Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T17:53:38.777Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 January 2012

Gregory Harry
Affiliation:
American University, Washington DC
Timothy P. Bodiya
Affiliation:
Massachusetts Institute of Technology
Riccardo DeSalvo
Affiliation:
Università degli Studi del Sannio, Italy
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, B. P., and The LIGO Scientific Collaboration. 2009. LIGO: The Laser Interferometer Gravitational-Wave Observatory. Reports on Progress in Physics, 72(7), 076901.Google Scholar
Abbott, B., and The LIGO Scientific Collaboration. 2010. Searches for gravitational waves from known pulsars with science run 5 LIGO data. The Astrophysical Journal, 713(1), 671–685.Google Scholar
Abbott, B. P., and The LIGO and Virgo Collaborations. 2009. An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature, 460, 990–994.Google Scholar
Abbott, R., Adhikari, R., Allen, G.et al. 2002. Seismic isolation for Advanced LIGO. Classical and Quantum Gravity, 19(7), 1591–1597.Google Scholar
Abramovici, A., Althouse, W., Camp, J.et al. 1996. Improved sensitivity in a gravitational wave interferometer and implications for LIGO. Physics Letters A, 218(3–6), 157–163.Google Scholar
Abramovici, , Alex, , Althouse, William E., Drever, Ronald W. P.et al. 1992. LIGO: The laser interferometer gravitational-wave observatory. Science, 256, 325–333.Google Scholar
Accadia, T., and The Virgo Collaboration. 2010a. Commissioning status of the Virgo interferometer. Classical and Quantum Gravity, 27(8), 084002.Google Scholar
Accadia, T., and The Virgo Collaboration. 2010b. Virgo calibration and reconstruction of the gravitational wave strain during VSR1. Journal of Physics: Conference Series, 228(1), 012015.Google Scholar
Acernese, F., and The Virgo Collaboration. 2006. The status of Virgo. Classical and Quantum Gravity, 23, S63–S69.Google Scholar
Acernese, F., and The Virgo Collaboration. 2010. Performances of the Virgo interferometer longitudinal control system. Astroparticle Physics, 33(2), 75–80.Google Scholar
Adler, F., Maslowski, P., Foltynowicz, A.et al. 2010. Mid-infrared Fourier transform spectroscopy with a broadband frequency comb. Optics Express, 18(21), 21 861–21 872.Google Scholar
Advanced LIGO Team. 2007. Advanced LIGO reference design. M060056-08-M.
Ageev, Alexandr, Palmer, Belkis Cabrera, Felice, Antonio De, Penn, Steven D., and Saulson, Peter R. 2004. Very high quality factor measured in annealed fused silica. Classical and Quantum Gravity, 21, 3887–3892.Google Scholar
Agresti, Juri. 2008. Researches on non-standard optics for advanced gravitational wave interferometers. Ph.D. thesis, University of Pisa. LIGO-T040225-00-R.
Agresti, J., D'Ambrosio, E., DeSalvo, R.et al. 2006a. Design and construction of a prototype of a flat top beam interferometer and initial tests. Journal of Physics Conference Series, 32(Mar.), 301–308.Google Scholar
Agresti, J., Castaldi, G., DeSalvo, R.et al. 2006b. Optimized multilayer dielectric mirror coatings for gravitational wave interferometers. Page 628608 of: Proceedings of the SPIE, vol. 6286.Google Scholar
Akhiezer, A. 1939. On the absorption of sound in solids. Journal of Physics, 1, 277.Google Scholar
Alexandrovski, A., Route, R. K., and Fejer, M. M. 2001. Absorption studies in sapphire. G010152-00.
Alexandrovski, Alex, Markosyan, Ashot, Fejer, Martin, and Route, Roger. 2009. Photothermal common-path interferometry (PCI): New developments. Page 13 of: Clarkson, W. Andrew, Hodgson, Norman, and Shori, Ramesh K. (eds), Proceedings of Solid State Lasers XVIII: Technology and Devices, vol. 7193.
Allan, D. W. 1966. Statistics of atomic frequency standards. Proceedings of the IEEE, 54(2), 221–230.Google Scholar
Alnis, J., Matveev, A., Kolachevsky, N.et al. 2008a. Stable diode lasers for hydrogen precision spectroscopy. The European Physical Journal – Special Topics, 163, 89–94.Google Scholar
Alnis, J., Matveev, A., Kolachevsky, N., Udem, Th., and Hänsch, T. W. 2008b. Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry–Pérot cavities. Physical Review A, 77(5), 053809.Google Scholar
Anderson, O. L., and Bömmel, H. E. 1955. Ultrasonic absorption in fused silica at low temperatures and high frequencies. Journal of the American Ceramic Society, 38, 125–131.Google Scholar
Anderson, O., and Ottermann, C. 1997. Thin Films on Glass. Springer-Verlag. Chap. Silicon dioxide.
Anderson, O., Bange, K., and Ottermann, C. 1997. Thin Films on Glass. Springer-Verlag. Chap. Titanium dioxide.
Anderson, P. W., Halperin, B. I., and Varma, C. M. 1972. Anomalous low-temperature thermal properties of glasses and spin glasses. Philosophical Magazine, 25, 1–9.Google Scholar
Ando, Masaki, and The DECIGO Collaboration. 2010. DECIGO and DECIGO pathfinder. Classical and Quantum Gravity, 27(8), 084010.Google Scholar
Ando, Masaki, and The TAMA Collaboration. 2001. Stable operation of a 300-m laser interferometer with sufficient sensitivity to detect gravitational-wave events within our galaxy. Physical Review Letters, 86(18), 3950–3954.Google Scholar
Anetsberger, G., Gavartin, E., Arcizet, O.et al. 2010. Measuring nanomechanical motion with an imprecision below the standard quantum limit. Physical Review A, 82, 061804:4.Google Scholar
Antonini, P. 2005. Test of Lorentz invariance using sapphire optical resonators. Ph.D. thesis, Heinrich-Heine-Universität Düsseldorf, Germany.
Antonini, P., Okhapkin, M., Göklü, E., and Schiller, S. 2005. Test of constancy of speed of light with rotating cryogenic optical resonators. Physical Review A, 71(5), 050101.Google Scholar
Arai, K, and The TAMA Collaboration. 2008. Recent progress of TAMA300. Journal of Physics: Conference Series, 120(3), 032010.Google Scholar
Arain, Muzammil A., Quetschke, Volker, Gleason, Josephet al. 2007. Adaptive beam shaping by controlled thermal lensing in optical elements. Applied Optics, 46(12), 2153–2165.Google Scholar
Arcizet, O., Cohadon, P. F., Briant, T., Pinard, M., and Heidmann, A. 2006. Radiation-pressure cooling and optomechanical instability of a micromirror. Nature, 444(7115), 71–74.Google Scholar
Arkwright, J. W. 2006. Fabrication of optical elements with better than λ/1000 thickness uniformity by thin-film deposition through a multi-aperture mask. Thin Solid Films, 515, 854.Google Scholar
Armani, D. K., Kippenberg, T. J., Spillane, S. M., and Vahala, K. J. 2003. Ultra-high-Q toroid microcavity on a chip. Nature, 421(6926), 925–928.Google Scholar
Arndt, M., Aspelmeyer, M., and Zeilinger, A. 2009. How to extend quantum experiments. Fortschritte der Physik, 57, 1153–1162.Google Scholar
Aspelmeyer, Markus, and Schwab, Keith. 2008. Focus on mechanical systems at the quantum limit. New Journal of Physics, 10(9), 095001.Google Scholar
Aspelmeyer, M., Gröblacher, S., Hammerer, K., and Kiesel, N. 2010. Quantum optomechanics – throwing a glance. Journal of the Optical Society of America B, 27(6), A189–A197.Google Scholar
Astrath, N. G. C., Rohling, J. H., Medina, A. N.et al. 2005. Time-resolved thermal lens measurements of the thermo-optical properties of glasses at low temperature down to 20 K. Physical Review B, 71, 214202.Google Scholar
Atanassova, E., Tyuliev, G., Paskaleva, A., Spassov, D., and Kostov, K. 2004. XPS study of N2 annealing effect on thermal Ta2O5 layers on Si. Applied Surface Science, 225(1–4), 86–99.Google Scholar
Audoin, C., Santarelli, G., Makdissi, A., and Clairon, A. 1998. Properties of an oscillator slaved to a periodically interrogated atomic resonator. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 45(4), 877–886.Google Scholar
Azzam, R. M. A., and Bashara, N. M. 1987. Ellipsometry and Polarized Light. Elsevier.
Bach, H., and Neuroth, N. (eds). 1995. The Properties of Optical Glass. Springer-Verlag.
