Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-16T02:30:43.026Z Has data issue: false hasContentIssue false

2 - The role of next generation sequencing technologies in shaping the future of insect molecular systematics

from Part I - Next Generation Phylogenetics

Published online by Cambridge University Press:  05 June 2016

Joseph Hughes
Affiliation:
MRC–University of Glasgow Centre for Virus Research, Glasgow, UK
Stuart Longhorn
Affiliation:
Oxford Museum of Natural History, Oxford, UK
Peter D. Olson
Affiliation:
Natural History Museum, London
Joseph Hughes
Affiliation:
University of Glasgow
James A. Cotton
Affiliation:
Wellcome Trust Sanger Institute, Cambridge
Get access

Summary

Introduction

Insecta consists of 29 living orders that are not equivalent by any criteria except taxonomic rank (Davis et al. 2010). Insects demonstrate the greatest biodiversity, accounting for over half of all described eukaryotes, approximately 1 million described species (Grimaldi and Engel 2005) and a global total of anywhere between 5 and 10 million species (Gaston 1991; Raven and Yeates 2007). Although lower-end estimates of species numbers are more likely (Mora et al. 2011), around two-thirds of all insects probably remain to be discovered and described (May 2010), vastly outnumbering the total diversity of other better-studied taxonomic groups like vertebrates and vascular plants. The importance of insects for stable ecosystem functioning also cannot be understated. For example, insects are responsible for the breakdown of organic material, animal and human remains, removal of waste, aeration and turnover of soil, and the vital task of pollination for flowering plants. They also include important predators that control numbers of other pest invertebrates or weed plants, and are an essential food source for many birds, fish, reptiles and amphibians. Understanding the impressive numerical and ecological diversity of insects has long been recognized as an important research goal. To achieve this, it is vital to clarify the evolutionary history and ancestral attributes of lineages. Here we will (1) take stock of our current understanding of insect systematics and the role molecular phylogenetics has played, (2) review the taxonomic diversity of transcriptomes and whole genomes in Insecta and its current bias, (3) discuss the ways that NGS technologies can be used to study insect evolution, and (4) propose strategies for selecting future insects to sequence, for example to maximize genomic diversity and resolve important phylogenetic questions that remain in the field of insect systematics.

Systematics of insects and outstanding questions

In recent years of arthropod research, evidence in favour of a close affinity between hexapods (Insecta, Collembola, Protura and Diplura) and crustaceans has strengthened (Edgecombe 2010; Giribet and Edgecombe 2012; Trautwein et al. 2012; von Reumont et al. 2012). Major arthropod lineages like Myriapoda and Chelicerata are now typically considered more distant relatives than various ‘Crustacea’, and velvet worms are considered the sister-group to Arthropoda as a whole (Campbell et al. 2011, Fig 2.1). There has been some evidence that Hexapoda may be polyphyletic, or mutually paraphyletic with respect to Crustacea (Nardi et al. 2003; Cook et al. 2005).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arillo, A. and Engel, M. S. (2006). Rock crawlers in Baltic amber (Notoptera: Mantophasmatodea). American Museum Novitates, 2811, 1–10.Google Scholar
