “How to estimate the green's function of a heterogeneous medium between two passive sensors? Application to acoustic waves,” Appl. Phys. Lett. 83(15), 3054–3056.CrossRefGoogle Scholar
Derode, A., Mamou, V. & Tourin, A. (2006), “Influence of correlations between scatterers on the attenuation of the coherent wave in a random medium,” Phys. Rev. E 74(3), 036606.CrossRefGoogle Scholar
Derode, A., Roux, P. & Fink, M. (1995), “Robust acosutic time reversal with high-order multiple scattering,” Phys. Rev. Lett. 75(23), 4206–4209.CrossRefGoogle ScholarPubMed
Derode, A., Tourin, A. & Fink, M. (2001), “Random multiple scattering of ultrasound II. Is time reversal a self-averaging process?,” Phys. Rev. E 64(3), 036606.CrossRefGoogle ScholarPubMed
Desceliers, C., Soize, C. & Cambier, S. (2004), “Non-parametric – Parametric model for random uncertainties in nonlinear structural dynamics – Application to earthquake engineering,” Earthquake Eng. Struct. Dyn. 33(3), 315–327.CrossRefGoogle Scholar
Doya, V., Legrand, O., Mortessagne, F. & Miniatura, C. (2002), “Speckle statistic in a chaotic multimode fiber,” Phys. Rev. E 65, 056223.CrossRefGoogle Scholar
Draeger, C., Aime, J.-C. & Fink, M. (1999), “One-channel time-reversal in chaotic cavities: Experimental results,” J. Acoust. Soc. Am. 105(2), 618–625.CrossRefGoogle Scholar
Draeger, C. & Fink, M. (1997), “One-channel time reversal of elastic waves in a chaotic 2D silicon cavity,” Phys. Rev. Lett. 79(3), 407–410.CrossRefGoogle Scholar
Draeger, C. & Fink, M. (1999), “One-channel time-reversal in chaotic cavities: Theoretical limits,” J. Acoust. Soc. Am. 105(2), 611–617.CrossRefGoogle Scholar
Duchereau, J. & Soize, C. (2006), “Transient dynamics in structures with nonhomogeneous uncertainties induced by complex joints,” Mech. Syst. Sig. Proc. 20, 854–867.CrossRefGoogle Scholar
Durand, J.-F. (2007), Modélisation de véhicules automobiles en vibroacoustique numérique avec incertitudes de modélisation et validation expérimentale, PhD thesis, Université de Marne-la-Vallée.
Durand, J.-F., Soize, C. & Gagliardini, L. (2008), “Structural–acoustic modeling of automotive vehicles in presence of uncertainties and experimental identification and validation,” J. Acoust. Soc. Am. 124(3), 1513–1525.CrossRefGoogle Scholar
Duvall, T. L. Jr., Jefferies, S. M., Harvey, J. W. & Pomerantz, M. A. (1993), “Time–distance helioseismology,” Nature 362(6419), 430–432.CrossRefGoogle Scholar
Dyson, F. J. (1962), “Statistical theory of the energy levels of complex systems. I–III,” J. Math. Phys. 3(1), 140–175.CrossRefGoogle Scholar
Ebeling, K. J. (1984), “Statistical properties of random wave fields,” in W. P., Mason & R. N., Thurston, eds, Physical Acoustics, Vol. 17, Academic, New York, chapter 4, pp. 233–310.Google Scholar
Edelmann, G. F., Akal, T., Hodgkiss, W. S., Kim, S., Kuperman, W. A. & Song, H. C. (2002), “An initial demonstration of underwater acoustic communication using time reversal,” IEEE J. Ocean. Eng. 27(3), 602–609.CrossRefGoogle Scholar
Efetov, K. B. (1983), “Supersymmetry and the theory of disordered metals,” Adv. Phys. 32(1), 53–127.CrossRefGoogle Scholar
Efetov, K. B. (1999), Supersymmetry in Disorder and Chaos, Cambridge University Press, Cambridge, UK.Google Scholar
Elishakoff, I. (1995), “Essay on uncertainties in elastic and viscoelastic structures: From A. M. Freudenthal's criticisms to modern convex modelling,” Comput. Struct. 56(6), 871–1079.CrossRefGoogle Scholar
Ellegaard, C., Guhr, T. & Lindemann, K. (1995), “Spectral statistics of acoustic resonances in aluminum blocks,” Phys. Rev. Lett. 75, 1546–1549.CrossRefGoogle ScholarPubMed
Ellegaard, C., Guhr, T., Lindemann, K., Lorensen, H. Q., Nygård, J. & Oxborrow, M. (1995), “Spectral statistics of acoustic resonances in aluminum blocks,” Phys. Rev. Lett. 75(8), 1546–1549.CrossRefGoogle ScholarPubMed
Ellegaard, C., Schaadt, K. & Bertelsen, P. (2001), “Acoustic chaos,” Physica Scripta T90, 223–230.CrossRefGoogle Scholar
Exner, P. & Šeba, P. (1996), “Point interactions in two and three dimensions as models of small scatterers,” Phys. Lett. A 222(1–2), 1–4.CrossRefGoogle Scholar
Filippi, P., Habault, D., Lefebvre, J.-P. & Bergassoli, A. (1989), Acoustics: Basic Physics, Theory and Methods, Academic, San Diego, CA.Google Scholar
Fink, M. (1992), “Time-reversal of ultrasonic fields 1 basic principles,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 39(5), 555–566.CrossRefGoogle Scholar
Fink, M. (1997), “Time reversed acoustics,” Phys. Today 50(3), 34–40.CrossRefGoogle Scholar
Fink, M., Cassereau, D., Derode, A., Prada, C., Roux, P., Tanter, M., Thomas, J. L. & Wu, F. (2000), “Timer-reversed acoustics,” Rep. Prog. Phys. 63(12), 1933–1995.CrossRefGoogle Scholar
Flatté, S. M., Dashen, R., Munk, W. H. & Zachariasen, F. (1979), Sound Transmission through a Fluctuating Ocean, Cambridge University Press, Cambridge, UK.Google Scholar
Fletcher, J. B., Fumal, T., Liu, H. & Porcella, R. (1990), “Near-surface velocities and attenuation at two bore-holes near Anza,” Bull. Seism. Soc. Am. 80(4), 807–831.Google Scholar
Foldy, L. L. (1945), “The multiple scattering of waves: I. General theory of isotropic scattering by randomly distributed scatterers,” Phys. Rev. 67, 107–119.CrossRefGoogle Scholar
Forrester, P. J. (2006), “Quantum conductance problems and the Jacobi ensemble,” J. Phys. A 39(22), 6861–6870.CrossRefGoogle Scholar
Fougeaud, C. & Fuchs, A. (1967), Statistique, 2nd edn, Dunod, Paris. (1972).Google Scholar
Frisch, U. (1968), Probabilistic Methods in Applied Mathematics, Vol. 1, Academic, New York, chapter “Wave propagation in random media,” pp. 75–198.Google Scholar
Fulling, S. A. (2002), “Spectral oscillations, periodic orbits, and scaling,” J. Phys. A 35, 4049–4066.CrossRefGoogle Scholar
Fyodorov, Y. V. (1995), “Basic features of Efetov's supersymmetry approach,” in Mesoscopic Quantum Physics, Vol. 61 of Les Houches Lecture Series, Elsevier, Amsterdam.Google Scholar
Fyodorov, Y. V. & Sommers, H.-J. (2003), “Random matrices close to Hermitian or unitary: Overview of methods and results,” J. Phys. A 36(12), 3303–3347.CrossRefGoogle Scholar
Galdi, V., Pinto, I. M. & Felsen, L. B. (2005), “Wave propagation in ray-chaotic enclosures: Paradigms, oddities and examples,” IEEE Antennas Propag. Mag. 47(1), 62–81.CrossRefGoogle Scholar
Gaspard, P. (1998), Chaos, Scattering and Statistical Mechanics, Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Gaspard, P., Alonso, D., Okuda, T. & Nakamura, K. (1994), “Chaotic scattering on C4v four-disk billiards: Semiclassical and exact quantum theories,” Phys. Rev. E 50(4), 2591–2596.CrossRefGoogle ScholarPubMed
Gaspard, P. & Baras, F. (1995), “Chaotic scattering and diffusion in the Lorentz gas,” Phys. Rev. E 51(6), 5332–5352.CrossRefGoogle ScholarPubMed
Gaspard, P. & Ramirez, D. A. (1992), “Ruelle classical resonances and dynamical chaos: The three- and four-disk scatterers,” Phys. Rev. A 45(12), 8383–8397.CrossRefGoogle ScholarPubMed
Gaspard, P. & Rice, S. A. (1989), “Semiclassical quantization of the scattering from a classically chaotic repellor,” J. Chem. Phys. 90(4), 2242–2254.CrossRefGoogle Scholar
Gaudin, M. (1961), “Sur la loi limite de l'espacement des valeurs propres d'une matrice aléatoire,” Nucl. Phys. 25, 447–458.CrossRefGoogle Scholar
Georgeot, B. & Prange, R. E. (1995), “Exact and quasiclassical fredholm solutions of quantum billiards,” Phys. Rev. Lett. 74(15), 2851–2854.CrossRefGoogle ScholarPubMed