Bagdasarov, Kh. S., Braginsky, V. B., and Mitrofanov, V. P. 1974. Mechanical dissipation in single-crystal sapphire. Kristallografiya, 19, 883.Google Scholar
Bagini, V., Borghi, R., Gori, F.et al. 1996. Propagation of axially symmetric flattened Gaussian beams. Journal of the Optical Society of America A, 13(7), 1385–1394.Google Scholar
Baker, John G., McWilliams, Sean T., Meter, , James, R.et al. 2007. Binary black hole late inspiral: Simulations for gravitational wave observations. Physical Review D, 75(12), 124024.Google Scholar
Bange, K. 1997a. Thin Films on Glass. Springer-Verlag. Chap. Properties and characterization of dielectric thin films.
Bange, K. 1997b. Thin Films on Glass. Springer-Verlag. Chap. Tantulum oxide layers.
Barish, Barry C., and Weiss, Rainer. 1999. LIGO and the detection of gravitational waves. Physics Today, 52(10), 44–50.Google Scholar
Barr, B. W., and Burmeister, O. 2009. Review of all-reflective optics for the Einstein Telescope. Einstein Telescope Document: ET-028-09.
Barros, H. G., Stute, A., Northup, T. E.et al. 2009. Deterministic single-photon source from a single ion. New Journal of Physics, 11(10), 103004.Google Scholar
Bassiri, R., Borisenko, K. B., Cockayne, D. J. H.et al. 2010. Probing the atomic structure of amorphous Ta2O5 mirror coatings for advanced gravitational wave detectors using transmission electron microscopy. Journal of Physics: Conference Series, 241, 012070.Google Scholar
Bassiri, R., Borisenko, K. B., Cockayne, D. J. H.et al. 2011. Probing the atomic structure of amorphous Ta2O5 coatings. Applied Physics Letters, 98, 031904.Google Scholar
Baumeister, P. W. 2004a. Optical Coating Technology. SPIE Press. Chap. How coatings are used and integrated into optical systems.
Baumeister, P. W. 2004b. Optical Coating Technology. SPIE Press. Chap. Collection of the evaporant upon the substrates.
Baumeister, P. W. 2004c. Optical Coating Technology. SPIE Press. Chap. Thin films, the building blocks of multilayers.
Bava, E., Galzerano, G., and Svelto, C. 2006. Amplitude and frequency noise sensitivities of optical frequency discriminators based on Fabry–Perot interferometers and the frequency modulation technique. Review of Scientific Instruments, 77(12).Google Scholar
Beauville, F., and The Virgo Collaboration. 2004. The Virgo large mirrors: a challenge for low loss coatings. Classical and Quantum Gravity, 21(5), S935–S945.Google Scholar
Becker, Jurgen, and Scheuer, Volker. 1990. Coatings for optical applications produced by ion beam sputter deposition. Applied Optics, 29(28), 4303–4309.Google Scholar
Bélanger, P.-A., and Paré, C. 1991. Optical resonators using graded-phase mirrors. Optics Letters, 16(July), 1057–1059.Google Scholar
Bennett, Jean M., Pelletier, Emile, Albrand, G.et al. 1989. Comparison of the properties of titanium dioxide films prepared by various techniques. Applied Optics, 28(16), 3303–3317.Google Scholar
Benthem, Bruin, and Levin, Yuri. 2009. Thermorefractive and thermochemical noise in the beamsplitter of the GEO600 gravitational-wave interferometer. Physical Review D, 80(6), 062004.Google Scholar
Berry, B. S., and Pritchet, W. C. 1975. Vibrating reed internal friction apparatus for films and foils. IBM Journal of Research and Development, 19, 334–343.Google Scholar
Berthold, J. W., and Jacobs, S. F. 1976. Ultraprecise thermal expansion measurements of seven low expansion materials. Applied Optics, 15, 2344–2347.Google Scholar
Betzweiser, J., Kawabe, K., Rakhmanov, M., and Savage, R. 2005. Summary of recent measurements of g factor changes induced by thermal loading in the H1 interferometer. LIGO-G050111-00-W.
Beyersdorf, Peter. 2001. The polarization Sagnac interferometer for gravitational wave detection. Ph.D. thesis, Stanford University.
Bignotto, M., Bonaldi, M., Cerdonio, M.et al. 2008. Low temperature mechanical dissipation measurements of silicon and silicon carbide as candidate material for DUAL detector. Journal of Physics: Conference Series, 122(1), 012030.Google Scholar
Binh, L. N., Netterfield, R. P., and Martin, P. J. 1985. Low-loss waveguiding in ion-assisted-deposited thin films. Applications of Surface Science, 22–23(Part 2), 656–662.Google Scholar
Bize, S., Laurent, P., Abgrall, M.et al. 2005. Cold atom clocks and applications. Journal of Physics B: Atomic, Molecular and Optical Physics, 38, S449–S468.Google Scholar
Bjorlin, E. S., Kimura, T., Chen, Q., Wang, C., and Bowers, J. E. 2004. High output power 1540 nm vertical cavity semiconductor optical amplifiers. Electronics Letters, 40(2), 121–123.Google Scholar
Black, E. 2001. An introduction to Pound–Drever–Hall laser frequency stabilization. American Journal of Physics, 69, 79–87.Google Scholar
Black, Eric D., Villar, Akira, Barbary, Kyleet al. 2004a. Direct observation of broadband coating thermal noise in a suspended interferometer. Physics Letters A, 328, 1–5.Google Scholar
Black, Eric D., Grudinin, Ivan S., Rao, Shanti R., and Libbrecht, Kenneth G. 2004b. Enhanced photothermal displacement spectroscopy for thin-film characterization using a Fabry-Perot resonator. Journal of Applied Physics, 95(12), 7655–7659.Google Scholar
Black, Eric D., Villar, Akira, and Libbrecht, Kenneth G. 2004c. Thermoelastic-damping noise from sapphire mirrors in a fundamental-noise-limited interferometer. Physical Review Letters, 93(Dec), 241101.Google Scholar
Blair, David, and Munch, Jesper. 2009. The Australian international gravitational observatory. Australian Physics, 46(4).Google Scholar
Blair, D., Cleva, F., and Man, C. N. 1997. Optical absorption measurements in monocrystalline sapphire at 1 μm. Optical Materials, 8, 233–236.Google Scholar
Blanchet, Luc, Iyer, Bala R., Will, Clifford M., and Wiseman, Alan G. 1996. Gravitational waveforms from inspiralling compact binaries to second-post-Newtonian order. Classical and Quantum Gravity, 13(4), 575.Google Scholar
Blatt, S., Ludlow, A. D., Campbell, G. K.et al. 2008. New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks. Physical Review Letters, 100(14), 140801.Google Scholar
Boca, A., Miller, R., Birnbaum, K.M.et al. 2004. Observation of the vacuum Rabi spectrum for one trapped atom. Physical Review Letters, 93(23), 233603.Google Scholar
Boggess, T., Smirl, A., Moss, S., Boyd, I., and Van Stryland, E. 1985. Optical limiting in GaAs. IEEE Journal of Quantum Electronics, 21(5), 488–494.Google Scholar
Böhm, H. R. B, Gigan, S. A., Blaser, F. B.et al. 2006. High reflectivity high-Q micromechanical Bragg mirror. Applied Physics Letters, 89(22), 223101.Google Scholar
Bömmel, H. E., Mason, W. P., and Warner, A. W. 1956. Dislocations, relaxations, and anelasticity of crystal quartz. Physical Review, 102, 64–71.Google Scholar
Bondarescu, Mihai, and Thorne, Kip S. 2006. New family of light beams and mirror shapes for future LIGO interferometers. Physical Review D, 74, 082003.Google Scholar
Bondarescu, M., Kogan, O., and Chen, Y. 2008. Optimal light beams and mirror shapes for future LIGO interferometers. Physical Review D, 78(8), 082002.Google Scholar
Bondu, François, Hello, Patrice, and Vinet, Jean-Yves. 1998. Thermal noise in mirrors of interferometric gravitational wave antennas. Physics Letters A, 246(3–4), 227–236.Google Scholar
Bondu, R., Fritschel, R., Man, C. N., and Brillet, A. 1996. Ultrahigh-spectral-purity laser for the Virgo experiment. Optics Letters, 21, 582–584.Google Scholar
Bongs, K., Burger, S., Dettmer, S.et al. 2001. Waveguide for Bose–Einstein condensates. Physical Review A, 63(3), 031602.Google Scholar
Boozer, A. D., Boca, A., Miller, R., Northup, T. E., and Kimble, H. J. 2006. Cooling to the ground state of axial motion for one atom strongly coupled to an optical cavity. Physical Review Letters, 97, 083602.Google Scholar
Boozer, A. D., Boca, A., Miller, R., Northup, T. E., and Kimble, H. J. 2007. Reversible state transfer between light and a single trapped atom. Physical Review Letters, 98, 193601.Google Scholar
Borisenko, K. B., Chen, Y., Song, S. A., Nguyen-Manh, D., and Cockayne, D. J. H. 2009a. A concerted rational crystallization/amorphization mechanism of Ge2Sb2Te5. Journal of Non-Crystalline Solids, 355(43–44), 2122–2126.Google Scholar
Borisenko, Konstantin B., Chen, Yixin, Song, Se Ahn, and Cockayne, David J. H. 2009b. Nanoscale phase separation and building blocks of Ge2Sb2Te5N and Ge2Sb2Te5N2 thin films. Chemistry of Materials, 21, 5244–5251.Google Scholar
Born, Max, and Wolf, Emil. 1999. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (7th Edition). Cambridge University Press.