Asgari, S. (2013). MicroRNA functions in insects. Insect Biochemistry and Molecular Biology, 43, 388–97.CrossRefGoogle ScholarPubMed
Bergman, C. M., Pfeiffer, B. D., Rincon-Limas, D. E., et al. (2002). Assessing the impact of comparative genomic sequence data on the functional annotation of the Drosophila genome. Genome Biology, 3, R0086.CrossRefGoogle ScholarPubMed
Beutel, R. G., Friedrich, F., Hornschemeyer, T., et al. (2011). Morphological and molecular evidence converge upon a robust phylogeny of the megadiverse Holometabola. Cladistics, 27, 341–55.CrossRefGoogle Scholar
Beutel, R. G. and Gorb, S. N. (2001). Ultrastructure of attachment specializations of hexapods (Arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny. Journal of Zoological Systematics and Evolutionary Research, 39, 177–207.CrossRefGoogle Scholar
Beutel, R. G. and Pohl, H. (2006). Endopterygote systematics – where do we stand and what is the goal (Hexapoda, Arthropoda)?Systematic Entomology, 31, 202–19.CrossRefGoogle Scholar
Bonasio, R., Zhang, G. J., Ye, C. Y., et al. (2010). Genomic comparison of the Ants Camponotus floridanus and Harpegnathos saltator.Science, 329, 1068–71.CrossRefGoogle ScholarPubMed
Boore, J. L. (2006). The use of genome-level characters for phylogenetic reconstruction. Trends in Ecology and Evolution, 21, 439–46.CrossRefGoogle ScholarPubMed
Cameron, S. L., Miller, K. B., D'Haese, C. A., Whiting, M. F. and Barker, S. C. (2004). Mitochondrial genome data alone are not enough to unambiguously resolve the relationships of Entognatha, Insecta and Crustacea sensu lato (Arthropoda). Cladistics, 20, 534–57.CrossRefGoogle Scholar
Campbell, L. I., Rota-Stabelli, O., Edgecombe, G. D., et al. (2011). MicroRNAs and phylogenomics resolve the relationships of Tardigrada and suggest that velvet worms are the sister group of Arthropoda. Proceedings of the National Academy of Sciences of the United States of America, 108, 15920–4.CrossRefGoogle ScholarPubMed
Castro, L. R., Austin, A. D. and Dowton, M. (2002). Contrasting rates of mitochondrial molecular evolution in parasitic diptera and hymenoptera. Molecular Biology and Evolution, 19, 1100–13.CrossRefGoogle ScholarPubMed
Caterino, M. S., Cho, S. and Sperling, F. A. H. (2000). The current state of insect molecular systematics: a thriving Tower of Babel. Annual Review of Entomology, 45, 1–54.CrossRefGoogle Scholar
Chalwatzis, N., Hauf, J., van de Peer, Y., Kinzelbach, R. and Zimmermann, R. K. (1996). 18S ribosomal RNA genes of insects: primary structure of the genes and molecular phylogeny of the Holometabola. Annals of the Entomological Society of America, 89, 788–803.CrossRefGoogle Scholar
Cook, C. E., Yue, Q. Y. and Akam, M. (2005). Mitochondrial genomes suggest that hexapods and crustaceans are mutually paraphyletic. Proceedings of the Royal Society B-Biological Sciences, 272, 1295–304.CrossRefGoogle ScholarPubMed