Ghanem, R. & Spanos, P. D. (2003), Stochastic Finite Elements: A Spectral Approach, revised edn, Dover, New York.Google Scholar
Giannoni, M. J., Voros, A. & Jinn-Justin, J., eds (1991), Chaos and Quantum Physics, North Holland, Amsterdam.Google Scholar
Gizon, L. & Birch, A. (2004), “Time-distance helioseismology: Noise estimation,” Astrophys. J. 614(1), 472–489.CrossRefGoogle Scholar
Gizon, L. & Birch, A. C. (2005), “Local helioseismology,” Living Rev. in Solar Phys. 2(6).CrossRefGoogle Scholar
Gmachl, C., Capasso, F., Narimanov, E. E., Nockel, J. U., Stone, A. D., Faist, J., Sivco, D. L. & Cho, A. Y. (1998), “High-power directional emission from microlasers with chaotic resonators,” Science 280(5369), 1556–1564.CrossRefGoogle ScholarPubMed
Goldstein, H. (1980), Classical Mechanics, Addison-Wesley, Reading, MA.Google Scholar
Goodman, J. W. (1985), Statistical Optics, John Wiley, New York.Google Scholar
Goodman, J. W. (2007), Speckle Phenomena in Optics, Ben Roberts, New York.Google Scholar
Gorin, T., Seligman, T. H. & Weaver, R. L. (2006a), “Scattering fidelity in elastodynamics,” Phys. Rev. E 73, 015202.CrossRefGoogle ScholarPubMed
Gorin, T., Seligman, T. H. & Weaver, R. L. (2006b), “Scattering fidelity in elastodynamics,” Phys. Rev. E 73(1), 015202.CrossRefGoogle ScholarPubMed
Gouédard, P., Stehly, L., Brenguier, F., Campillo, M., Colin de Verdière, Y., Larose, E., Margerin, L., Roux, P., Sánchez-Sesma, F. J., Shapiro, N. M. & Weaver, R. L. (2008), “Cross-correlation of random fields: Mathematical approach and applications,” Geophys. Prospect. 56(3), 375–393.CrossRefGoogle Scholar
Grassberger, P., Badii, R. & Politi, A. (1988), “Scaling laws for invariant measures on hyperbolic and nonhyperbolic attractors,” J. Stat. Phys. 51, 135–178.CrossRefGoogle Scholar
Grêt, A., Snieder, R., Aster, R. C. & Kyle, P. R. (2005), “Monitoring rapid temporal change in a volcano with coda wave interferometry,” Geophys. Res. Lett. 32(6), L06304.CrossRefGoogle Scholar
Guhr, T., Müller-Groeling, A. & Weidenmüller, H. A. (1998), “Random-matrix theories in quantum physics: Common concepts,” Phys. Rep. 299, 189–425.CrossRefGoogle Scholar
Gutkin, E. (2003), “Billiard dynamics: A survey with the emphasis on open problems,” Regular Chaotic Dyn. 8(1), 1–13.CrossRefGoogle Scholar
Gutzwiller, M. C. (1970), “Energy spectrum according to classical mechanics,” J. Math. Phys. 11, 1791–1806.CrossRefGoogle Scholar
Gutzwiller, M. C. (1971), “Periodic orbits and classical quantization conditions,” J. Math. Phys. 12, 343–358.CrossRefGoogle Scholar
Gutzwiller, M. C. (1980), “The quantum mechanical Toda lattice,” Ann. Phys. 124, 347–381.CrossRefGoogle Scholar
Gutzwiller, M. C. (1990), Chaos in Classical and Quantum Mechanics, Springer, Berlin.CrossRefGoogle Scholar
Haake, F. (2001), Quantum Signatures of Chaos, 2nd edn, Springer, Berlin.CrossRefGoogle Scholar
Ham, C. J. (2008), Periodic orbit analysis of the Helmholtz equation in two-dimensional enclosures, PhD thesis, University of Southampton.
Hannay, J. H. & Berry, M. V. (1980), “Quantization of linear maps on a torus – Fresnel diffraction by a periodic grating,” Physica 1D, 267–290.Google Scholar
Hannay, J. H., Keating, J. P. & de Almeida, A. M. O. (1994), “Optical realization of the baker's transformation,” Nonlinearity 7(5), 1327–1342.CrossRefGoogle Scholar
Hansen, K. T. (1993a), “Symbolic dynamics: I. Finite dispersive billiards,” Nonlinearity 6(5), 753–769.CrossRefGoogle Scholar
Hansen, K. T. (1993b), “Symbolic dynamics: II. Bifurcations in billiards and smooth potentials,” Nonlinearity 6(5), 771–778.CrossRefGoogle Scholar
Hansen, K. T. (1993c), Symbolic Dynamics in Chaotic Systems, PhD thesis, Physics Department, University of Oslo.
Hansen, K. T. (1995), “Alternative method to find orbits in chaotic systems,” Phys. Rev. E 52(3), 2388–2391.CrossRefGoogle ScholarPubMed
Hansen, K. T. & Cvitanović, P. (1995), Symbolic dynamics and Markov partitions for the stadium billiard. ArXiv: chao-dyn/9502005.
Hegewisch, K. C., Cerruti, N. R. & Tomsovic, S. (2001), “Ocean acoustic wave propagation and ray method correspondence: Internal waves,” J. Acoust. Soc. Am. 117, 1582–.CrossRefGoogle Scholar
Heller, E. J. (1984), “Bound-state eigenfunctions of classically chaotic Hamiltonian systems: Scars of periodic orbits,” Phys. Rev. Lett. 53(16), 1515–1518.CrossRefGoogle Scholar
Heller, E. J. (1991), “Wave packet dynamics and quantum chaology,” in M.-J., Giannoni, A., Voros & J., Zinn-Justin eds, Chaos and Quantum Physics, Vol. 52 of Les Houches Lecture Series, North Holland, Amsterdam, pp. 547–663.Google Scholar
Heller, E. & Tomsovic, S. (1993), “Postmodern quantum mechanics,” Phys. Today 46(7), 38–46.CrossRefGoogle Scholar
Hennino, R., Trégourès, N., Shapiro, N. M., Margerin, L., Campillo, M., Van Tiggelen, B. A. & Weaver, R. L. (2001), “Observation of equipartition of seismic waves,” Phys. Rev. Lett. 86(15), 3447–3450.CrossRefGoogle ScholarPubMed
Heusler, S., Muller, S., Altland, A., Braun, P. & Haake, F. (2007), “Periodic-orbit theory of level correlations,” Phys. Rev. Lett. 98, 044103.CrossRefGoogle ScholarPubMed
Heusler, S., Müller, S., Braun, P. & Haake, F. (2006), “Semiclassical theory of chaotic conductors,” Phys. Rev. Lett. 96(6), 066804.CrossRefGoogle ScholarPubMed
Hirsekorn, S. (1988), “The scattering of ultrasonic waves by multiphase polycrystals,” J. Acoust. Soc. Am. 83, 1231–1242.CrossRefGoogle Scholar
Hodges, C. H. (1982), “Confinement of vibration by structural irregularity,” J. Sound Vib. 82(3), 411–424.CrossRefGoogle Scholar
Höhmann, R., Kuhl, U., Stöckmann, H.-J., Urbina, J. D. & Dennis, M. R. (2009), “Density and correlation functions of vortex and saddle points in open billiard systems,” Phys. Rev. E 79(1), 016203.CrossRefGoogle ScholarPubMed
Hortikar, & Srednicki, M. (1998), “Correlations in chaotic eigenfunctions at large separation,” Phys. Rev. Lett. 80, 1646–1649.CrossRefGoogle Scholar
Hu, H., Strybulevych, A., Page, J. H., Skipetrov, S. E. & van Tiggelen, B. A. (2008), “Localization of ultrasound in a three-dimensional elastic network,” Nature Phys. 4(12), 945–948.CrossRefGoogle Scholar
Ing, R. K., Quieffen, N., Catheline, S. & Fink, M. (2005), “In solid localization of finger impacts using acoustic time-reversal process,” App. Phys. Lett. 87(20), 204104.CrossRefGoogle Scholar
Insana, M. F. & Hall, T. J. (1990), “Parametric ultrasound imaging from backscatter coefficient measurements: Image formation and interpretation,” Ultrason. Imaging 12, 245–267.CrossRefGoogle ScholarPubMed
Ishimaru, A. (1977), “Theory and application of wave propagation and scattering in random media,” Proc. IEEE 65, 1030–1061.CrossRefGoogle Scholar
Ishimaru, A. (1978), Wave propagation and scattering in random media, Academic, New York.Google Scholar
Ishio, H. & Keating, J. P. (2004), “Semiclassical wavefunctions in chaotic scattering systems,” J. Phys. A 37(22), L217–L223.CrossRefGoogle Scholar
Ishio, H., Saichev, A. I., Sadreev, A. F. & Berggren, K.-F. (2001), “Wave function statistics for ballistic quantum transport through chaotic open billiards: Statistical crossover and coexistence of regular and chaotic waves,” Phys. Rev. E 64(5), 156208.CrossRefGoogle ScholarPubMed
Izrailev, F. M. (1990), “Simple models of quantum chaos – Spectrum and eigenfunctions,” Phys. Rep. 196, 299–392.CrossRefGoogle Scholar
Jackson, D. R. & Dowling, D. R. (1991), “Phase conjugation in underwater acoustics,” J. Acoust. Soc. Am. 89(1), 171–181.CrossRefGoogle Scholar