Braccini, S., and The Virgo Collaboration. 2005. Measurement of the seismic attenuation performance of the Virgo Superattenuator. Astroparticle Physics, 23(6), 557–565.Google Scholar
Brady, Gregory R., Ellis, A.Robert, Moehring, David, L.et al. 2011. Integration of fluorescence collection optics with a microfabricated surface electrode ion trap. Applied Physics B, 103(4), 801–808.Google Scholar
Braginsky, V. B., and Khalili, F. Ya. 1992. Quantum Measurement. Cambridge University Press.
Braginsky, V. B., and Vyatchanin, S. P. 2002. Low quantum noise tranquilizer for Fabry–Perot interferometer. Physics Letters A, 293, 228–234.Google Scholar
Braginsky, V. B., and Vyatchanin, S. P. 2003a. Thermodynamical fluctuations in optical mirror coatings. Physics Letters A, 312(3–4), 244–255.Google Scholar
Braginsky, V. B., and Vyatchanin, S. P. 2003b. Thermodynamical fluctuations in optical mirror coatings. ArXiv:cond-mat/0302617 v5.
Braginsky, V. B., and Vyatchanin, S. P. 2004. Corner reflectors and quantum-non-demolition measurements in gravitational wave antennae. Physics Letters A, 324(1), 345–360.Google Scholar
Braginsky, V. B., Manukin, A. B., and Tikhonov, M. Y. 1970. Investigation of dissipative ponderomotive effects of electromagnetic radiation. Soviet Physics JETP, 31, 829.Google Scholar
Braginsky, V. B., Vyatchanin, S. P., and Panov, V. I. 1979. On the ultimate stability of frequency in self-oscillators. Soviet Physics-Doklady, 247, 583–586.Google Scholar
Braginsky, V. B., Mitrofanov, V. P., and Panov, V. I. 1985. Systems with Small Dissipation. University of Chicago Press.
Braginsky, V. B., Gorodetsky, M. L., and Vyatchanin, S. P. 1999. Thermodynamical fluctuations and photo-thermal shot noise in gravitational wave antennae. Physics Letters A, 264, 1–10.Google Scholar
Braginsky, V. B., Gorodetsky, M. L., and Vyatchanin, S. P. 2000. Thermo-refractive noise in gravitational wave antennae. Physics Letters A, 271(5–6), 303–307.Google Scholar
Braginsky, V. B., Khalili, F. Ya., and Volikov, P. S. 2001. The analysis of table-top quantum measurement with macroscopic masses. Physics Letters A, 287(1–2), 31–38.Google Scholar
Braginsky, V. B., Gorodetsky, M. L., Khalili, F. Ya. et al. 2003. The noise in gravitational wave detectors and other classical-force measurements is not influenced by test-mass quantization. Physical Review D, 67, 082001.Google Scholar
Braginsky, V. B., Ryazhskaya, O. G., and Vyatchanin, S. P. 2006a. Limitations in quantum measurements resolution created by cosmic rays. Physics Letters A, 359, 86–89.Google Scholar
Braginsky, V. B., Ryazhskaya, O. G., and Vyatchanin, S. P. 2006b. Notes about noise in gravitational wave antennas created by cosmic rays. Physics Letters A, 350(1–2), 1–4.Google Scholar
Braxmaier, C., Müller, H., Pradl, O. et al. 2002. Tests of relativity using a cryogenic optical resonator. Physical Review Letters, 88, 010401.Google Scholar
Brennecke, Ferdinand, Donner, Tobias, Ritter, Stephan. et al. 2007. Cavity QED with a Bose-Einstein condensate. Nature, 450(7167), 268–271.Google Scholar
Brennecke, Ferdinand, Ritter, Stephan, Donner, Tobias, and Esslinger, Tilman. 2008. Cavity optomechanics with a Bose–Einstein condensate. Science, 322(5899), 235–238.Google Scholar
Brillet, A., and Hall, J. L. 1979. Improved laser test of the isotropy of space. Physical Review Letters, 42(9), 549–552.Google Scholar
Brodoceanu, D., Cole, G. D., Kiesel, N., Aspelmeyer, M., and Baeuerle, D. 2010. Femtosecond laser fabrication of high reflectivity micromirrors. Applied Physics Letters, 97(4), 041104.Google Scholar
Brooks Aidan, F., Hosken, David, Munch, Jesper et al. 2009. Direct measurement of absorption-induced wavefront distortion in high optical power systems. Applied Optics, 48(2), 355–364.Google Scholar
Brown, R. 1828. A brief account of microscopical observations made in themonths of June, July and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Philosophical Magazine, 4, 161–173.Google Scholar
Brown, R. 1970. Handbook of Thin Film Technology. McGraw Hill. Chap. The nature of physical sputtering.
Brückner, Frank, Clausnitzer, Tina, Burmeister, Oliver et al. 2008. Monolithic dielectric surfaces as new low-loss light-matter interfaces. Optics Letters, 33(3), 264–266.Google Scholar
Brückner, Frank, Friedrich, Daniel, Clausnitzer, Tina et al. 2009. Demonstration of a cavity coupler based on a resonant waveguide grating. Optics Express, 17(1), 163–169.Google Scholar
Brückner, Frank, Friedrich, Daniel, Clausnitzer, Tina et al. 2010. Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal. Physical Review Letters, 104(16), 163903.Google Scholar
Buck, Joseph, R. 2003. Cavity QED in microsphere and Fabry–Perot cavities. Ph.D. thesis, California Institute of Technology, Pasadena, CA.
Bunkowski, A., Burmeister, O., Beyersdorf, P. et al. 2004. Low-loss grating for coupling to a high-finesse cavity. Optics Letters, 29(20), 2342–2344.Google Scholar
Bunkowski, A., Burmeister, O., Friedrich, D., Danzmann, K., and Schnabel, R. 2006. High reflectivity grating waveguide coatings for 1064 nm. Classical and Quantum Gravity, 23(24), 7297–7303.Google Scholar
Buonanno, Alessandra and Chen, Yanbei. 2001. Quantum noise in second generation, signal-recycled laser interferometric gravitational-wave detectors. Physical Review D, 64(4), 042006.Google Scholar
Burmeister, Oliver, Britzger, Michael, Thüring, André et al. 2010. All-reflective coupling of two optical cavities with 3-port diffraction gratings. Optics Express, 18(9), 9119–9132.Google Scholar
Buzea, Cristina, and Robbie, Kevin. 2005. State of the art in thin film thickness and deposition rate monitoring sensors. Reports on Progress in Physics, 68(2), 385–409.Google Scholar
Callen, Herbert, B., and Greene, Richard, F. 1952. On a theorem of irreversible thermodynamics. Physical Review, 86, 702–710.Google Scholar
Callen, Herbert, B., and Welton, Theodore, A. 1951. Irreversibility and generalized noise. Physical Review, 83(1), 34–40.Google Scholar
Camp, Jordan, Billingsley, Garilynn, Kells, William, P. et al. 2002. LIGO optics: initial and advanced. Page 1 of: Proceedings of the SPIE, vol. 4679.Google Scholar
Campbell, G. K., Ludlow, A. D., Blatt, S. et al. 2008. The absolute frequency of the 87Sr optical clock transition. Metrologia, 45, 539–548.Google Scholar
Campbell, G. K., Boyd, M. M., Thomsen, J. W. et al. 2009. Probing interactions between ultracold fermions. Science, 324(5925), 360–363.Google Scholar
Caparrelli, S., Majorana, E., Moscatelli, V. et al. 2006. Vibration-free cryostat for low-noise applications of a pulse tube cryocooler. Review of Scientific Instruments, 77(9), 095102.Google Scholar
Carmon, Tal, Kippenberg, Tobias, Yang, Lan et al. 2005. Feedback control of ultra-high-Q microcavities: Application to micro-Raman lasers and microparametric oscillators. Optics Express, 13(9), 3558–3566.Google Scholar
Caves, Carlton, M. 1981. Quantum-mechanical noise in an interferometer. Physical Review D, 23(8), 1693–1708.Google Scholar
Caves, Carlton, M., Thorne, Kip, S., Drever, Ronald, W. P., Sandberg, Vernon, D., and Zimmermann, Mark. 1980. On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle. Reviews of Modern Physics, 52(2), 341–392.Google Scholar
Cerdonio, M., Conti, L., Heidmann, A., and Pinard, M. 2001. Thermoelastic effects at low temperatures and quantum limits in displacement measurements. Physical Review D, 63, 082003.Google Scholar
Chan, Hilton, W., Black, Adam, T.Vuletić, Vladan. 2003. Observation of collectiveemission-induced cooling of atoms in an optical cavity. Physical Review Letters, 90(6), 063003.Google Scholar
Chan, J., Mayer, Alegre, T. P., Satvi-Naeini, A. H. et al. 2011. Laser cooling of a nano mechanical oscillator into its quantum ground state. an XIV:1106.3614.