Cristino, A. S., Tanaka, E. D., Rubio, M., Piulachs, M. D. and Belles, X. (2011). Deep sequencing of organ- and stage-specific microRNAs in the evolutionarily basal insect Blattella germanica (L.) (Dictyoptera, Blattellidae). PloS One, 6, e.19350.CrossRefGoogle Scholar
Davis, R. B., Baldauf, S. L. and Mayhew, P. J. (2010). Many hexapod groups originated earlier and withstood extinction events better than previously realized: inferences from supertrees. Proceedings of the Royal Society B-Biological Sciences, 277, 1597–606.CrossRefGoogle ScholarPubMed
Eddy, S. R. (2005). A model of the statistical power of comparative genome sequence analysis. PLoS Biology, 3, 95–102.CrossRefGoogle ScholarPubMed
Edgecombe, G. D. (2010). Arthropod phylogeny: an overview from the perspectives of morphology, molecular data and the fossil record. Arthropod Structure and Development, 39, 74–87.CrossRefGoogle ScholarPubMed
Evans, J. D. and Gundersen-Rindal, D. (2003). Beenomes to Bombyx: future directions in applied insect genomics. Genome Biology, 4, 107.CrossRefGoogle ScholarPubMed
Gaston, K. J. (1991). The magnitude of global insect species richness. Conservation Biology, 5, 283–96.CrossRefGoogle Scholar
Gatesy, J. and Baker, R. H. (2005). Hidden likelihood support in genomic data: can forty-five wrongs make a right?Systematic Biology, 54, 483–92.CrossRefGoogle ScholarPubMed
Giribet, G. and Edgecombe, G. D. (2012). Reevaluating the Arthropod Tree of Life. Annual Review of Entomology, 57, 167–86.CrossRefGoogle ScholarPubMed
Glenn, T. C. (2011). Field guide to next-generation DNA sequencers. Molecular Ecology Resources, 11, 759–69.CrossRefGoogle ScholarPubMed
Gregory, T. R. and Mable, B. K. (2005). Polyploidy in animals. In Gregory, T. R., ed. The Evolution of the Genome. San Diego, Elsevier; pp. 427–517.Google Scholar
Grimaldi, D. and Engel, M. S. (2005). Evolution of Insects. New York, Cambridge University Press; p. 772Google Scholar
Hahn, M. W., Han, M. V. and Han, S. G. (2007). Gene family evolution across 12 Drosophila genomes. PLoS Genetics, 3, e197.CrossRefGoogle ScholarPubMed
Hanrahan, S. J. and Johnston, J. S. (2011). New genome size estimates of 134 species of arthropods. Chromosome Research, 19, 809–23.CrossRefGoogle ScholarPubMed
Haussler, D., O'Brien, S. J., Ryder, O. A., et al. (2009). Genome 10K: a Proposal to Obtain Whole-Genome Sequence for 10 000 Vertebrate Species. Journal of Heredity, 100, 659–74.Google Scholar
He, P. A., Nie, Z. M., Chen, J. Q., et al. (2008). Identification and characteristics of microRNAs from Bombyx mori.BMC Genomics, 9, 248.CrossRefGoogle ScholarPubMed
Hedges, S. B. (2002). The origin and evolution of model organisms. Nature Reviews Genetics, 3, 838–49.CrossRefGoogle ScholarPubMed
Hennig, W. (1969). Die Stammesgeschichte der Insekten. Frankfurt am Main, Waldemar Kramer.Google Scholar
Hughes, J., Longhorn, S. J., Papadopoulou, A., et al. (2006). Dense taxonomic EST sampling and its applications for molecular systematics of the Coleoptera (beetles). Molecular Biology and Evolution, 23, 268–78.CrossRefGoogle Scholar
Huson, D. H. and Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23, 254–67.CrossRefGoogle ScholarPubMed
i5K Consortium (2013). The i5K Initiative: advancing arthropod genomics for knowledge, human health, agriculture, and the environment. The Journal of Heredity, 104, 595–600.