Jacquod, P. & Sukhorukov, E. V. (2004), “Breakdown of universality in quantum chaotic transport: The two-phase dynamical model,” Phys. Rev. Lett. 92(11), 116801.CrossRefGoogle Scholar
Jalabert, R. A., Baranger, H. U. & Stone, A. D. (1990), “Conductance fluctuations in the ballistic regime: A probe of quantum chaos?,” Phys. Rev. Lett. 65(19), 2442–2445.CrossRefGoogle ScholarPubMed
Jalabert, R. A., Pichard, J.-L. & Beenakker, C. W. J. (1994), “Universal quantum signatures of chaos in ballistic transport,” Europhys. Lett. 27(4), 255–260.CrossRefGoogle Scholar
Jarzynsky, C. (1997), “Berry's conjecture and information theory,” Phys. Rev. E 56, 2254–2256.CrossRefGoogle Scholar
Jaynes, E. T. (1957), “Information theory and statistical mechanics,” Phys. Rev. 106(4), 620–630.CrossRefGoogle Scholar
Jorba, A. & Simo, C. (1996), “On quasiperiodic perturbations of elliptic equilibrium points,” SIAM J. Math. Anal. 27, 1704–1737.CrossRefGoogle Scholar
Joyce, W. B. (1975), “Sabine's reverberation time and ergodic auditoriums,” J. Acoust. Soc. Am. 58(3), 643–655.CrossRefGoogle Scholar
Kalos, M. H. & Whitlock, P. A. (1986), Monte Carlo Methods, Volume 1: Basics, John Wiley, New York.CrossRefGoogle Scholar
Kang, T.-S. & Shin, J. S. (2006), “Surface-wave tomography from ambient seismic noise of accelerograph networks in southern Korea,” Geophys. Res. Lett. 33(17), L17303.CrossRefGoogle Scholar
Karal, F. C. & Keller, J. B. (1964), “Elastic, electromagnetic and other waves in random media,” J. Math. Phys. 5, 537–547.CrossRefGoogle Scholar
Keating, J., Novaes, M., Prado, S. & Sieber, M. (2006), “Semiclassical structure of chaotic resonance eigenfunctions,” Phys. Rev. Lett. 97(15), 150406.CrossRefGoogle ScholarPubMed
Keating, J. P. & Prado, S. D. (2001), “Orbit bifurcations and the scarring of wavefunctions,” Proc. R. Soc. A 457(2012), 1855–1872.CrossRefGoogle Scholar
Kitahara, M. (1985), Boundary Integral Equation Methods in Eigenvalue Problems of Elastodynamics and Thin Plates, Elsevier, Amsterdam.Google Scholar
Kozlov, V. V. & Treshchëv, D. V. (1980), Billiards: A Genetic Introduction to the Dynamics of Systems with Impacts, Vol. 89 of Translations of Mathematical Monographs, American Mathematical Society, Providence, RI.Google Scholar
Kubota, Y. & Dowell, E. H. (1992), “Asymptotic modal analysis for sound fields of a reverberant chamber,” J. Acoust. Soc. Am. 92(2), 1106–1112.CrossRefGoogle Scholar
Kuhl, U., Stöckmann, H. J. & Weaver, R. (2005), “Classical wave experiments on chaotic scattering,” J. Phys. A 38(49), 10433–10463.CrossRefGoogle Scholar
Kuperman, W. A., Hodgkiss, W. S., Song, H. C., Akal, T., Ferla, C. & Jackson, D. R. (1998), “Phase conjugation in the ocean: Experimental demonstration of an acoustic time-reversal mirror,” J. Acoust. Soc. Am. 103(1), 25–40.CrossRefGoogle Scholar
Landau, L. D. & Lifshitz, E. M. (1959), Theory of Elasticity, Pergamon, Oxford, UK.Google Scholar
Langley, R. S. (2007), “On the diffuse field reciprocity relationship and vibrational energy variance in a random subsystem at high frequencies,” J. Acoust. Soc. Am. 121(2), 913–921.CrossRefGoogle Scholar
Langley, R. S. & Bremner, P. (1999), “A hybrid method for the vibration analysis of complex structural–acoustic systems,” J. Acoust. Soc. Am. 105(3), 1657–1671.CrossRefGoogle Scholar
Langley, R. S. & Brown, A. W. M. (2004a), “The ensemble statistics of the band-averaged energy of a random system,” J. Sound Vib. 275, 847–857.CrossRefGoogle Scholar
Langley, R. S. & Brown, A. W. M. (2004b), “The ensemble statistics of the energy of a random system subjected to harmonic excitation,” J. Sound Vib. 275, 823–846.CrossRefGoogle Scholar
Langley, R. S. & Cotoni, V. (2004), “Response variance prediction in the statistical energy analysis of built-up systems,” J. Acoust. Soc. Am. 115(2), 706–718.CrossRefGoogle ScholarPubMed
Langley, R. S. & Cotoni, V. (2005), “The ensemble statistics of the vibration energy density of a random system subjected to single point harmonic excitation,” J. Acoust. Soc. Am. 118(5), 3064–3076.CrossRefGoogle Scholar
Langley, R. S. & Cotoni, V. (2007), “Response variance prediction for uncertain vibroacoustic systems using a hybrid deterministic-statistical method,” J. Acoust. Soc. Am. 122(6), 3445–3463.CrossRefGoogle Scholar
Larose, E., Derode, A., Campillo, M. & Fink, M. (2004), “Imaging from one-bit correlations of wideband diffuse wave fields,” J. Appl. Phys. 95(12), 8393–8399.CrossRefGoogle Scholar
Larose, E., Lobkis, O. I. & Weaver, R. L. (2006), “Coherent backscattering of ultrasound without a source,” Europhys. Lett. 76(3), 422–428.CrossRefGoogle Scholar
Larose, E., Margerin, L., Derode, A., van Tiggelen, B., Campillo, M., M. Shapiro, N., Paul, A., Stehly, L. & Tanter, M. (2006), “Correlation of random wavefields: An interdisciplinary review,” Geophysics 71(4), SI11–SI21.CrossRefGoogle Scholar
Larose, E., Margerin, L., van Tiggelen, B. A. & Campillo, M. (2004), “Weak localization of seismic waves,” Phys. Rev. Lett. 93(4), 048501.CrossRefGoogle ScholarPubMed
Laurent, D., Legrand, O. & Mortessagne, F. (2006), “Diffractive orbits in the length spectrum of a two-dimensional microwave cavity with a small scatterer,” Phys. Rev. E 74, 046219.CrossRefGoogle ScholarPubMed
Lax, M. (1951), “Multiple scattering of waves,” Rev. Mod. Phys. 23, 287–310.CrossRefGoogle Scholar
Lax, M. (1952), “Multiple scattering of waves: II. The effective field in dense systems,” Phys. Rev. 85, 621–629.CrossRefGoogle Scholar
Legrand, O. & Mortessagne, F. (1996), “On spectral correlations in chaotic reverberant rooms,” Acustica 82, S150–S150.Google Scholar
Legrand, O., Mortessagne, F. & Sornette, D. (1995), “Spectral rigidity in the large modal overlap regime – Beyond the Ericson–Schroeder hypothesis,” J. de Physique I 5(8), 1003–1010.Google Scholar
Legrand, O., Mortessagne, F. & Weaver, R. L. (1997), “Semiclassical analysis of spectral correlations in regular billiards with point scatterers,” Phys. Rev. E 55(6), 7741–7744.CrossRefGoogle Scholar
Legrand, O. & Sornette, D. (1990), “Test of Sabine's reverberation time in ergodic auditoriums within geometrical acoustics,” J. Acoust. Soc. Am. 88(2), 865–870.CrossRefGoogle Scholar
Legrand, O. & Sornette, D. (1991), “Quantum chaos and sabine's law of reverberation in ergodic rooms,” Lect. Notes Phys. 392, 267–274.CrossRefGoogle Scholar
Lerosey, G., de Rosny, J., Tourin, A. & Fink, M. (2007), “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122.CrossRefGoogle ScholarPubMed
Li, B. & Robnik, M. (1994), “Statistical properties of high-lying chaotic eigenstates,” J. Phys. A 27, 5509–5523.CrossRefGoogle Scholar
Liddle, A. R. & Lyth, D. H. (2000), Cosmological Inflation and Large-Scale Structure, Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Lighthill, J. (1978), Waves in Fluids, Cambridge University Press, Cambridge, UK.Google Scholar
Lin, F.-C., Ritzwoller, M. H., Townend, J., Bannister, S. & Savage, M. K. (2007), “Ambient noise Rayleigh wave tomography of New Zealand,” Geophys. J. Int. 170(2), 649–666.CrossRefGoogle Scholar
Lin, K. K. & Zworski, M. (2002), “Quantum resonances in chaotic scattering,” Chem. Phys. Lett. 355(1–2), 201–205.CrossRefGoogle Scholar
Lin, Y. K. (1967), Probabilistic Theory of Structural Dynamics, McGraw-Hill, New York.Google Scholar
Lobkis, O. I. & Weaver, R. L. (2000), “Complex modes in a reverberant dissipative body,” J. Acoust. Soc. Am. 108(4), 1480–1485.CrossRefGoogle Scholar