Chaneliere, C., Autran, J. L., Devine, R. A. B., and Balland, B. 1998. Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications. Materials Science and Engineering: R: Reports, 22(6), 269–322.Google Scholar
Chao, Shiuh, Chang, Cheng-Kuel, and Chen, Jyh-Shin. 1991. TiO2–SiO2 mixed films prepared by the fast alternating sputter method. Applied Optics, 30(22), 3233–3237.Google Scholar
Chao, Shiuh, Wang, Wen-Hsiang, Hsu, Min-Yu, and Wang, Liang-Chu. 1999. Characteristics of ion-beam-sputtered high-refractive-index TiO2–SiO2 mixed films. Journal of the Optical Society of America A, 16(6), 1477–1483.Google Scholar
Chao, Shiuh, Wang, Wen-Hsiang, and Lee, Cheng-Chung. 2001. Low-loss dielectric mirror with ion-beam-sputtered TiO2–SiO2 mixed films. Applied Optics, 40(13), 2177–2182.Google Scholar
Charbonneau, P. 2002. An Introduction to Genetic Algorithms for Numerical Optimization. NCAR Technical Note TN-450+IA.
Chelkowski, Simon, Hild, Stefan, and Freise, Andreas. 2009. Prospects of higher-order Laguerre–Gauss modes in future gravitational wave detectors. Physical Review D, 79(12), 122002.Google Scholar
Chen, Jyh-Shin, Chao, Shiuh, Kao, Jiann-Shiun, Niu, Huan, and Chen, Chih-Hsin. 1996. Mixed films of TiO2–SiO2 deposited by double electron-beam coevaporation. Applied Optics, 35(1), 90–96.Google Scholar
Chen, L., Hall, J. L., Ye, J. et al. 2006a. Vibration-induced elastic deformation of Fabry-Perot cavities. Physical Review A, 74, 053801.Google Scholar
Chen, Yanbei, and Kawamura, Seiji. 2006. Displacement- and timing-noise-free gravitational-wave detection. Physical Review Letters, 96(23), 231102.Google Scholar
Chen, Yanbei, Pai, Archana, Somiya, Kentaro et al. 2006b. Interferometers for displacement-noise-free gravitational-wave detection. Physical Review Letters, 97(15), 151103.Google Scholar
Chou, C. W., Hume, D. B., Koelemeij, J. C. J., Wineland, D. J., and Rosenband, T. 2010. Frequency comparison of two high-accuracy Al+ optical clocks. Physical Review Letters, 104(7), 070802.Google Scholar
Chu, A., Lin, H., and Cheng, W. 1997. Temperature dependence of refractive index of Ta2O5 dielectric films. Journal of Electronic Materials, 26, 889–892. 10.1007/s11664-997-0269-3.Google Scholar
Church, Eugene, L. 1988. Fractal surface finish. Applied Optics, 27(8), 1518–1526.Google Scholar
Cimma, B., Forest, D., Ganau, P. et al. 2006. Ion beam sputtering coatings on large substrates: Toward an improvement of the mechanical and optical performances. Applied Optics, 45(Mar.), 1436–1439.Google Scholar
Clausnitzer, Tina, Kley, E.-B., Tünnermann, A. et al. 2005. Ultra low-loss low-efficiency diffraction gratings. Optics Express, 13(12), 4370–4378.Google Scholar
Cleland, A. N., and Geller, M. R. 2004. Superconducting qubit storage and entanglement with nanomechanical resonators. Physical Review Letters, 93, 070501.Google Scholar
Cockayne, D. J. H. 2009. The study of nanovolumes of amorphous materials using electron scattering. Annual Review of Materials Research, 37, 159–187.Google Scholar
Cohadon, P. F., Heidmann, A., and Pinard, M. 1999. Cooling of a mirror by radiation pressure. Physical Review Letters, 83(16), 3174–3177.Google Scholar
Cole, G. D., Bjorlin, E. S., Chen, Qi et al. 2005. MEMS-tunable vertical-cavity SOAs. IEEE Journal of Quantum Electronics, 41(3), 390–407.Google Scholar
Cole, G. D., Groblacher, S., Gugler, K., Gigan, S., and Aspelmeyer, M. 2008. Monocrystalline AlxGa1−x As heterostructures for high-reflectivity high-Q micromechnical resonators in the megahertz regime. Applied Physics Letters, 92, 261108.Google Scholar
Cole, G. D., Wilson-Rae, I., Werbach, K., Vanner, M. R., and Aspelmeyer, M. 2010a. Minimization of phonon tunneling dissipation in mechanical resonators. arXiv:1007.4948.
Cole, Garrett, D., Bai, Yu, Aspelmeyer, Markus, and Fitzgerald, Eugene, A. 2010b. Freestanding AlxGa1−x As heterostructures by gas-phase etching of germanium. Applied Physics Letters, 96(26), 261102.Google Scholar
Cole, G. D., Wilson-Rae, I., Vanner, M. R. et al. 2010c (Jan.). Megahertz monocrystalline optomechanical resonators with minimal dissipation. Pages 847–850 of: 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS).Google Scholar
Cole, Garrett, D., Wilson-Rae, Ignacio, Werbach, Katharina, Vanner, Michael, R., and Aspelmeyer, Markus. 2011. Phonon-tunnelling dissipation in mechanical resonators. Nature Communications, 2, 231.Google Scholar
Colombe, Y., Steinmetz, T., Dubois, G. et al. 2007. Strong atom–field coupling for Bose–Einstein condensates in an optical cavity on a chip. Nature, 450, 272–276.Google Scholar
Commandre, M., and Roche, P. 1996. Characterization of optical coatings by photothermal deflection. Applied Optics, 35(25), 5021–5034.Google Scholar
Conti, L., Rosa, M. D., and Marin, F. 2003. High-spectral-purity laser system for the AURIGA detector optical readout. Journal of the Optical Society of America, 20, 462–468.Google Scholar
Corbitt, Thomas, Wipf, Christopher, Bodiya, Timothy et al. 2007. Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK. Physical Review Letters, 99(16), 160801.Google Scholar
Crooks, D. R. M., Sneddon, P, Cagnoli, G. et al. 2002. Excess mechanical loss associated with dielectric mirror coatings on test masses in interferometric gravitational wave detectors. Classical and Quantum Gravity, 19(5), 883–896.Google Scholar
Crooks, D. R. M., Cagnoli, G., Fejer, M. M. et al. 2004. Experimental measurements of coatingmechanical loss factors. Classical and Quantum Gravity, 21(5), S1059–S1065.Google Scholar
Crooks, D. R. M., Cagnoli, G., Fejer, M. M. et al. 2006. Experimental measurements of mechanical dissipation associated with dielectric coatings formed using SiO2, Ta2O5 and Al2O3. Classical and Quantum Gravity, 23(15), 4953–4965.Google Scholar
Cundiff, S. T., and Ye, J. 2003. Colloquium: Femtosecond optical frequency combs. Reviews of Modern Physics, 75(1), 325–342.Google Scholar
Cunningham, L., Murray, P. G., Cumming, A. et al. 2010. Re-evaluation of the mechanical loss factor of hydroxide-catalysis bonds and its significance for the next generation of gravitational wave detectors. Physics Letters A, 374(39), 3993–3998.Google Scholar
Cuthbertson, B. D., Tobar, M. E., Fvanov, E. N., and Blair, D. G. 1996. Parametric back-action effects in a high-Q cryogenic sapphire transducer. Review of Scientific Instruments, 67, 2435–2442.Google Scholar
Cutler, Curt, Apostolatos, Theocharis, A., Bildsten, Lars et al. 1993. The last three minutes: Issues in gravitational-wave measurements of coalescing compact binaries. Physical Review Letters, 70(20), 2984–2987.Google Scholar
D'Ambrosio, E. 2003. Nonspherical mirrors to reduce thermoelastic noise in advanced gravitational wave interferometers. Physical Review D, 67(10), 102004.Google Scholar
D'Ambrosio, E., O'Shaughnessy, R., Thorne, K. et al. 2004a. Advanced LIGO: non- Gaussian beams. Classical and Quantum Gravity, 21(Mar.), 867–873.Google Scholar
D'Ambrosio, E., O'Shaughnessy, R., Strigin, S., Thorne, K. S., and Vyatchanin, S. 2004b (Sept.). Reducing thermoelastic noise in gravitational-wave interferometers by flattening the light beams. arXiv:gr-qc/0409075.
Davies, John, H. 1998. The Physics of Low-dimensional Semiconductors. Cambridge University Press.