Inward, D., Beccaloni, G. and Eggleton, P. (2007). Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biology Letters, 3, 331–5.CrossRefGoogle ScholarPubMed
Ishiwata, K., Sasaki, G., Ogawa, J., Miyata, T. and Su, Z. H. (2011). Phylogenetic relationships among insect orders based on three nuclear protein-coding gene sequences. Molecular Phylogenetics and Evolution, 58, 169–80.CrossRefGoogle ScholarPubMed
Jagadeeswaran, G., Zheng, Y., Sumathipala, N., et al. (2010). Deep sequencing of small RNA libraries reveals dynamic regulation of conserved and novel microRNAs and microRNA-stars during silkworm development. BMC Genomics, 11, 52.CrossRefGoogle ScholarPubMed
Jaubert-Possamai, S., Rispe, C., Tanguy, S., et al. (2010). Expansion of the miRNA pathway in the hemipteran insect Acyrthosiphon pisum.Molecular Biology and Evolution, 27, 979–87.CrossRefGoogle ScholarPubMed
Johnson, K. P., Yoshizawa, K. and Smith, V. S. (2004). Multiple origins of parasitism in lice. Proceedings of the Royal Society B-Biological Sciences, 271, 1771–6.CrossRefGoogle ScholarPubMed
Katz, L. A., Grant, J. R., Parfrey, L. W. and Burleigh, J. G. (2012). Turning the crown upside down: gene tree parsimony roots the eukaryotic tree of life. Systematic Biology, 61, 653–60.CrossRefGoogle ScholarPubMed
Kirkness, E. F., Haas, B. J., Sun, W. L., et al. (2010). Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle. Proceedings of the National Academy of Sciences of the United States of America, 107, 12168–73.CrossRefGoogle ScholarPubMed
Kjer, K. M. (2004). Aligned 18S and insect phylogeny. Systematic Biology, 53, 506–14.CrossRefGoogle ScholarPubMed
Kjer, K. M., Carle, F. L., Litman, J. and Ware, J. (2006). A molecular phylogeny of Hexapoda. Arthropod Systematics and Phylogeny, 64, 35–44.Google Scholar
Krauss, V., Thummler, C., Georgi, F., Lehmann, J., Stadler, P. F. and Eisenhardt, C. (2008). Near intron positions are reliable phylogenetic markers: an application to holometabolous insects. Molecular Biology and Evolution, 25, 821–30.CrossRefGoogle ScholarPubMed
Kristensen, N. P. (1981). Phylogeny of insect orders. Annual Review of Entomology, 26, 135–57.CrossRefGoogle Scholar
Kriventseva, E. V., Rahman, N., Espinosa, O. and Zdobnov, E. M. (2008). OrthoDB: the hierarchical catalog of eukaryotic orthologs. Nucleic Acids Research, 36, D271–D275.Google ScholarPubMed
Kulathinal, R. J. and Hartl, D. L. (2005). The latest buzz in comparative genomics. Genome Biology, 6, 201.CrossRefGoogle ScholarPubMed
Legeai, F., Rizk, G. and Walsh, T. (2010). Bioinformatic prediction, deep sequencing of microRNAs and expression analysis during phenotypic plasticity in the pea aphid, Acyrthosiphon pisum.BMC Genomics, 11, 281.CrossRefGoogle ScholarPubMed
Lehmann, J., Eisenhardt, C., Stadler, P. F. and Krauss, V. (2010). Some novel intron positions in conserved Drosophila genes are caused by intron sliding or tandem duplication. BMC Evolutionary Biology, 10, 156.CrossRefGoogle ScholarPubMed
Letsch, H. O., Meusemann, K., Wipfler, B., Schutte, K., Beutel, R. and Misof, B. (2012). Insect phylogenomics: results, problems and the impact of matrix composition. Proceedings of the Royal Society B-Biological Sciences, 279, 3282–90.CrossRefGoogle ScholarPubMed
Letsch, H. and Simon, S. (2013). Insect phylogenomics: new insights on the relationships of lower neopteran orders (Polyneoptera). Systematic Entomology, 38, 783–93.CrossRefGoogle Scholar