Lobkis, O. I. & Weaver, R. L. (2001), “On the emergence of the Green's function in the correlations of a diffuse field,” J. Acoust. Soc. Am. 110, 3011–3017.CrossRefGoogle Scholar
Lobkis, O. I. & Weaver, R. L. (2003), “Coda-wave interferometry in finite solids: Recovery of p-to-s conversion rates in an elastodynamic billiard,” Phys. Rev. Lett. 90(25), 254302.CrossRefGoogle Scholar
Lobkis, O. I., Weaver, R. L. & Rozhkov, I. (2000), “Power variances and decay curvature in a reverberant system,” J. Sound Vib. 237(2), 281–302.CrossRefGoogle Scholar
Lobkis, O., Rozhkov, I. & Weaver, R. (2003), “Non-exponential dissipation in a lossy elasto-dynamic billiard, comparison with Porter–Thomas and random matrix predictions,” Phys. Rev. Lett. 91, 194101.CrossRefGoogle Scholar
Longuet-Higgins, M. S. (1957a), “The statistical analysis of a random, moving surface,” Phil. Trans. R. Soc. 249, 321–387.CrossRefGoogle Scholar
Longuet-Higgins, M. S. (1957b), “Statistical properties of an isotropic random surface,” Phil. Trans. R. Soc. 250, 157–174.CrossRefGoogle Scholar
Lu, W., Rose, M., Pance, K. & Sridhar, S. (1999), “Quantum resonances and decay of a chaotic fractal repeller observed using microwaves,” Phys. Rev. Lett. 82(26), 5233–5236.CrossRefGoogle Scholar
Lu, W. T., Sridhar, S. & Zworski, M. (2003), “Fractal Weyl laws for chaotic open systems,” Phys. Rev. Lett. 91(15), 154101.CrossRefGoogle ScholarPubMed
Lyon, R. H. (1969), “Statistical analysis of power injection and response in structures and rooms,” J. Acoust. Soc. Am. 45(3), 545–565.CrossRefGoogle Scholar
Lyon, R. H. (1975), Statistical Energy Analysis of Dynamical Systems, MIT press, Boston.Google Scholar
Lyon, R. H. & DeJong, R. G. (1995), Theory and Application of Statistical Energy Analysis, Butterworth-Heinemann, Boston.Google Scholar
Mace, B. R., Worden, K. & Manson, G. (2005), “Special issue on 'uncertainty in structural dynamics,” J. Sound Vib. 288(3), 431–790.CrossRefGoogle Scholar
MacKeown, P. K. (1997), Stochastic Simulation in Physics, Springer, Singapore.Google Scholar
Mandel, L. & Wolf, E. (1995), Optical Coherence and Quantum Optics, Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Margerin, L., Campillo, M. & van Tiggelen, B. (2000), “Monte carlo simulation of multiple scattering of elastic waves,” J. Geophys. Res. 105(B4), 7873–7892.CrossRefGoogle Scholar
Margerin, L., Campillo, M. & van Tiggelen, B. A. (2001), “Coherent backscattering of acoustic waves in the near field,” Geophys. J. Int. 145(3), 593–603.CrossRefGoogle Scholar
Margerin, L., Campillo, M., van Tiggelen, B. & Hennino, R. (2009), “Energy partition of seismic coda waves in layered media: Theory and application to pinyon flats observatory,” Geophys. J. Int. 177(2), 571–585.CrossRefGoogle Scholar
Margerin, L., van Tiggelen, B. & Campillo, M. (2001), “Effect of absorption on energy partition of elastic waves in the seismic coda,” Bull. Seism. Soc. Am. 91(3), 624–627.CrossRefGoogle Scholar
McCoy, J. J. (1981), Macroscopic Response of Continua with Random Microsctructure, Vol. 6, Pergamon, New York.Google Scholar
McDonald, S. W. & Kaufman, A. N. (1979), “Spectrum and eigenfunctions for a Hamiltonian with stochastic trajectories,” Phys. Rev. Lett. 42(18–30), 1189–1191.CrossRefGoogle Scholar
Mehta, M. L. (1960), “On the statistical properties of the level-spacings in nuclear spectra,” Nucl. Phys. 18, 395–419.CrossRefGoogle Scholar
Mehta, M. L. (1991), Random Matrices, 2nd edn, Academic, New York.Google Scholar
Mehta, M. L. & Gaudin, M. (1960), “On the density of eigenvalues of a random matrix,” Nucl. Phys. 18, 420–427.CrossRefGoogle Scholar
Mignolet, M. P. & Soize, C. (2008a), “Nonparametric stochastic modeling of linear systems with prescribed variance of several natural frequencies,” Probabilistic Eng. Mech. 32(2–3), 267–278.CrossRefGoogle Scholar
Mignolet, M. P. & Soize, C. (2008b), “Nonparametric stochastic modeling of structural dynamic systems with uncertain boundary conditions,” in AIAA Conference, Schaumburg, Chicago.Google Scholar
Mignolet, M. P. & Soize, C. (2008c), “Stochastic reduced order models for uncertain nonlinear dynamical systems,” Comput. Meth. Appl. Mech. Eng. 197(45–48), 3951–3963.CrossRefGoogle Scholar
Mirlin, A. D. (2000), “Statistics of energy levels and eigenfunctions in disordered systems,” Phys. Rep. 326, 259–382.CrossRefGoogle Scholar
Mishchenko, M. I., Travis, L. D. & Lacis, A. A. (2006), Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering, Cambridge University Press, Cambridge, New York.Google Scholar
Moens, D. & Vandepitte, D. (2005), “A fuzzy finite element procedure for the calculation of uncertain frequency-response functions of damped structures: Part 1 – Procedure,” J. Sound Vib. 288(3), 431–462.CrossRefGoogle Scholar
Morse, P. & Bolt, R. H. (1944), “Sound waves in rooms,” Rev. Mod. Phys. 16, 69–150.CrossRefGoogle Scholar
Morse, P. M. & Feshbach, H. (1953), Methods of Theoretical Physics, McGraw-Hill, New York.Google Scholar
Morse, P. M. & Ingard, K. U. (1968), Theoretical Acoustics, Princeton University Press, Princeton, NJ.Google Scholar
Mortessagne, F. & Legrand, O. (1996), “Semi-classical acoustic time response in 2-d rooms,” Acustica 82, S152–S152.Google Scholar
Mortessagne, F., Legrand, O. & Sornette, D. (1993a), “Role of the absorption distribution and generalization of exponential reverberation law in chaotic rooms,” J. Acoust. Soc. Am. 94(1), 154–161.CrossRefGoogle Scholar
Mortessagne, F., Legrand, O. & Sornette, D. (1993b), “Transient chaos in room acoustics,” Chaos 3(4), 529–541.CrossRefGoogle ScholarPubMed
Moschetti, M. P., Ritzwoller, M. H. & Shapiro, N. M. (2007), “Surface wave tomography of the western United States from ambient seismic noise: Rayleigh wave group velocity maps,” Geochem. Geophys. Geosyst. 8, Q08010.CrossRefGoogle Scholar
Munk, W. H. (1981), Internal waves and small scale processes, in B. A., Warren & C., Wunsch, eds, “Evolution of Physical Oceanography,” MIT Press, Cambridge, MA, pp. 264–291.Google Scholar
Munk, W. H., Worcester, P. & Wuncsh, C. (1995), Ocean Acoustic Tomography, Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Nakamura, K. & Harayama, T. (2004), Quantum Chaos and Quantum Dots, Oxford University Press, Oxford, UK.Google Scholar
Neicu, T. & Kudrolli, A. (2002), “Periodic orbit analysis of an elastodynamic resonator using shape deformation,” Europhys. Lett. 57(3), 341–347.CrossRefGoogle Scholar
Neicu, T., Schaadt, K. & Kudrolli, A. (2001), “Spectral properties of a mixed system using an acoustical resonator,” Phys. Rev. E 63, 026206.CrossRefGoogle ScholarPubMed
Nishida, K., Kawakatsu, H. & Obara, K. (2008), “Three-dimensional crustal S-wave velocity structure in japan using microseismic data recorded by Hi-net tiltmeters,” J. Geophys. Res., 113(B10), B10302.CrossRefGoogle Scholar
Nockel, J. U. & Stone, A. D. (1997), “Ray and wave chaos in asymmetric resonant optical cavities,” Nature 385(6611), 45–47.CrossRefGoogle Scholar
Nonnenmacher, S. & Rubin, M. (2007), “Resonant eigenstates for a quantized chaotic system,” Nonlinearity 20(6), 1387–1420.CrossRefGoogle Scholar
Nonnenmacher, S. & Zworski, M. (2005), “Fractal Weyl laws in discrete models of chaotic scattering,” J. Phys. A 38(49), 10683–10702.CrossRefGoogle Scholar
Nonnenmacher, S. & Zworski, M. (2007a), “Distribution of resonances for open quantum maps,” Commun. Math. Phys. 269(2), 311–365.CrossRefGoogle Scholar
Nonnenmacher, S. & Zworski, M. (2007b), “Quantum decay rates in chaotic scattering.” ArXiv: 0706.3242v1.