Day, T., Gustafson, E. K., and Byer, R. L. 1992. Sub-Hertz relative frequency stabilization of two-diode laser-pumped Nd:YAG lasers locked to a Fabry–Perot interferometer. IEEE Journal of Quantum Electronics, 28(4), 1106–1117.Google Scholar
De Rosa, M., Conti, L., Cerdonio, M., Pinard, M., and Marin, F. 2002. Experimental measurement of the dynamic photothermal effect in Fabry–Perot cavities for gravitational wave detectors. Physical Review Letters, 89(23), 237402.Google Scholar
de Silvestri, S., Laporta, P., Magni, V., Svelto, O., and Majocchi, B. 1988. Unstable laser resonators with super-Gaussian mirrors. Optics Letters, 13(Mar.), 201–203.Google Scholar
Demiryont, H., Sites, James, R., and Geib, Kent. 1985. Effects of oxygen content on the optical properties of tantalum oxide films deposited by ion-beam sputtering. Applied Optics, 24(4), 490–495.Google Scholar
Demiryont, Hulya. 1985. Optical properties of SiO2–TiO2 composite films. Applied Optics, 24(16), 2647–2650.Google Scholar
Diddams, S. A., Udem, T., Bergquist, J. C. et al. 2001. An optical clock based on a single trapped 199Hg+ ion. Science, 293(5531), 825–828.Google Scholar
Dobkin, D. M., and Zuraw, M. K. 2003. Principles of Chemical Vapor Deposition: What's Going on Inside the Reactor. Kluwer Academic.
Doremus, R. H. 1979. Treatise on Material Science and Technology. Academic.
Dorsel, A., McCullen, J. D., Meystre, P., Vignes, E., and Walther, H. 1983. Optical bistability and mirror confinement induced by radiation pressure. Physical ReviewLetters, 51(17), 1550–1553.Google Scholar
Drever, R. W. P, Hall, J. L., Kowalski, F. V. et al. 1983. Laser phase and frequency stabilization using an optical resonator. Applied Physics B, 31, 97–105.Google Scholar
Dubin, F., Russo, C., Barros, H.G. et al. 2010. Quantum to classical transition in a single-ion laser. Nature Physics, 6(5), 350–353.Google Scholar
Duwel, Amy, Candler, Rob, N., Kenny, Thomas, W., and Varghese, Mathew. 2006. Engineering MEMS resonators with low thermoelastic damping. Journal of Microelectromechanical Systems, 15(6), 1437–1445.Google Scholar
Edgar, M. P., Barr, B. W., Nelson, J. et al. 2010. Experimental demonstration of a suspended, diffractively coupled Fabry–Perot cavity. Classical and Quantum Gravity, 27(8), 084029.Google Scholar
Eichenfield, Matt, Chan, Jasper, Camacho, Ryan, M., Vahala, Kerry, J., and Painter, Oskar. 2009. Optomechanical crystals. Nature, 462(7269), 78–82.Google Scholar
Einstein, A. 1905. On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heat. Annalen der Physik, 17, 549–560.Google Scholar
Einstein, A. 1915. Zur allgemeinen Relativitätstheorie. Preussische Akademie der Wissenschaften, Sitzungsberichte, 778–786.Google Scholar
Einstein, A. 1916. Grundlage der allgemeinen Relativitätstheorie. Annalen der Physik, 49, 769–822.Google Scholar
Eisele, C., Nevsky, A. Y., and Schiller, S. 2009. Laboratory test of the isotropy of light propagation at the 10−17 level. Physical Review Letters, 103(9), 090401.Google Scholar
Eisele, Ch., Okhapkin, M., Nevsky, A. Yu., and Schiller, S. 2008. A crossed optical cavities apparatus for a precision test of the isotropy of light propagation. Optics Communications, 281(5), 1189–1196.Google Scholar
Elson, J. M., and Bennett, J. M. 1979. Relation between the angular dependence of scattering and the statistical properties of optical surfaces. Journal of the Optical Society of America, 69(1), 31–47.Google Scholar
Ernsting, I. 2009. Entwicklung und Anwendung eines Frequenzkamm-basierten Lasersystems für die Präzisions-Spektroskopie an ultrakalten Molekülen und Atomen. Ph.D. thesis, Heinrich-Heine-Universität Düsseldorf, Germany.
Evans, M., Ballmer, S., Fejer, M.et al. 2008. Thermo-optic noise in coated mirrors for high-precision optical measurements. Physical Review D, 78(10), 102003.Google Scholar
Exner, F. M. 1900. Notiz zu Brown's molecularbewegung. Annalen der Physik, 2, 843.Google Scholar
Fabre, C., Pinard, M., Bourzeix, S.et al. 1994. Quantum-noise reduction using a cavity with a movable mirror. Physical Review A, 49(2), 1337–1343.Google Scholar
Favero, Ivan, and Karrai, Khaled. 2009. Optomechanics of deformable optical cavities. Nature Photonics, 3, 201–205.Google Scholar
Fejer, M. M., Rowan, S., Cagnoli, G.et al. 2004. Thermoelastic dissipation in inhomogeneous media: Loss measurements and displacement noise in coated test masses for interferometric gravitational wave detectors. Physical Review D, 70(8), 082003.Google Scholar
Ferreirinho, J. 1991. Internal friction in high Q materials. Pages 116–168 of: The Detection of Gravitational Waves. Cambridge University Press.
Fine, M. E., van Duyne, H., and Kenney, Nancy T. 1954. Low-temperature internal friction and elasticity effects in vitreous silica. Journal of Applied Physics, 25, 402–405.Google Scholar
Flaminio, R., Franc, J., Michel, C.et al. 2010. A study of coating mechanical and optical losses in view of reducing mirror thermal noise in gravitational wave detectors. Classical and Quantum Gravity, 27, 084030.Google Scholar
Flanagan, Eanna, and Thorne, Kip. 1995. Scattered-light noise for LIGO. T950102-00-R.
Forbes, A., Du Preez, N. C., Belyi, V., and Botha, L. R. 2009 (Aug.). Paint stripping with high power flattened Gaussian beams. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, vol. 7430.
Foreman, Seth M., Ludlow, Andrew D., Miranda, , Marcio, H. G.et al. 2007. Coherent optical phase transfer over a 32 km fiber with 1 s instability at 10-17. Physical Review Letters, 99(15), 153601.Google Scholar
Fortier, Kevin M., Kim, Soo Y., Gibbons, Michael J., Ahmadi, Peyman, and Chapman, Michael S. 2007a. Deterministic loading of individual atoms to a high-finesse optical cavity. Physical Review Letters, 98(23), 233601.Google Scholar
Fortier, T. M., Ashby, N., Bergquist, J. C.et al. 2007b. Precision atomic spectroscopy for improved limits on variation of the fine structure constant and local position invariance. Physical Review Letters, 98(7), 070801.Google Scholar
Fox, R. W. 2009. Temperature analysis of low-expansion Fabry-Perot cavities. Optics Express, 17(17), 15023–15031.Google Scholar
Franc, J., Morgado, N., Flaminio, R.et al. 2009. Mirror thermal noise in laser interferometer gravitational wave detectors operating at room and cryogenic temperature. ArXiv 0912.0107, Dec.Google Scholar
Franc, Janyce, Galimberti, Massimo, Flaminio, Raffaeleet al. 2010. Role of high-order Laguerre-Gauss modes on mirror thermal noise in gravitational wave detectors. ET note ET-0002A-09. Einstein Telescope.
Freise, A., and Strain, K. 2010. Interferometer techniques for gravitational-wave detection. Living Reviews in Relativity, 13(Feb.).Google Scholar
Freise, A., Bunkowski, A., and Schnabel, R. 2007. Phase and alignment noise in grating interferometers. New Journal of Physics, 9(12), 433.Google Scholar
Friedrich, Daniel, Burmeister, Oliver, Bunkowski, Alexanderet al. 2008. Diffractive beam splitter characterization via a power-recycled interferometer. Optics Letters, 33(2), 101–103.Google Scholar
Fritschel, Peter. 2006. Backscattering from the AS port: Enhanced and Advanced LIGO. LIGO-T060303-01.
Fritschel, P., and Zucker, M. E. 2010. Wide-angle scatter from LIGO arm cavities. LIGOT070089.
Friz, M., and Waibel, F. 2003. Optical Interference Coatings. Springer-Verlag. Chap. Coating materials.
Fujiwara, Hiroyuki. 2007. Spectroscopic Ellipsometry: Principles and Applications. John Wiley and Sons.
Fulda, P., Kokeyama, K., Chelkowski, S., and Freise, A. 2010. Experimental demonstration of higher-order Laguerre-Gauss mode interferometry. arXiv:1005.2990F, May.