Levine, B. R. (2011). i5k – The 5,000 Insect Genome Project. American Entomologist, 57, 111–13.CrossRefGoogle Scholar
Li, L., Stoeckert, C. J. and Roos, D. S. (2003). OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Research, 13, 2178–89.CrossRefGoogle ScholarPubMed
Liu, S. P., Li, D., Li, Q. B., Zhao, P., Xiang, Z. H. and Xia, Q. Y. (2010). MicroRNAs of Bombyx mori identified by Solexa sequencing. BMC Genomics, 11, 148.CrossRefGoogle ScholarPubMed
Longhorn, S. J., Pohl, H. W. and Vogler, A. P. (2010). Ribosomal protein genes of holometabolan insects reject the Halteria, instead revealing a close affinity of Strepsiptera with Coleoptera. Molecular Phylogenetics and Evolution, 55, 846–59.CrossRefGoogle ScholarPubMed
Lucas, K. and Raikhel, A. S. (2013). Insect MicroRNAs: biogenesis, expression profiling and biological functions. Insect Biochemistry and Molecular Biology, 43, 24–38.CrossRefGoogle ScholarPubMed
Mallatt, J. and Giribet, G. (2006). Further use of nearly complete, 28S and 18S rRNA genes to classify Ecdysozoa: 37 more arthropods and a kinorhynch. Molecular Phylogenetics and Evolution, 40, 772–94.CrossRefGoogle Scholar
Marco, A., Hui, J. H. L., Ronshaugen, M. and Griffiths-Jones, S. (2010). Functional shifts in insect microRNA evolution. Genome Biology and Evolution, 2, 686–96.Google ScholarPubMed
May, R. M. (2010). Tropical arthropod species, more or less?Science, 329, 41–2.CrossRefGoogle ScholarPubMed
McKenna, D. D. and Farrell, B. D. (2010). 9-genes reinforce the phylogeny of holometabola and yield alternate views on the phylogenetic placement of Strepsiptera. PLoS One, 5, e.11887.CrossRefGoogle ScholarPubMed
McMahon, D. P., Hayward, A. and Kathirithamby, J. (2011). The first molecular phylogeny of Strepsiptera (Insecta) reveals an early burst of molecular evolution correlated with the transition to endoparasitism. PLoS One, 6, e.21206.CrossRefGoogle ScholarPubMed
Mead, E. A. and Tu, Z. (2008). Cloning, characterization, and expression of microRNAs from the Asian malaria mosquito, Anopheles stephensi.BMC Genomics, 9, 244.CrossRefGoogle ScholarPubMed
Meusemann, K., von Reumont, B. M., Simon, S., et al. (2010). A phylogenomic approach to resolve the arthropod tree of life. Molecular Biology and Evolution, 27, 2451–64.CrossRefGoogle ScholarPubMed
Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B. and Worm, B. (2011). How many species are there on earth and in the ocean?PLoS Biology, 9, e.1001127.CrossRefGoogle ScholarPubMed
Nardi, F., Spinsanti, G., Boore, J. L., Carapelli, A., Dallai, R. and Frati, F. (2003). Hexapod origins: monophyletic or paraphyletic?Science, 299, 1887–9.CrossRefGoogle ScholarPubMed
Niehuis, O., Hartig, G., Grath, S., et al. (2012). Genomic and morphological evidence converge to resolve the enigma of Strepsiptera. Current Biology, 22, 1309–13.CrossRefGoogle ScholarPubMed
Oakley, T. H., Wolfe, J. M., Lindgren, A. R. and Zaharoff, A. K. (2013). Phylotranscriptomics to bring the understudied into the fold: monophyletic Ostracoda, fossil placement, and Pancrustacean phylogeny. Molecular Biology and Evolution, 30, 215–33.CrossRefGoogle ScholarPubMed
Ohno, S. (2013). Evolution by Gene Duplication. Springer Science and Business Media.Google Scholar
Pagel Van Zee, J., Geraci, N. S., Guerrero, F. D., et al. (2007). Tick genomics: the Ixodes genome project and beyond. International Journal for Parasitology, 37, 1297–305.CrossRefGoogle ScholarPubMed