O'Connor, P., Gehlen, J. & Heller, E. J. (1987), “Properties of random superpositions of plane waves,” Phys. Rev. Lett. 58, 1296–1299.CrossRefGoogle ScholarPubMed
Ohayon, R. & Soize, C. (1998), Structural Acoustics and Vibration, Academic, San Diego, CA.Google Scholar
O'Holleran, K., Dennis, M. R. & Padgett, M. J. (2009), “Topology of light's darkness,” Phys. Rev. Lett. 102(14), 143902.CrossRefGoogle ScholarPubMed
Oleze, M. L. & Zachary, J. F. (2006), “Examination of cancer in mouse models using high-frequency quantitative ultrasound,” Ultrasound in Med and Biol. 32, 1639–1648.CrossRefGoogle Scholar
Ott, E. (1993), Chaos in Dynamical Systems, Cambridge University Press, Cambridge, UK.Google Scholar
Ozorio de Almeida, A. M. & Vallejos, R. O. (2000), “Poincaré's recurrence theorem and the unitarity of the s-matrix,” Chaos Solitons Fractals 11(7), 1015–1020.CrossRefGoogle Scholar
Ozorio de Almeida, A. M. & Vallejos, R. O. (2001), “Poincaré section decomposition for quantum scatterers,” Physica E 9(3), 488–493.CrossRefGoogle Scholar
Palmer, D. R., Brown, M. G., Tappert, F. D. & Bezdek, H. F. (1988), “Classical chaos in nonseparable wave propagation problems,” Geophys. Res. Lett. 15, 569–572.CrossRefGoogle Scholar
Palmer, D. R., Georges, T. M. & Jones, R. M. (1991), “Classical chaos and the sensitivity of the acoustic field to small-scale ocean structure,” Comput. Phys. Commun. 65, 219–223.CrossRefGoogle Scholar
Pandolfi, D., Bean, C. J. & Saccorotti, G. (2006), “Coda wave interferometric detection of seismic velocity changes associated with the 1999 m = 3.6 event at Mt. Vesuvius,” Geophys. Res. Lett. 33(6), L06306.CrossRefGoogle Scholar
Papoulis, A. (1991), Probability, Random Variables, and Stochastic Processes, 3rd edn, McGraw-Hill, New York.Google Scholar
Pato, M. P., Schaadt, K., Tufaile, A. P. B., Ellegaard, C., Nogueira, T. N. & Sartorelli, J. C. (2005), “Universality of rescaled curvature distributions,” Phys. Rev. E 71(3), 037201.CrossRefGoogle ScholarPubMed
Paul, A., Campillo, M., Margerin, L., Larose, E. & Derode, A. (2005), “Empirical synthesis of time-asymmetrical Green functions from the correlation of coda waves,” J. Geophys. Res. 110(B8), B09312.CrossRefGoogle Scholar
Pavloff, N. & Schmit, C. (1995), “Diffractive orbits in quantum billiards,” Phys. Rev. Lett. 75(1), 61–64. Erratum 75(20), 3779.CrossRefGoogle ScholarPubMed
Photiadis, D. M. (1997), “Acoustics of a fluid-loaded plate with attached oscillators. Part I. Feynman rules,” J. Acoust. Soc. Am. 102, 348–357.CrossRefGoogle Scholar
Pierce, A. D. (1989), Acoustics: An Introduction to Its Physical Principles and Applications, Acoustical Society of America, Woodbury, NY.Google Scholar
Pierre, C. (1988), “Rayleigh quotient and perturbation-theory for the eigenvalue problem – Comment,” J. App. Mech. 55(4), 986–988.CrossRefGoogle Scholar
Pierre, C. (1990), “Weak and strong vibration localization in disordered structures: A statistical investigation,” J. Sound Vib. 139(1), 111–132.CrossRefGoogle Scholar
Pnini, R. & Shapiro, B. (1996), “Intensity fluctuations in closed and open systems,” Phys. Rev. E 54(2), R1032–R1035.CrossRefGoogle ScholarPubMed
Porter, C. E., ed. (1965), Statistical Theories of Spectra: Fluctuations, Academic, New York.Google Scholar
Poupinet, G., Ellsworth, V. L. & Frechet, J. (1984), “Monitoring velocity variations in the crust using earthquake doublets: An application to the Calaveras fault, California,” J. Geophys. Res. 89 (NB7), 5719–5732.CrossRefGoogle Scholar
Prigodin, V. N., Altshuler, B. L., Efetov, K. B., & Iida, S. (1994), “Mesoscopic dynamical echo in quantum dots,” Phys. Rev. Lett. 72, 546–549.CrossRefGoogle ScholarPubMed
Primack, H. & Smilansky, U. (1998), “On the accuracy of the semiclassical trace formula,” J. Phys. A 31, 6253–6277.CrossRefGoogle Scholar
Rahav, S. & Brouwer, P. W. (2006), “Ehrenfest time and the coherent backscattering off ballistic cavities,” Phys. Rev. Lett. 96(19), 196804.CrossRefGoogle ScholarPubMed
Rahav, S. & Fishman, S. (2002), “Spectral statistics of rectangular billiards with localized perturbations,” Nonlinearity 15, 1541–1594.CrossRefGoogle Scholar
Rautian, T. G. & Khalturin, V. I. (1978), “The use of the coda for determination of the earthquake source spectrum,” Bull. Seism. Soc. Am. 68, 923–948.Google Scholar
Rayleigh, L. (1892), “On theinfluence of obstacles arranged in rectangular order upon the properties of a medium,” Philos. Mag. 34, 481–502.CrossRefGoogle Scholar
Rayleigh, L. (1945), Theory of Sound, 2nd edn, Dover, New York.Google Scholar
Reichl, L. E. (2004), The Transition to Chaos: Conservative Classical Systems and Quantum Manifestations, 2nd edn, Springer, Berlin.CrossRefGoogle Scholar
Richens, P. J. & Berry, M. V. (1981), “Pseudo-integrable systems in classical and quantum mechanics,” Physica 1D, 495–512.Google Scholar
Richter, A. (1998), “Playing billiards with microwaves – Quantum manifestations of classical chaos, in Emerging Applications of Number Theory, Vol. 109 of The IMA Volumes in Mathematics and Its Applications, Springer, New York, pp. 479–523.CrossRefGoogle Scholar
Richter, K. (2000), Semiclassical Theory of Mesoscopic Quantum Physics, Springer, Berlin.Google Scholar
Richter, K. & Sieber, M. (2002), “Semiclassical theory of chaotic quantum transport,” Phys. Rev. Lett. 89(20), 206801.CrossRefGoogle ScholarPubMed
Richter, K., Ullmo, D. & Jalabert, R. A. (1996), “Orbital magnetism in the ballistic regime: Geometrical effects,” Phys. Rep. 276, 1–83.CrossRefGoogle Scholar
Rosenzweig, N. & Porter, C. E. (1962), “‘Repulsion of energy levels’ in complex atomic spectra,” Phys. Rev. 120(5), 1698–1714.CrossRefGoogle Scholar
Rouseff, D., Jackson, D. R., Fox, W. L. J., Ritcey, J. A. & Dowling, D. R. (2001), “Underwater acoustic communication by passive-phase conjugation: Theory and experimental results,” IEEE J. Ocean. Eng. 26(4), 821–831.CrossRefGoogle Scholar
Roux, P. & Fink, M. (2000), “Time reversal in a waveguide: Study of the temporal and spatial focusing,” J. Acoust. Soc. Am. 107(5), 2418–2429.CrossRefGoogle Scholar
Roux, P., Roman, B. & Fink, M. (1997), “Time-reversal in an ultrasonic waveguide,” App. Phys. Lett. 70(14), 1811–1813.CrossRefGoogle Scholar
Roux, P., Sabra, K. G., Kuperman, W. A. & Roux, A. (2005), “Ambient noise cross correlation in free space: Theoretical approach,” J. Acoust. Soc. Am. 117(1), 79–84.CrossRefGoogle ScholarPubMed
Rypina, I. I. & Brown, M. G. (2007), “On the width of a ray,” J. Acoust. Soc. Am. 122, 1440–1448.CrossRefGoogle ScholarPubMed
Rypina, I. I., Brown, M. G., Beron-Vera, F. J., Koak, H., Olascoaga, M. J. & Udovydchenkov, I. A. (2007), “Robust transport barriers resulting from strong kolmogorov-arnold-moser stability,” Phys. Rev. Lett. 98, 104102.CrossRefGoogle ScholarPubMed
Ryzhik, L. V., Papanicolaou, G. C. & Keller, J. B. (1996), “Transport equations for elastic and other waves in random media,” Wave Motion 24, 327–370.CrossRefGoogle Scholar
Sabra, K. G., Gerstoft, P., Roux, P., Kuperman, W. A. & Fehler, M. C. (2005), “Surface wave tomography from microseisms in Southern California,” Geophys. Res. Lett. 32(14), L14311.CrossRefGoogle Scholar
Sabra, K. G., Roux, P. & Kuperman, W. A. (2005), “Emergence rate of the time-domain Green's function from the ambient noise cross-correlation function,” J. Acoust. Soc. Am. 118(6), 3524–3531.CrossRefGoogle Scholar
Saichev, A. I., Ishio, H., Sadreev, A. F. & Berggren, K.-F. (2002), “Statistics of interior current distributions in two-dimensional open chaotic billiards,” J. Phys. A 35, L87–L93.CrossRefGoogle Scholar
Sampaio, R. & Soize, C. (2007), “On measures of non-linearity effects for uncertain dynamical systems – Application to a vibro-impact system,” J. Sound Vib. 303(3–5), 659–674.CrossRefGoogle Scholar
Schaadt, K. (1997), The quantum chaology of acoustic resonators, MSc thesis, Niels Bohr Institute, University of Copenhagen.