Galdi, V., Castaldi, G., Pierro, V.et al. 2006. Analytic structure of a family of hyperboloidal beams of potential interest for advanced LIGO. Physical Review D, 73(12), 127101.Google Scholar
Genes, C., Vitali, D., Tombesi, P., Gigan, S., and Aspelmeyer, M. 2008a. Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes. Physical Review A, 77(3), 033804.Google Scholar
Genes, C., Mari, A., Tombesi, P., and Vitali, D. 2008b. Robust entanglement of a micromechanical resonator with output optical fields. Physical Review A, 78(3), 032316.Google Scholar
Genes, C., Mari, A., Vitali, D., and Tombesi, P. 2009. Quantum effects in optomechanical systems. Advances in Atomic, Molecular, and Optical Physics, 57, 33–86.Google Scholar
Gibson, Graham, Courtial, Johannes, Padgett, Mileset al. 2004. Free-space information transfer using light beams carrying orbital angular momentum. Optics Express, 12(22), 5448–5456.Google Scholar
Gigan, S., Boehm, H. R., Paternostro, M.et al. 2006. Self-cooling of a micromirror by radiation pressure. Nature, 444(7115), 67–70.Google Scholar
Gillespie, A., and Raab, F. 1995. Thermally excited vibrations of the mirrors of laser interferometer gravitational-wave detectors. Physical Review D, 52(2), 577–585.Google Scholar
Gilroy, K. S., and Phillips, W. A. 1981. An asymmetric double-well potential model for structural relaxation processes in amorphous materials. Philosophical Magazine B, 43, 735–746.Google Scholar
Girvin, S. M., Devoret, M. H., and Schoelkopf, R. J. 2009. Circuit QED and engineering charge-based superconducting qubits. Physica Scripta, 2009(T137), 014012.Google Scholar
Goda, K., Miyakawa, O., Mikhailov, E. E.et al. 2008. A quantum-enhanced prototype gravitational-wave detector. Nature Physics, 4(6), 472–476.Google Scholar
Gohle, C., Udem, T., Herrmann, M.et al. 2005. Afrequency comb in the extreme ultraviolet. Nature, 436, 234–237.Google Scholar
Gonzalez, Gabriela I., and Saulson, Peter R. 1994. Brownian motion of a mass suspended by an anelastic wire. The Journal of the Acoustical Society of America, 96(1), 207–212.Google Scholar
Gonzalez, Gabriela I., and Saulson, Peter R. 1995. Brownian motion of a torsion pendulum with internal friction. Physics Letters A, 201(1), 12–18.Google Scholar
Gori, F. 1994. Flattened gaussian beams. Optics Communications, 107(May), 335–341.Google Scholar
Gorodetsky, Michael L. 2008. Thermal noises and noise compensation in high-reflection multilayer coating. Physics Letters A, 372(46), 6813–6822.Google Scholar
Gorodetsky, M. L., and Grudinin, I. S. 2004. Fundamental thermal fluctuations in microspheres. Journal of the Optical Society of America B, 21, 697–705.Google Scholar
Goßler, S., Bertolini, A., Born, M.et al. 2010. The AEI 10 m prototype interferometer. Classical and Quantum Gravity, 27(8), 084023.Google Scholar
Gouy, M. 1888. Note sur le mouvement brownien. Journal de Physique, 7, 561.Google Scholar
Green, J. E., Barnett, S. A., Sundgren, J. E., and Rockett, A. 1989. Ion Beam Assisted Film Growth. Elsevier. Chap. Low-energy ion/surface interaction during film growth from the vapor phase.
Green, M. A., and Keevers, M. J. 1995. Optical properties of intrinsic silicon at 300 K. Progress in Photovoltaics: Research and Applications, 3(3), 189–192.Google Scholar
Greene, Richard F., and Callen, Herbert B. 1951. On the formalism of thermodynamic fluctuation theory. Physical Review, 83(Sep.), 1231–1235.Google Scholar
Greenhall, C. A. 1997 (May). Does Allan variance determine the spectrum? Pages 358–365 of: Proceedings of the 1997 IEEE International Frequency Control Symposium.Google Scholar
Gretarsson, Andri. 2008. Thermo-optic noise from doped tantala/silica coatings. LIGOG080151-00-Z.
Gretarsson, A., and Harry, G. 1999. Dissipation of mechanical energy in used silica fibres. Review of Scientific Instruments, 70(10), 4081–4087.Google Scholar
Gröblacher, S., Gigan, S., Böhm, H. R., Zeilinger, A., and Aspelmeyer, M. 2008. Radiationpressure self-cooling of a micromirror in a cryogenic environment. Europhysics Letters, 81, 54003.Google Scholar
Gröblacher, Simon, Hertzberg, J. B., Vanner, M. R.et al. 2009a. Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity. Nature Physics, 5, 485–488.Google Scholar
Gröblacher, Simon, Hammerer, Klemens, Vanner, Michael R., and Aspelmeyer, Markus. 2009b. Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature, 460(7256), 724–727.Google Scholar
Gurkovsky, A., and Vyatchanin, S. 2010. The thermal noise in multilayer coating. Physics Letters A, 374, 3267–3274.Google Scholar
Guthöhrlein, G. R., Keller, M., Hayasaka, K., Lange, W., and Walther, H. 2001. A single ion as a nanoscopic probe of an optical field. Nature, 414, 49–51.Google Scholar
Hadjar, Y., Cohadon, P. F., Aminoff, C. G., Pinard, M., and Heidmann, A. 1999. Highsensitivity optical measurement of mechanical Brownian motion. Europhysics Letters, 47(5), 545–551.Google Scholar
Häffner, H., Roos, C. F., and Blatt, R. 2008. Quantum computing with trapped ions. Physics Reports, 469(4), 155–203.Google Scholar
Hallam, J., Chelkowski, S., Freise, A.et al. 2009. Coupling of lateral grating displacement to the output ports of a diffractive FabryPerot cavity. Journal of Optics A: Pure and Applied Optics, 11(8), 085502.Google Scholar
Hammerer, K., Wallquist, M., Genes, C.et al. 2009. Strong coupling of a mechanical oscillator and a single atom. Physical Review Letters, 103(6), 063005.Google Scholar
Hao, Honggang, and Li, Bincheng. 2008. Photothermal detuning for absorption measurement of optical coatings. Applied Optics, 47(2), 188–194.Google Scholar
Harper, J. M. E. 1984. Sputter Deposition and Ion Beam Process. American Vacuum Society. Chap. Ion beam application to thin films.
Harper, J. M. E., Cuomo, J. J., and Kaufman, H. R. 1982. Technology and applications of broad-beam ion sources used in sputtering. Part II. Applications. Journal of Vacuum Science and Technology, 21(3), 737–756.Google Scholar
Harry, G. 2004. Optical Coatings for GravitationalWave Detection. LIGO-G040434-00-R.
Harry, G. M., Gretarsson, A. M., Saulson, P. R.et al. 2002. Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings. Classical and Quantum Gravity, 19, 897–917.Google Scholar
Harry, G. M., Crooks, D. R. M., Cagnoli, G.et al. 2006a. Thermal noise from optical coatings in gravitational wave detectors. Applied Optics, 45, 1569–1574.Google Scholar
Harry, Gregory M., Fritschel, Peter, Shaddock, Daniel A., Folkner, William, and Phinney E., Sterl. 2006b. Laser interferometry for the Big Bang Observer. Classical and Quantum Gravity, 23(15), 4887–4894.Google Scholar
Harry, G. M., Abernathy, M. R., Becerra-Toledo, A.et al. 2007. Titania-doped tantala/silica coatings for gravitational-wave detection. Classical and Quantum Gravity, 24, 405–415.Google Scholar
Harry, Gregory, and The LIGO Scientific Collaboration. 2010. Advanced LIGO: The next generation of gravitational wave detectors. Classical and Quantum Gravity, 27(Apr.), 084006.Google Scholar
Hartle, James. 2003. Gravity: An Introduction to Einstein's General Relativity. Boston: Addison-Wesley.
Hartmann, J. 1900. Bemerkungen uber den Bau und die Justirung von Spektrographen. Zeitschrift für Instrumentenkunde, 20, 47–58.Google Scholar
Heavner, T. P., Jefferts, S. R., Donley, E. A., Shirley, J. H., and Parker, T. E. 2005. NIST-F1: recent improvements and accuracy evaluations. Metrologia, 42, 411–422.Google Scholar
Hello, P., and Vinet, J. Y. 1990a. Analytical models of thermal aberrations in massive mirrors heated by high-power laser-beams. Journal de Physique, 51, 1267–1282.Google Scholar
Hello, P., and Vinet, J. Y. 1990b. Analytical models of transient thermoelastic deformations of mirrors heated by high-power cw laser-beams. Journal de Physique, 51, 1243–1261.Google Scholar
Heptonstall, A., Cagnoli, G., Hough, J., and Rowan, S. 2006. Characterisation ofmechanical loss in synthetic fused silica ribbons. Physics Letters A, 354, 353–359.Google Scholar
Herman, M. A., and Sitter, H. 1989. Molecular Beam Epitaxy, Fundamentals and Current Status. Springer-Verlag, Berlin.