Pardi, F. and Goldman, N. (2005). Species choice for comparative genomics: being greedy works. PLoS Genetics, 1, e.71.CrossRefGoogle ScholarPubMed
Pardi, F. and Goldman, N. (2007). Resource-aware taxon selection for maximizing phylogenetic diversity. Systematic Biology, 56, 431–44.CrossRefGoogle ScholarPubMed
Philippe, H. and Telford, M. J. (2006). Large-scale sequencing and the new animal phylogeny. Trends in Ecology and Evolution, 21, 614–20.CrossRefGoogle ScholarPubMed
Pohl, H. and Beutel, R. G. (2008). The evolution of Strepsiptera (Hexapoda). Zoology, 111, 318–38.CrossRefGoogle Scholar
Pons, J., Barraclough, T. G., Theodorides, K., Cardoso, A. and Vogler, A. P. (2004). Using exon and intron sequences of the gene Mp20 to resolve basal relationships in Cicindela (Coleoptera: Cicindelidae). Systematic Biology, 53, 554–70.CrossRefGoogle Scholar
Raven, P. H. and Yeates, D. K. (2007). Australian biodiversity: threats for the present, opportunities for the future. Australian Journal of Entomology, 46, 177–87.CrossRefGoogle Scholar
Regier, J. C. and Shultz, J. W. (1997). Molecular phylogeny of the major arthropod groups indicates polyphyly of Crustaceans and a new hypothesis for the origin of hexapods. Molecular Biology and Evolution, 14, 902–13.CrossRefGoogle Scholar
Regier, J. C., Shultz, J. W. and Kambic, R. E. (2005). Pancrustacean phylogeny: hexapods are terrestrial crustaceans and maxillopods are not monophyletic. Proceedings of the Royal Society B-Biological Sciences, 272, 395–401.CrossRefGoogle Scholar
Regier, J. C., Shultz, J. W., Zwick, A., et al. (2010). Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature, 463, 1079–98.CrossRefGoogle ScholarPubMed
Richards, S., Gibbs, R. A., Gerardo, N. M., et al. (2010). Genome sequence of the pea aphid Acyrthosiphon pisum.PloS Biology, 8, e.1000313.Google Scholar
Robinson, G. E., Hackett, K. J., Purcell-Miramontes, M., et al. (2011). Creating a buzz about insect genomes. Science, 331, 1386–6.CrossRefGoogle ScholarPubMed
Roeding, F., Hagner-Holler, S., Ruhberg, H., et al. (2007). EST sequencing of Onychophora and phylogenomic analysis of Metazoa. Molecular Phylogenetics and Evolution, 45, 942–51.CrossRefGoogle ScholarPubMed
Rokas, A. and Holland, P. W. (2000). Rare genomic changes as a tool for phylogenetics. Trends in Ecology and Evolution, 15, 454–459.CrossRefGoogle ScholarPubMed
Rokas, A., Kathirithamby, J. and Holland, P. W. H. (1999). Intron insertion as a phylogenetic character: the engrailed homeobox of Strepsiptera does not indicate affinity with Diptera. Insect Molecular Biology, 8, 527–30.CrossRefGoogle Scholar
Rota-Stabelli, O., Campbell, L., Brinkmann, H., et al. (2011). A congruent solution to arthropod phylogeny: phylogenomics, microRNAs and morphology support monophyletic Mandibulata. Proceedings of the Royal Society B-Biological Sciences, 278, 298–306.CrossRefGoogle ScholarPubMed
Sanchez-Gracia, A., Vieira, F. G. and Rozas, J. (2009). Molecular evolution of the major chemosensory gene families in insects. Heredity, 103, 208–16.CrossRefGoogle ScholarPubMed
Sanders, K. L. and Lee, M. S. Y. (2010). Arthropod molecular divergence times and the Cambrian origin of pentastomids. Systematics and Biodiversity, 8, 63–74.CrossRefGoogle Scholar
Savard, J., Tautz, D., Richards, S., et al. (2006). Phylogenomic analysis reveals bees and wasps (Hymenoptera) at the base of the radiation of Holometabolous insects. Genome Research, 16, 1334–8.CrossRefGoogle ScholarPubMed