Schaadt, K., Guhr, T., Ellegaard, C. & Oxborrow, M. (2003), “Experiments on elastomechanical wave functions in chaotic plates and their statistical features,” Phys. Rev. E 68(3), 036205.CrossRefGoogle ScholarPubMed
Schaadt, K. & Kudrolli, A. (1999), “Experimental investigation of universal parametric correlators using a vibrating plate,” Phys. Rev. E 60(4), R3479–R3482.CrossRefGoogle ScholarPubMed
Schaadt, K., Simon, G. & Ellegaard, C. (2001), “Ultrasound resonances in a rectangular plate described by random matrices,” Phys. Scr. T90, 231–237.CrossRefGoogle Scholar
Schnirelman, A. I. (1974), “Ergodic properties of eigenfunctions,” Usp. Mat. Nauk. 29(6), 181–182.Google Scholar
Schomerus, H. & Tworzydlo, J. (2004), “Quantum-to-classical crossover of quasibound states in open quantum systems,” Phys. Rev. Lett. 93(15), 154102.CrossRefGoogle ScholarPubMed
Schroeder, M. (1954a), “Die statisischen Parameter der Frequenzkurvven von grosser Raumen,” Acustica 4, 594–600.Google Scholar
Schroeder, M. (1954b), “Eigenfrequenzstatistik und Anregungsstatistik in Raumen,” Acustica 4, 456–468.Google Scholar
Schroeder, M. R. (1959), “Measurement of sound diffusion in reverberation chambers,” J. Acoust. Soc. Am. 31(11), 1407–1414.CrossRefGoogle Scholar
Schroeder, M. R. (1962), “Frequency-correlation functions of frequency responses in rooms,” J. Acoust. Soc. Am. 34(12), 1819–1823.CrossRefGoogle Scholar
Schroeder, M. R. (1965), “Some new results in reverberation theory and measurement methods,” in 5ème Congres International d'Acoustique (Liège, 7–14 Sept.), p. G31.
Schroeder, M. R. (1969a), “Effect of frequency and space averaging on the transmission responses of multimode media,” J. Acoust. Soc. Am. 46(2A), 277–283.CrossRefGoogle Scholar
Schroeder, M. R. (1969b), “Spatial averaging in a diffuse sound field and the equivalent number of independent measurements,” J. Acoust. Soc. Am. 46(3A), 534.CrossRefGoogle Scholar
Schroeder, M. R. (1987), “Statistical parameters of the frequency response curves of large rooms,” J. Audio Eng. Soc. 35(5), 299–306.Google Scholar
Schroeder, M. R. & Kuttruff, K. H. (1962), “On frequency response curves in rooms. comparison of experimental, theoretical and Monte Carlo results for the average frequency spacing between maxima,” J. Acoust. Soc. Am. 34(1), 76–80.CrossRefGoogle Scholar
Schueller, G. I. (2005), “Special issue on ‘computational methods in stochastic mechanics and reliability analysis,” Comput. Meth. Appl. Mech. Eng. 194(12–16), 1251–1795.Google Scholar
Schuëller, G. I. (2006), “Developments in stochastic structural mechanics,” Arch. Appl. Mech. 75(10–12), 755–773.CrossRefGoogle Scholar
Schuster, A. (1905), “Radiation through a foggy atmosphere,” Atrophys. J. 21, 1–22.CrossRefGoogle Scholar
Šeba, P. (1990), “Wave chaos in singular quantum billiard,” Phys. Rev. Lett. 64(16), 1855–1858.CrossRefGoogle ScholarPubMed
Self, R. H. (2005), “Asymptotic expansion of integrals,” in M. C. M., Wright, ed., Lecture Notes on the Mathematics of Acoustics, Imperial College Press, London, chapter 4, pp. 91–105.Google Scholar
Sens-Schönfelder, C. & Wegler, U. (2006), “Passive image interferometry and seasonal variations of seismic velocities at merapi volcano, indonesia,” Geophys. Res. Lett. 33(21), L21302.CrossRefGoogle Scholar
Serfling, R. J. (1980), Approximation Theorems of Mathematical Statistics, John Wiley, New York.CrossRefGoogle Scholar
Sevryuk, M. B. (2007), “Invariant tori in quasiperiodic nonautonomous dynamical systems via Herman's method,” Dis. Cont. Dyn. Sys. 18, 569–595.CrossRefGoogle Scholar
Shannon, C. E. (1948), “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379–423, 623–659.CrossRefGoogle Scholar
Shapiro, N. M. & Campillo, M. (2004), “Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise,” Geophys. Res. Lett. 31(7), L07614.CrossRefGoogle Scholar
Shapiro, N. M., Campillo, M., Stehly, L. & Ritzwoller, M. H. (2005), “High-resolution surface-wave tomography from ambient seismic noise,” Science 307(5715), 1615–1618.CrossRefGoogle ScholarPubMed
Shnirelman, A. I. (1974), “Ergodic properties of eigenfunctions,” Usp. Mat. Nauk. 29, 181–182.Google Scholar
Shorter, P. J. & Langley, R. S. (2005a), “On the reciprocity relationship between direct field radiation and diffuse reverberant loading,” J. Acoust. Soc. Am. 117(1), 85–95.CrossRefGoogle ScholarPubMed
Shorter, P. J. & Langley, R. S. (2005b), “Vibro-acoustic analysis of complex systems,” J. Sound Vib. 288(3), 669–699.CrossRefGoogle Scholar
Sieber, M., Primack, H., Smilansky, U., Ussishkin, I. & Schanz, H. (1995), “Semiclassical quantization of billilards with mixed boundary conditions,” J. Phys. A 28, 5041–5078.CrossRefGoogle Scholar
Sjöstrand, J. & Zworski, M. (2007), “Fractal upper bounds on the density of semiclassical resonances,” Duke Math. J. 137(3), 381–459.CrossRefGoogle Scholar
Smilansky, U. (1991), “The classical and quantum theory of chaotic scattering,” in M.-J., Giannoni, A., Voros & J., Zinn-Justin, eds, Chaos and Quantum Physics, Vol. 52 of Les Houches Lecture Series, North Holland, Amsterdam, pp. 371–441.Google Scholar
Smilansky, U. (1995), “Semiclassical quantization of chaotic billiards – A scattering approach,” in G. M. E., Akkermans & J. L., Pichard, eds, Mesoscopic Quantum Physics, Les Houches Lecture Series, Elsevier, Amsterdam, pp. 373–434.Google Scholar
Smilansky, U. & Ussishkin, I. (1996), “The smooth spectral counting function and the total phase shift for quantum billiards,” J. Phys. A 29(10), 2587–2597.CrossRefGoogle Scholar
Smith, K. B., Brown, M. G. & Tappert, F. D. (1992a), “Acoustic ray chaos induced by mesoscale ocean structure,” J. Acoust. Soc. Am. 91, 1950–1959.CrossRefGoogle Scholar
Smith, K. B., Brown, M. G. & Tappert, F. D. (1992b), “Ray chaos in underwater acoustics,” J. Acoust. Soc. Am. 91, 1939–1949.CrossRefGoogle Scholar
Smith, P. W. Jr., (1962), “Response and radiation of structural modes excited by sound,” J. Acoust. Soc. Am. 34(5), 640–647.CrossRefGoogle Scholar
Snieder, R. (2002), “Coda wave interferometry and the equilibration of energy in elastic media,” Phys. Rev. E 66(4), 046615.CrossRefGoogle ScholarPubMed
Snieder, R. (2004), “Extracting the Green's function from the correlation of coda waves: A derivation based on stationary phase,” Phys. Rev. E 69(4), 046610.CrossRefGoogle ScholarPubMed
Snieder, R. & Page, J. (2007), “Multiple scattering in evolving media,” Phys. Today 60(5), 49–55.CrossRefGoogle Scholar
Soize, C. (1993), “A model and numerical method in the medium frequency range for vibroacoustic predictions using the theory of structural fuzzy,” J. Acoust. Soc. Am. 94(2), 849–865.CrossRefGoogle Scholar
Soize, C. (2000), “A nonparametric model of random uncertainties for reduced matrix models in structural dynamics,” Probab. Eng. Mech. 15(3), 277–294.CrossRefGoogle Scholar
Soize, C. (2001), “Maximum entropy approach for modeling random uncertainties in transient elastodynamics,” J. Acoust. Soc. Am. 109(5), 1979–1996.CrossRefGoogle ScholarPubMed
Soize, C. (2003a), “Random matrix theory and non-parametric model of random uncertainties in vibration analysis,” J. Sound Vib. 263, 893–916.CrossRefGoogle Scholar
Soize, C. (2003b), “Uncertain dynamical systems in the medium-frequency range,” J. Eng. Mech. 129(6), 1017–1027.CrossRefGoogle Scholar
Soize, C. (2005a), “A comprehensive overview of a non-parametric probablistic approach of model uncertainties for predictive models in structural dynamics,” J. Sound Vib. 288(3), 623–652.CrossRefGoogle Scholar
Soize, C. (2005b), “Probabilistic models for computational stochastic mechanics and applications,” in G., Augusti, G. I., Schueller & M., Ciampoli, eds, Structural Safety and Reliability ICOSSAR '05, Millpress, Rotterdam, pp. 23–42. ISBN 90 5966 040 4.Google Scholar
Soize, C. (2005c), “Random matrix theory for modeling random uncertainties in computational mechanics,” Comput. Meth. Appl. Mech. Eng. 194(12–16), 1333–1366.CrossRefGoogle Scholar
Soize, C., Capiez-Lernout, E., Durand, J.-F., Fernandez, C. & Gagliardini, L. (2008), “Probabilistic model identification of uncertainties in computational models for dynamical systems and experimental validation,” Comput. Meth. Appl. Mech. Eng. 198(1), 150–163.CrossRefGoogle Scholar