Herrmann, S., Senger, A., Möhle, K.et al. 2009. Rotating optical cavity experiment testing Lorentz invariance at the 10-17 level. Physical Review D, 80(10), 105011.Google Scholar
Herskind, P. F., Dantan, A., Marler, J. P., Albert, M., and Drewsen, M. 2009. Realization of collective strong coupling with ion Coulomb crystals in an optical cavity. Nature Physics, 5(7), 494–498.Google Scholar
Herskind, P. F., Wang, S. X., Shi, M. 2011. Microfabricated surface trap for scalable ion–photon interfaces. Optics Letters, 36(16), 3045–3047.Google Scholar
Hijlkema, M., Weber, B., Specht, H. P.et al. 2007. A single-photon server with just one atom. Nature Physics, 3, 253–255.Google Scholar
Hild, Stefan. 2007. Beyond the first generation: extending the science range of the gravitational wave detector GEO 600. Ph.D. thesis, University of Hannover.
Hillion, P. 1994. Gaussian beam at a dielectric interface. Journal of Optics, 25, 155–164.Google Scholar
Hils, D., and Hall, J. L. 1987. Response of a Fabry–Pérot cavity to phase modulated light. Review of Scientific Instruments, 58, 1406–1412.Google Scholar
Hils, D., and Hall, J. L. 1990. Improved Kennedy–Thorndike experiment to test special relativity. Physical Review Letters, 64(15), 1697–1700.Google Scholar
Hirakawa, Hiromasa, and Narihara, Kazumichi. 1975. Search for gravitational radiation at 145 Hz. Physical Review Letters, 35(6), 330–334.Google Scholar
Hirota, Hidenobu, Itoh, Mikitaka, Oguma, Manabu, and Hibino, Yoshinori. 2005. Temperature coefficients of refractive indices of TiO2-SiO2 films. Japanese Journal of Applied Physics, 44, 1009–1010.Google Scholar
Ho, C. Y., Powell, R. W., and Liley, P. E. 1972. Thermal conductivity of the elements. Journal of Physical and Chemical Reference Data, 1, 279–421.Google Scholar
Hollberg, L., Diddams, S., Bartels, A., Fortier, T., and Kim, K. 2005a. The measurement of optical frequencies. Metrologia, 42(3), S105–S124.Google Scholar
Hollberg, L., Oates, C. W., Wilpers, G.et al. 2005b. Optical frequency/wavelength references. Journal of Physics B: Atomic, Molecular and Optical Physics, 38(9), S469–S495.Google Scholar
Hood, Christina J. 2000. Real-time measurement and trapping of single atoms by single photons. Ph.D. thesis, California Institute of Technology, Pasadena, CA.
Hood, C. J., Chapman, M. S., Lynn, T. W., and Kimble, H. J. 1998. Real-time cavity QED with single atoms. Physical Review Letters, 80(19), 4157–4160.Google Scholar
Hood, Christina J., Kimble, H. J., and Ye, Jun. 2001. Characterization of high-finesse mirrors: Loss, phase shifts, and mode structure in an optical cavity. Physical Review A, 64(3), 033804.Google Scholar
Hunger, D., Steinmetz, T., Colombe, Y.et al. 2010. A fiber Fabry–Perot cavity with high finesse. New Journal of Physics, 12(6), 065038.Google Scholar
Iga, Kenichi. 2008. Vertical-cavity surface-emitting laser: Its conception and evolution. Japanese Journal of Applied Physics, 47(1), 1–10.Google Scholar
Ignatchenko, V. A., and Laletin, O. N. 2004. Waves in a superlattice with arbitrary interlayer boundary thickness. Physics of the Solid State, 46, 2292–2300.Google Scholar
Ikushima, Y., Li, R., Tomaru, T.et al. 2008. Ultra-low-vibration pulse-tube cryocooler system – cooling capacity and vibration. Cryogenics, 48, 406–412.Google Scholar
Inci, M. N. 2004. Simultaneous measurements of the thermal optical and linear thermal expansion coefficients of a thin film etalon from the reflection spectra of a superluminescent diode. Journal of Physics D, 37, 3151–3154.Google Scholar
Inci, M.Naci, , and Yoshino, T. 2000. A fiber optic wavelength modulation sensor based on tantalum pentoxide coatings for absolute temperature measurement. Optical Review, 7, 205–208.Google Scholar
Itano, W. M., Bergquist, J. C., Bollinger, J. J.et al. 1993. Quantum projection noise: Population fluctuations in two-level systems. Physical Review A, 47(5), 3554–3570.Google Scholar
Jackson, W. B., Amer, N. M., Boccara, A. C., and Fournier, D. 1981. Photothermal deflection spectroscopy and detection. Applied Optics, 20(8), 1333–1344.Google Scholar
Jacobs, S. F. 1986. Dimensional stability of materials useful in optical engineering. Optica Acta, 11, 1377–1388.Google Scholar
Jafry, Y, and Sumner, T J. 1997. Electrostatic charging of the LISA proof masses. Classical and Quantum Gravity, 14(6), 1567–1574.Google Scholar
Jafry, Y. R., Cornelisse, J., and Reinhard, R. 1994. LISA – A laser interferometer space antenna for gravitational-wave measurements. European Space Agency Journal, 18, 219–228.Google Scholar
JAHM software, Inc. 1998. Material Property Database (MPDB software).
Jähne, K., Genes, C., Hammerer, K.et al. 2009. Cavity-assisted squeezing of a mechanical oscillator. Physical Review A, 79, 063819.Google Scholar
Jaynes, E. T., and Cummings, F. W. 1963. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proceedings of the IEEE, 51, 89–109.Google Scholar
Jefferts, S. R., Monroe, C., Bell, E.W., and Wineland, D. J. 1995. Coaxial-resonator-driven rf (Paul) trap for strong confinement. Physical Review A, 51(4), 3112–3116.Google Scholar
Jellison, G. E., and Modine, F. A. 1996. Parameterization of the optical functions of amorphous materials in the interband region. Applied Physics Letters, 69, 371–373.Google Scholar
Jennrich, O. 2009. LISA technology and instrumentation. Classical and Quantum Gravity, 26(15), 153001.Google Scholar
Jewell, J. L., Scherer, A., McCall, S. L.et al. 1989. Low-threshold electrically pumped vertical-cavity surface-emitting microlasers. Electronics Letters, 25(17), 1123–1124.Google Scholar
Jiang, Y., Fang, S., Bi, Z., Xu, X., and Ma, L. 2010. Nd:YAG lasers at 1064 nm with 1 Hz linewidth. Applied Physics B: Lasers and Optics, 98, 61–67.Google Scholar
Jiang, Y.Y., Ludlow, A.D., Lemke, N. D.et al. 2011. Making optical atomic clocks more stable with 10-16 level laser stabilization. Nature Photonics, doi:10, 1038/nphdcon.2010. 313.
Joe, M., Kim, J.-H., Choi, C., Kahng, B., and Kim, J.-S. 2009. Nanopatterning by multipleion-beam sputtering. Journal of Physics: Condensed Matter, 21(22), 224011.Google Scholar
Jones, David J., Diddams, Scott A., Ranka, Jinendra K. et al. 2000. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science, 288(5466), 635–639.Google Scholar
Jonscher, A. K. 1964. Semiconductors at cryogenic temperatures. Proceedings of the IEEE, 52, 1092–1104.Google Scholar
Kajima, Mariko, Kusumi, Nobuhiro, Moriwaki, Shigenori, and Mio, Norikatsu. 1999. Wideband measurement of mechanical thermal noise using a laser interferometer. Physics Letters A, 264(4), 251–256.Google Scholar
Kalb, Austin. 1986. Neutral ion beam sputter deposition of high-quality optical films. Optics News, 12(8), 13–17.Google Scholar
Kalb, A., Mildebrath, M., and Sanders, V. 1986. Neutral ion beam deposition of high reflectance coatings for use in ring laser gyroscopes. Journal of Vacuum Science and Technology A, 4, 436–437.Google Scholar
Kamp, Carl Justin, Kawamura, Hinata, Passaquieti, Roberto, and DeSalvo, Riccardo. 2009. Directional radiative cooling thermal compensation for gravitational wave interferometer mirrors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 607(3), 530–537.Google Scholar
Karow, H. H. 2004. Fabrication Methods for Precision Optics. Wiley-Interscience.
