Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T12:12:43.206Z Has data issue: false hasContentIssue false

10 - Absorption and thermal issues

Published online by Cambridge University Press:  05 January 2012

Phil Willems
Affiliation:
California Institute of Technology
David Ottaway
Affiliation:
University of Adelaide
Peter Beyersdorf
Affiliation:
San Jose State University
Gregory Harry
Affiliation:
American University, Washington DC
Timothy P. Bodiya
Affiliation:
Massachusetts Institute of Technology
Riccardo DeSalvo
Affiliation:
Università degli Studi del Sannio, Italy
Get access

Summary

Overview

Light incident on high quality optical surfaces and substrates can be lost from the beam in two possible ways. The light can be scattered from the beam due to imperfections such as microroughness or point defects, which is discussed in Chapter 11. Alternatively, the light can be absorbed by the coating or the substrates. Experiments over many decades have shown that for high quality mirrors reflecting radiation in the IR range, the dominant loss mechanism is scatter by often more than an order of magnitude. This large bias towards loss due to scatter makes it very challenging to measure the absorption in such optics. The optical absorption of the mirror coatings in high precision applications like gravitational wave interferometers (see Chapter 14) typically ranges from a fewtenths of parts per million (ppm) to several ppm. Given that the loss in mirrors is completely dominated by scatter, one may ask the question: why then is such a small level of absorption important? The reason is thermal aberrations.

Clearly, absorption at far larger than ppm levels is widely tolerated in many other types of optical instruments – metallic mirror coatings typically absorb a few percent of light incident upon them, for example. But most optical instruments are either of low power, or low precision, or both. Absorption does play a central role in setting the damage threshold intensity in high power optics. Precision measurements are typically not at such high optical power that laser damage is an issue.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×