Soize, C. & Chebli, H. (2003), “Random uncertainties model in dynamic substructuring using a nonparametric probabilistic model,” J. Eng. Mech. 129(4), 449–457.CrossRefGoogle Scholar
Soize, C., Chen, C., Durand, J.-F., Duhamel, D. & Gagliardini, L. (2007), “Computational elastoacoustics of uncertain complex systems and experimental validation,” in M., Papadrakakis, D. C., Charmpis, N. D., Lagaros & Y., Tsompanakis, eds, Computational Methods in Structural Dynamics and Earthquake Engineering COMPDYN 2007, National Technical University of Athens, Athens.Google Scholar
Solomon, H. (1978), Geometric Probability, SIAM.CrossRefGoogle Scholar
Sondergaard, N. & Tanner, G. (2002), “Wave chaos in the elastic disk,” Phys. Rev. E 66, 066211.CrossRefGoogle ScholarPubMed
Soven, P. (1967), “Coherent-potential model of substitutional disordered alloys,” Phys. Rev. 156(3), 809–813.CrossRefGoogle Scholar
Spall, J. C. (2003), Introduction to Stochastic Search and Optimization, John Wiley, Hoboken, NJ.CrossRefGoogle Scholar
Srednicki, M. & Stiernelof, F. (1996), “Gaussian fluctuations in chaotic eigenstates,” J. Phys. A 29(18), 5817–5826.CrossRefGoogle Scholar
Stanke, F. E. & Kino, G. S. (1984), “A unified theory for elastic wave propagation in polycrystalline materials,” J. Acoust. Soc. Am. 75, 665–681.CrossRefGoogle Scholar
Stehly, L., Campillo, M., Froment, B. & Weaver, R. L. (2008), “Reconstructing Green's function by correlation of the coda of the correlation (c3) of ambient seismic noise,” J. Geophys. Res. 113, B11306.CrossRefGoogle Scholar
Stehly, L., Campillo, M. & Shapiro, N. M. (2006), “A study of the seismic noise from its longrange correlation properties,” J. Geophys. Res. 111, B10306.CrossRefGoogle Scholar
Stehly, L., Campillo, M. & Shapiro, N. M. (2007), “Traveltime measurements from noise correlation: Stability and detection of instrumental time-shifts,” Geophys. J. Int. 171(1), 223–230.CrossRefGoogle Scholar
Stehly, L., Fry, M., Campillo, M., Shapiro, N. M., Guilbert, J., Boschi, L. & Giardini, D. (2009), “Tomography of the Alpine region from observations of seismic ambient noise,” Geophys. J. Int. 178(1), 338–350.CrossRefGoogle Scholar
Stöckmann, H.-J. (1999), Quantum Chaos, Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Stöckmann, H.-J. & Stein, J. (1990), “‘Quantum’ chaos in billiards studied by microwave absorption,” Phys. Rev. Lett. 64, 2215–2218.CrossRefGoogle ScholarPubMed
Stratonovich, R. L. (1963), Topics in the Theory of Random Noise, Gordon & Breach, New York.Google Scholar
Tabachnikov, S. (2005), Geometry and Billiards, Vol. 30 of Student Mathematical Library, American Mathematical Society.Google Scholar
Tabor, M. (1989), Chaos and Integrability in Nonlinear Dynamics: An Introduction, Wiley, New York, pp. 20–31.Google Scholar
Tanner, G. & Søndergaard, N. (2007), “Short wavelength approximation of a boundary integral operator for homogeneous and isotropic elastic bodies,” Phys. Rev. E 75, 036607.CrossRefGoogle ScholarPubMed
Tanner, G. & Søndergaard, N. (2007), “Wave chaos in acoustics and elasticity,” J. Phys. A 40(50), R443–R509.CrossRefGoogle Scholar
Tanter, M., Aubry, J.-F., Gerber, J., Thomas, J.-L. & Fink, M. (2001), “Optimal focusing by spatio-temperal inverse filter. I Basic principles,” J. Acoust. Soc. Am. 110(1), 37–47.CrossRefGoogle Scholar
Tanter, M., Thomas, J.-L. & Fink, M. (2000), “Time reversal and the inverse filter,” J. Acoust. Soc. Am. 108(1), 223–234.CrossRefGoogle ScholarPubMed
Tappert, F. D. (1977), “The parabolic approximation method,” in J. B., Keller & J. S., Papadakis, eds, Lecture Notes in Physics, Vol. 70, of Wave Propagation and Underwater Acoustics, Springer-Verlag, New York, pp. 224–287.Google Scholar
Tolstikhin, O. I., Ostrovsky, V. N. & Nakamura, H. (1997), “Siegert pseudo-states as a universal tool: Resonances, s matrix, Green function,” Phys. Rev. Lett. 79(11), 2026–2029.CrossRefGoogle Scholar
Tolstikhin, O. I., Ostrovsky, V. N. & Nakamura, H. (1998), “Siegert pseudostate formulation of scattering theory: One-channel case,” Phys. Rev. A 58(3), 2077–2096.CrossRefGoogle Scholar
Tomsovic, S., Grinberg, M. & Ullmo, D. (1995), “Semiclassical trace formulas of near-integrable systems – Resonances,” Phys. Rev. Lett. 75(24), 4346–4349.CrossRefGoogle ScholarPubMed
Turner, J. A. & Weaver, R. L. (1994), “Radiative transfer and multiple scattering of diffuse ultrasound in polycrystalline media,” J. Acoust. Soc. Am. 96(6), 3675–3683.CrossRefGoogle Scholar
Twersky, V. (1977), “Coherent scalar field in pair-correlated random distributions of aligned scatterers,” J. Math. Phys. 18, 2468–2486.CrossRefGoogle Scholar
Udovydchenkov, I. A. & Brown, M. G. (2008), “Modal group time spreads in weakly range-dependent sound channels,” J. Acoust. Soc. Am. 123, 41–50.CrossRefGoogle Scholar
Ullmo, D., Grinberg, M. & Tomsovic, S. (1996), “Near-integrable systems: Resonances and semiclassical trace formulas,” Phys. Rev. E 54(1), 136–152.CrossRefGoogle ScholarPubMed
Urbina, J. D. & Richter, K. (2004), “Semiclassical construction of random wave functions for confined systems,” Phys. Rev. E 70(1), 015201.CrossRefGoogle ScholarPubMed
Vallejos, R. O. & Ozorio de Almeida, A. M. (1999), “Decomposition of resonant scatterers by surfaces of section,” Ann. Phys. 278(1), 86–108.CrossRefGoogle Scholar
van Manen, D.-J., Robertasson, J. O. A. & Curtis, A. (2005), “Modeling of wave propagation in inhomogeneous media,” Phys. Rev. Lett. 94, 164301.CrossRefGoogle ScholarPubMed
van Tiggelen, B. (2005), “Analogies between quantum and classical waves: Deceiving, surprising and complementary,” Presentation given at the Cuernavaca Gathering on Chaotic and Random Scattering of Quantum and Acoustic Waves. http://lpm2c.grenoble.cnrs.fr/Themes/tiggelen/Cuernavaca2005.pdf
van Tiggelen, B. A., Margerin, L. & Campillo, M. (2001), “Coherent backscattering of elastic waves: Specific role of source, polarization, and near field,” J. Acoust. Soc. Am. 110(3), 1291–1298.CrossRefGoogle ScholarPubMed
Varadan, V. K., Varadan, V. V. & Pao, Y. H. (1978), “Multiple scattering of elastic waves by cylinders of arbitrary cross section. I. SH waves,” J. Acoust. Soc. Am. 63(5), 1310–1319.CrossRefGoogle Scholar
Vasil'ev, D. G. (1987), “Asymptotics of the spectrum of a boundary value problem,” Trans. Moscow Math. Soc. 49, 173–245.Google Scholar
Verbaarschot, J. J. M., Weidenmuller, H. A. & Zirnbauer, M. R. (1985), “Grassman integration in stochastic quantum physics – The case of compound nucleus scattering,” Phys. Rep. 129(6), 367–438.CrossRefGoogle Scholar
Vergini, E. G. (2000), “Semiclassical theory of short periodic orbits in quantum chaos,” J. Phys. A 33(25), 4709–4716.CrossRefGoogle Scholar
Vergini, E. G. (2004), “Semiclassical limit of chaotic eigenfunctions,” J. Phys. A 37, 6507–6519.CrossRefGoogle Scholar
Vergini, E. G. & Carlo, G. G. (2000), “Semiclassical quantization with short periodic orbits,” J. Phys. A 33(25), 4717–4724.CrossRefGoogle Scholar
Vergini, E. G. & Carlo, G. G. (2001), “Semiclassical construction of resonances with hyperbolic structure: The scar function,” J. Phys. A 34, 4525–4552.CrossRefGoogle Scholar
Vergini, E. G. & Schneider, D. (2005), “Asymptotic behaviour of matrix elements between scar functions,” J. Phys. A 38, 587–616.CrossRefGoogle Scholar
Vergini, E. G. & Wisniacki, D. A. (1998), “Localized structures embedded in the eigenfunctions of chaotic Hamiltonian systems,” Phys. Rev. E 58(5), R5225–R5228.CrossRefGoogle Scholar
Vergini, E. & Saraceno, M. (1995), “Calculation by scaling of highly excited states of billiards,” Phys. Rev. E 52(3), 2204–2207.CrossRefGoogle ScholarPubMed
Vesperinas, M. N. & Wolf, E. (1985), “Phase conjugation and symmetries with wave fields in free space containing evanescent components,” JOSAA 2(9), 1429–1434.CrossRefGoogle Scholar
Viktorov, I. A. (1967), Rayleigh and Lamb Waves, Plenum, New York.CrossRefGoogle Scholar
Villasenor, A., Yang, Y., Ritzwoller, M. H. & Gallart, J. (2007), “Ambient noise surface wave tomography of the Iberian Peninsula: Implications for shallow seismic structure,” Geophys. Res. Lett. 34(11), L11304.CrossRefGoogle Scholar