Sharanowski, B. J., Robbertse, B., Walker, J., et al. (2010). Expressed sequence tags reveal Proctotrupomorpha (minus Chalcidoidea) as sister to Aculeata (Hymenoptera: Insecta). Molecular Phylogenetics and Evolution, 57, 101–12.CrossRefGoogle Scholar
Simon, S., Narechania, A., DeSalle, R. and Hadrys, H. (2012). Insect phylogenomics: exploring the source of incongruence using new transcriptomic data. Genome Biology and Evolution, 4, 1295–309.CrossRefGoogle ScholarPubMed
Simon, S., Strauss, S., von Haeseler, A. and Hadrys, H. (2009). A phylogenomic approach to resolve the basal Pterygote divergence. Molecular Biology and Evolution, 26, 2719–30.CrossRefGoogle ScholarPubMed
Skalsky, R. L., Vanlandingham, D. L., Scholle, F., Higgs, S. and Cullen, B. R. (2010). Identification of microRNAs expressed in two mosquito vectors, Aedes albopictus and Culex quinquefasciatus.BMC Genomics, 11, 119.CrossRefGoogle ScholarPubMed
Sperling, E. A., Vinther, J., Moy, V. N., et al. (2009). MicroRNAs resolve an apparent conflict between annelid systematics and their fossil record. Proceedings of the Royal Society B-Biological Sciences, 276, 4315–22.CrossRefGoogle ScholarPubMed
Stark, A., Lin, M. F., Kheradpour, P., et al. (2007). Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures. Nature, 450, 219–32.CrossRefGoogle ScholarPubMed
Talavera, G. and Vila, R. (2011). What is the phylogenetic signal limit from mitogenomes? The reconciliation between mitochondrial and nuclear data in the Insecta class phylogeny. BMC Evolutionary Biology, 11, 315.CrossRefGoogle ScholarPubMed
Terrapon, N., Li, C., Robertson, H. M., Ji, L., et al. (2014). Molecular traces of alternative social organization in a termite genome. Nature Communications, 5, e.3636.CrossRefGoogle Scholar
Terry, M. D. and Whiting, M. F. (2005). Mantophasmatodea and phylogeny of the lower neopterous insects. Cladistics, 21, 240–57.CrossRefGoogle Scholar
Thomas, J. W., Touchman, J. W., Blakesley, R. W., et al. (2003). Comparative analyses of multi-species sequences from targeted genomic regions. Nature, 424, 788–93.CrossRefGoogle ScholarPubMed
Thomson, R. C., Plachetzki, D. C., Mahler, D. L. and Moore, B. R. (2014). A critical appraisal of the use of microRNA data in phylogenetics. Proceedings of the National Academy of Sciences of the United States of America, 111, E3659–68.CrossRefGoogle ScholarPubMed
Timmermans, M. J. T. N., Roelofs, D., Marien, J. and van Straalen, N. M. (2008). Revealing pancrustacean relationships: phylogenetic analysis of ribosomal protein genes places Collembola (springtails) in a monophyletic Hexapoda and reinforces the discrepancy between mitochondrial and nuclear DNA markers. BMC Evolutionary Biology, 8, 83.CrossRefGoogle Scholar
Tomoyasu, Y., Miller, S. C., Tomita, S., Schoppmeier, M., Grossmann, D. and Bucher, G. (2008). Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium. Genome Biology and Evolution, 9, R10.CrossRefGoogle ScholarPubMed
Toth, A. L., Varala, K., Newman, T. C., et al. (2007). Wasp gene expression supports an evolutionary link between maternal behavior and eusociality. Science, 318, 441–4.CrossRefGoogle ScholarPubMed
Trautwein, M. D., Wiegmann, B. M., Beutel, R., Kjer, K. M. and Yeates, D. K. (2012). Advances in insect phylogeny at the dawn of the postgenomic era. Annual Review of Entomology, 57, 449–68.CrossRefGoogle ScholarPubMed