Virovlyansky, A. L., Kazarova, A. Y. & Lyubavin, L. Y. (2005), “Ray-based description of normal mode amplitudes in a range-dependent waveguide,” Wave Motion 42, 317–334.CrossRefGoogle Scholar
Virovlyansky, A. L., Kazarova, A. Y. & Lyubavin, L. Y. (2007), “Statistical description of chaotic rays in a deep water acoustic waveguide,” J. Acoust. Soc. Am. 121, 2542–2552.CrossRefGoogle Scholar
Voros, A. (1979), “Semi-classical ergodicity of quantum eigenstates in the Wigner representation,” Lect. Not. Phys. 93, 326–333.CrossRefGoogle Scholar
Walter, E. & Pronzato, L. (1997), Identification of Parametric Models from Experimental Data, Springer, Berlin.Google Scholar
Waterman, P. C. & Truell, R. (1961), “Multiple scattering of waves,” J. Math. Phys. 2, 512–537.CrossRefGoogle Scholar
Weaver, R. L. (1982), “On diffuse waves in solid media,” J. Acoust. Soc. Am. 71(6), 1608–1609.CrossRefGoogle Scholar
Weaver, R. L. (1989a), “On the ensemble variance of reverberation room transmission functions, the effect of spectral rigidity,” J. Sound Vib. 130(3), 487–491.CrossRefGoogle Scholar
Weaver, R. L. (1989b), “Spectral statistics in elastodynamics,” J. Acoust. Soc. Am. 85(3), 1005–1013.CrossRefGoogle Scholar
Weaver, R. L. (1990a), “Anderson localization of ultrasound,” Wave Motion 12(2), 129–142.CrossRefGoogle Scholar
Weaver, R. L. (1990b), “Diffusivity of ultrasound in polycrystals,” J. Mech. Phys. Solids 38, 55–86.CrossRefGoogle Scholar
Weaver, R. L. (1997), “Multiple-scattering theory for mean responses in a plate with sprung masses,” J. Acoust. Soc. Am. 101(6), 3466–3474.CrossRefGoogle Scholar
Weaver, R. L. (2005), “Information from seismic noise,” Science 307, 1568–1569.CrossRefGoogle ScholarPubMed
Weaver, R. L. & Burkhardt, J. (1994), “Weak anderson localization and enhanced backscatter in reverberation rooms and quantum dots,” J. Acoust. Soc. Am. 96(5), 3186–3190.CrossRefGoogle Scholar
Weaver, R. L. & Lobkis, O. I. (2000a), “Anderson localization in coupled reverberation rooms,” J. Sound Vib. 321(4), 1111–1134.CrossRefGoogle Scholar
Weaver, R. L. & Lobkis, O. I. (2000b), “Enhanced backscattering and modal echo of reverberant elastic waves,” Phys. Rev. Lett. 84(21), 4942–4945.CrossRefGoogle ScholarPubMed
Weaver, R. L. & Lobkis, O. I. (2001), “Ultrasonics without a source: Thermal fluctuation correlations at MHz frequencies,” Phys. Rev. Lett. 87(13), 134301.CrossRefGoogle ScholarPubMed
Weaver, R. L. & Lobkis, O. I. (2003), “Elastic wave thermal fluctuations, ultrasonic waveforms by correlation of thermal phonons,” J. Acoust. Soc. Am. 113(5), 2611–2621.CrossRefGoogle ScholarPubMed
Weaver, R. L. & Lobkis, O. I. (2005), “Fluctuations in diffuse field–field correlations and the emergence of the Green's function in open systems,” J. Acoust. Soc. Am. 117(6), 3432–3439.CrossRefGoogle ScholarPubMed
Weaver, R. L. & Sornette, D. (1995), “The range of spectral correlations in psuedointegrable systems: GOE statistics in a rectangular membrane with a point scatterer,” Phys. Rev. E 52, 3341–3350.CrossRefGoogle Scholar
Wegler, U. & Sens-Schönfelder, C. (2007), “Fault zone monitoring with passive image interferometry,” Geophys. J. Int. 168(3), 1029–1033.CrossRefGoogle Scholar
Wheeler, C. T. (2005), “Curved boundary corrections to nodal line statistics in chaotic billiards,” J. Phys. A 38, 1491–1504.CrossRefGoogle Scholar
Whitney, R. S. & Jacquod, P. (2005), “Microscopic theory for the quantum to classical crossover in chaotic transport,” Phys. Rev. Lett. 94(11), 116801.CrossRefGoogle ScholarPubMed
Wigner, E. (1951), “On a class of analytic functions from the quantum theory of collisions,” Ann. Math. 53, 36–67.CrossRefGoogle Scholar
Wigner, E. (1955), “Characteristic vectors of bordered matrices with infinite dimensions,” Ann. Math. 62, 548–564.CrossRefGoogle Scholar
Wigner, E. (1957), “Characteristic vectors of bordered matrices with infinite dimensions II,” Ann. Math. 65, 203–207.CrossRefGoogle Scholar
Wigner, E. (1958), “On the distribution of the roots of certain symmetric matrices,” Ann. Math. 67, 325–326.CrossRefGoogle Scholar
Wigner, E. (1959), Group Theory and Its Applications to the Quantum Mechanics of Atomic Spectra, Academic, New York.Google Scholar
Wirzba, A. (1999), “Quantum mechanics and semiclassics of hyperbolic n-disk scattering systems,” Phys. Rep. 309(1–2), 1–116.CrossRefGoogle Scholar
Wisniacki, D. A., Vergini, E., Benito, R. M. & Borondo, F. (2005), “Signatures of homoclinic motion in quantum chaos,” Phys. Rev. Lett. 94(5), 054101.CrossRefGoogle ScholarPubMed
Wisniacki, D. A., Vergini, E., Benito, R. M. & Borondo, F. (2006), “Scarring by homoclinic and heteroclinic orbits,” Phys. Rev. Lett. 97(9), 094101.CrossRefGoogle ScholarPubMed
Wolfson, M. A. & Tomsovic, S. (2001), “On the stability of long-range sound propagation through a structured ocean,” J. Acoust. Soc. Am. 109, 2693–.CrossRefGoogle ScholarPubMed
Worcester, P. F., Cornuelle, B. D., Dzieciuch, M. A., Munk, W. H., Howe, B. M., A. Mercer, J., Spindel, R. C., Colosi, J. A., Metzger, K., Birdsall, T. & Baggeroer, A. B. (1999), “A test of basin-scale acoustic thermometry using a large-aperture vertical array at 3250-km range in the eastern north pacific ocean,” J. Acoust. Soc. Am. 105, 3185–3201.CrossRefGoogle Scholar
Wright, M. C. M. (2001), “Variance of deviations from the average mode count for rectangular wave guides,” Acoust. Res. Lett. Online 2(1), 19–24.CrossRefGoogle Scholar
Wright, M. C. M. & Ham, C. J. (2007), “Periodic orbit theory in acoustics: Spectral fluctuations in circular and annular waveguides,” J. Acoust. Soc. Am. 121(4), 1865–1872.CrossRefGoogle ScholarPubMed
Wright, M. C. M., Howls, C. J. & Welch, B. A. (2003a), “Periodic orbit calculations of modecount functions for elastic plates,” in Proceedings of the VIII International Conference on Recent Advances in Structural Dynamics, no. 42.Google Scholar
Wright, M. C. M., Morfey, C. L. & Yoon, S. H. (2003b), “On the modal distribution for circular and annular ducts,” in 9th AIAA/CEAS Aeroacoustics Conference, no. 2003-3141.Google Scholar
Yakubovich, V. A. & Starzhinskii, V. M. (1975), Linear Differential Equations with Periodic Coefficients, Wiley, New York.Google Scholar
Yang, Y., Ritzwoller, M. H., Levshin, A. L. & Shapiro, N. M. (2007), “Ambient noise Rayleigh wave tomography across Europe,” Geophys. J. Int. 168(1), 259–274.CrossRefGoogle Scholar
Yao, H., van der Hilst, R. D. & de Hoop, M. V. (2006), “Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis: I. Phase velocity maps,” Geophys. J. Int. 166(2), 732–744.CrossRefGoogle Scholar
Ye, L., Cody, G., Zhou, M., Sheng, P. & Norris, A. N. (1992), “Observation of bending wave localization and quasi mobility edge in two dimensions,” Phys. Rev. Lett. 69(21), 3080–3083.CrossRefGoogle ScholarPubMed
Zelditch, S. (1987), “Uniform distribution of eigenfunctions on compact hyperbolic surfaces,” Duke Math. J. 55, 919–941.CrossRefGoogle Scholar
Zelditch, S. & Zworski, M. (1996), “Ergodicity of eigenfunctions for ergodic billiards,” Comm. Math. Phys. 175, 673–682.CrossRefGoogle Scholar
Zienkiewicz, O. C. & Taylor, R. L. (2000), The Finite Element Method, Vols. 1–3, 5th edn, Butterworth-Heinemann, Oxford, UK.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Edited by Matthew Wright, University of Southampton, Richard Weaver, University of Illinois, Urbana-Champaign
  • Book: New Directions in Linear Acoustics and Vibration
  • Online publication: 05 October 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511781520.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Edited by Matthew Wright, University of Southampton, Richard Weaver, University of Illinois, Urbana-Champaign
  • Book: New Directions in Linear Acoustics and Vibration
  • Online publication: 05 October 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511781520.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Edited by Matthew Wright, University of Southampton, Richard Weaver, University of Illinois, Urbana-Champaign
  • Book: New Directions in Linear Acoustics and Vibration
  • Online publication: 05 October 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511781520.017
Available formats
×