Vera, J. C., Wheat, C. W., Fescemyer, H. W., et al. (2008). Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Molecular Ecology, 17, 1636–47.CrossRefGoogle ScholarPubMed
von Reumont, B. M., Jenner, R. A., Wills, M. A., et al. (2012). Pancrustacean phylogeny in the light of new phylogenomic data: support for Remipedia as the possible sister group of Hexapoda. Molecular Biology and Evolution, 29, 1031–45.CrossRefGoogle ScholarPubMed
von Reumont, B. M., Meusemann, K., Szucsich, N. U., et al. (2009). Can comprehensive background knowledge be incorporated into substitution models to improve phylogenetic analyses? A case study on major arthropod relationships. BMC Evolutionary Biology, 9, 119.CrossRefGoogle ScholarPubMed
Waterhouse, R. M., Tegenfeldt, F., Li, J., Zdobnov, E. M. and Kriventseva, E. V. (2013). OrthoDB: a hierarchical catalog of animal, fungal and bacterial orthologs. Nucleic Acids Research, 41, D358–D365.CrossRefGoogle ScholarPubMed
Waterhouse, R. M., Zdobnov, E. M., Tegenfeldt, F., Li, J. and Kriventseva, E. V. (2011). OrthoDB: the hierarchical catalog of eukaryotic orthologs in 2011. Nucleic Acids Research, 39, D283–8.CrossRefGoogle ScholarPubMed
Wei, Y. Y., Chen, S., Yang, P. C., Ma, Z. Y. and Kang, L. (2009). Characterization and comparative profiling of the small RNA transcriptomes in two phases of locust. Genome Biology, 10, R6.CrossRefGoogle ScholarPubMed
Wheeler, W. C., Whiting, M., Wheeler, Q. D. and Carpenter, J. M. (2001). The phylogeny of the extant hexapod orders. Cladistics, 17, 113–69.CrossRefGoogle Scholar
Whitfield, J. B. and Kjer, K. M. (2008). Ancient rapid radiations of insects: challenges for phylogenetic analysis. Annual Review of Entomology, 53, 449–72.CrossRefGoogle ScholarPubMed
Whiting, M. F. (2002). Mecoptera is paraphyletic: multiple genes and phylogeny of Mecoptera and Siphonaptera. Zoologica Scripta, 31, 93–104.CrossRefGoogle Scholar
Whiting, M. F., Carpenter, J. C., Wheeler, Q. D. and Wheeler, W. C. (1997). The strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Systematic Biology, 46, 1–68.Google ScholarPubMed
Whiting, M. F. and Wheeler, W. C. (1994). Insect homeotic transformation. Nature, 368, 696.CrossRefGoogle Scholar
Wiegmann, B. M., Trautwein, M. D., Kim, J. W., Cassel, B. K., Bertone, M. A., Winterton, S. L. and Yeates, D. K. (2009). Single-copy nuclear genes resolve the phylogeny of the holometabolous insects. BMC Biology, 7, 34.CrossRefGoogle ScholarPubMed
Wiegmann, B. M., Trautwein, M. D., Winkler, I. S., et al. (2011). Episodic radiations in the fly tree of life. Proceedings of the National Academy of Sciences of the United States of America, 108, 5690–5.CrossRefGoogle ScholarPubMed
Wu, D. Y., Hugenholtz, P., Mavromatis, K., et al. (2009). A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature, 462, 1056–60.CrossRefGoogle ScholarPubMed
Yamauchi, M. M., Miya, M. U. and Nishida, M. (2004). Use of a PCR-based approach for sequencing whole mitochondrial genomes of insects: two examples (cockroach and dragonfly) based on the method developed for decapod crustaceans. Insect Molecular Biology, 13, 435–42.CrossRefGoogle ScholarPubMed
Yoshizawa, K. and Johnson, K. P. (2005). Aligned 18S for Zoraptera (Insecta): phylogenetic position and molecular evolution. Molecular Phylogenetics and Evolution, 37, 572–80.CrossRefGoogle ScholarPubMed
Zdobnov, E. M. and Bork, P. (2007). Quantification of insect genome divergence. Trends in Genetics, 23, 16–20.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×