Katori, H., Takamoto, M., Pal'chikov, V.G., and Ovsiannikov, V.D. 2003. Ultrastable optical clock with neutral atoms in an engineered light shift trap. Physical Review Letters, 91(17), 173005.Google Scholar
Kaufman, H. R., Cuomo, J. J., and Harper, J. M. E. 1982. Technology and applications of broad-beam ion sources used in sputtering. Part I. ion source technology. Journal of Vacuum Science and Technology, 21(3), 725–736.Google Scholar
Kawamura, Seiji. 2010. Ground-based interferometers and their science reach. Classical and Quantum Gravity, 27(8), 084001.Google Scholar
Kawamura, Seiji, and Chen, Yanbei. 2004. Displacement-noise-free gravitational-wave detection. Physical Review Letters, 93(21), 211103.Google Scholar
Keller, M., Lange, B., Hayasaka, K., Lange, W., and Walther, H. 2004. Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature, 431, 1075–1078.Google Scholar
Keller, U., Weingarten, K. J., Kartner, F. X.et al. 1996. Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2(3), 435–453.Google Scholar
Khalili, F., Ya. 2001. Frequency-dependent rigidity in large-scale interferometric gravitational-wave detectors. Physics Letters A, 288(5–6), 251–256.Google Scholar
Khalili, F. 2005. Reducing the mirrors coating noise in laser gravitational-wave antennae by means of double mirrors. Physics Letters A, 334, 67–72.Google Scholar
Khazanov, E., Andreev, N. F., Mal'shakov, A.et al. 2004. Compensation of thermally induced modal distortions in Faraday isolators. IEEE Journal of Quantum Electronics, 40, 1500–1510.Google Scholar
Khudaverdyan, M., Alt, W., Kampschulte, T.et al. 2009. Quantum jumps and spin dynamics of interacting atoms in a strongly coupled atom-cavity system. Physical Review Letters, 103(12), 123006.Google Scholar
Kimble, H. J. 2008. The quantum internet. Nature, 453(7198), 1023–1030.Google Scholar
Kimble, H. J., and Levin, Yuri, and Matsko, Andrey B., and Thorne, Kip S., and Vyatchanin, Sergey P. 2001. Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics. Physical Review D, 65(2), 022002.Google Scholar
Kimble, H. J., Lev, Benjamin L., and Ye, Jun. 2008. Optical interferometers with reduced sensitivity to thermal noise. Physical Review Letters, 101(26), 260602.Google Scholar
Kippenberg, T. J., and Vahala, K. J. 2008. Cavity optomechanics: Back action at the mesoscale. Science, 321(5893), 1172–1176.Google Scholar
Kittel, C. 1995. Introduction to Solid State Physics. 7th edn. Wiley.
Kleckner, D., and Bouwmeester, D. 2006. Sub-kelvin optical cooling of a micromechanical resonator. Nature, 444, 75–78.Google Scholar
Kleckner, Dustin, Marshall, William, de Dood, Michiel J. A.et al. 2006. High finesse optomechanical cavity with a movable thirty-micron-size mirror. Physical Review Letters, 96, 173901.Google Scholar
Kleinman, D. A., Miller, R. C., and Nordland, W. A. 1973. Two-photon absorption of Nd laser radiation in GaAs. Applied Physics Letters, 23(5), 243–244.Google Scholar
Knudsen, S., Tveten, A. B., and Dandridge, A. 1995. Measurements of fundamental thermal induced phase fluctuations in the fiber of a Sagnac interferometer. IEEE Photonics Technology Letters, 7, 90–92.Google Scholar
Kogelnik, H., and Li, T. 1966. Laser beams and resonators. Applied Optics, 5(10), 1550–1567.Google Scholar
Kolachevsky, N., Matveev, A., Alnis, J.et al. 2009. Measurement of the 2S hyperfine interval in atomic hydrogen. Physical Review Letters, 102(21), 213002.Google Scholar
Konagai, Makoto, Sugimoto, Mitsunori, and Takahashi, Kiyoshi. 1978. High efficiency GaAs thin film solar cells by peeled film technology. Journal of Crystal Growth, 45, 277–280.Google Scholar
Kondratiev, N. M., Gurkovsky, A. G., and Gorodetsky, M. L. 2011. Thermal noise and coating optimization in multilayer dielectric mirrors. Physical Review D, 84, 022001.Google Scholar
Kopperschmidt, P., Kästner, G., Senz, S., Hesse, D., and Gösele, U. 1997. Wafer bonding of gallium arsenide on sapphire. Applied Physics A: Materials Science & Processing, 64, 533–537.Google Scholar
Kordonski, W. I., and Golini, D. 2000. Fundamentals ofmagnetorheological fluid utilization in high precision finishing. Page 682 of: Proceedings of the 7th International Conference on Electro-rheological Fluids and Magneto-rheological Suspensions. World Scientific, Singapore.
Kovalik, J., and Saulson, P. R. 1993. Mechanical loss in fibers for low pendulums. Review of Scientific Instruments, 64, 2942–2946.Google Scholar
Kubanek, A., Koch, M., Sames, C.et al. 2009. Photon-by-photon feedback control of a single-atom trajectory. Nature, 462(7275), 898–901.Google Scholar
Kuga, Takahiro, Torii, Yoshio, Shiokawa, Noritsuguet al. 1997. Novel optical trap of atoms with a doughnut beam. Physical Review Letters, 78(25), 4713–4716.Google Scholar
Kuroda, K., and The LCGT Collaboration. 2010. Status of LCGT. Classical and Quantum Gravity, 27(8), 084004.Google Scholar
Kuznetsov, M., Hakimi, F., Sprague, R., and Mooradian, A. 1999. Design and characteristics of high-power (> 0.5 W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams. IEEE Journal of Selected Topics in Quantum Electronics, 5(3), 561–573.Google Scholar
Kwee, Patrick, Willke, Benno, and Danzmann, Karste. 2009. Shot-noise-limited laser power stabilization with a high-power photodiode array. Optics Letters, 34, 2912–2914.Google Scholar
Lakes, S. R. 2009. Viscoelastic Materials. Cambridge University Press.
Lam, C. C., and Douglass, D. H. 1981. Internal friction measurements in boron-doped single-crystal silicon. Physics Letters, 85A(1), 41–42.Google Scholar
Lawrence, Ryan. 2003. Active wavefront correction in laser interferometric gravitational wave detectors. Ph.D. thesis, Massachusetts Institute of Technology.
Lawrence, Ryan, Ottaway, David, Zucker, Michael, and Fritschel, Peter. 2004. Active correction of thermal lensing through external radiative thermal actuation. Optics Letters, 29(22), 2635–2637.Google Scholar
Le Targat, R., Baillard, X., Fouché, M.et al. 2006. Accurate optical lattice clock with 87Sr atoms. Physical Review Letters, 97(13), 130801.Google Scholar
Lebedev, P. 1901. Untersuchungen über die Druckkräfte des Lichtes. Annalen der Physik, 311, 433–458.Google Scholar
Lee, Cheng-Chung, and Tang, Chien-Jen. 2006. TiO2–Ta2O5 composite thin films deposited by radio frequency ion-beam sputtering. Applied Optics, 45(36), 9125–9131. Lee, Cheng-Chung, Tang, Chien-Jen, and Wu, Jean-Yee. 2006. Rugate filter made with composite thin films by ion-beam sputtering. Applied Optics, 45(7), 1333–1337.
Legero, T., Kessler, T, and Sterr, U. 2010. Tuning the thermal expansion properties of optical reference cavities with fused silica mirrors. Journal of the Optical Society of America B, 27(5), 914–919.Google Scholar
Leggett, A. J. 2002. Testing the limits of quantum mechanics: Motivation, state of play, prospects. Journal of Physics: Condensed Matter, 14, R415–R451.Google Scholar
Leibfried, D., Blatt, R., Monroe, C., and Wineland, D. 2003. Quantum dynamics of single trapped ions. Reviews of Modern Physics, 75, 281–324.Google Scholar
Leibrandt, David R., Labaziewicz, Jaroslaw, Vuletić, Vladan, and Chuang, Isaac L. 2009. Cavity sideband cooling of a single trapped ion. Physical Review Letters, 103(10), 103001.Google Scholar
Lemke, N. D., Ludlow, A. D., Barber, Z. W.et al. 2009. Spin-1/2 optical lattice clock. Physical Review Letters, 103(6), 063001.Google Scholar
Lemonde, P., Laurent, P., Santarelli, G.et al. 2001. Cold-atom clocks on Earth and in space. Pages 131–153 of: Luiten, Andre (ed.), Frequency Measurement and Control. Topics in Applied Physics, vol. 79. SpringerBerlin/Heidelberg.
Lequime, Michel, Zerrad, Myriam, Deumie, Carole, and Amra, Claude. 2009. A goniometric light scattering instrument with high-resolution imaging. Optics Communications, 1265–1273.Google Scholar
Levin, Yu. 1998. Internal thermal noise in the LIGO testmasses:Adirect approach. Physical Review D, 57(2), 659–663.Google Scholar
Levin, Yuri. 2008. Fluctuation–dissipation theorem for thermo-refractive noise. Physics Letters A, 372(12), 1941–1944.Google Scholar
Li, M., Pernice, W. H. P., Xiong, C.et al. 2008. Harnessing optical forces in integrated photonic circuits. Nature, 456(7221), 480–484.Google Scholar
Lienerth, C., Thummes, G., and Heiden, C. 2001. Progress in low noise cooling performance of a pulse-tube cooler for HT-SQUID operation. IEEE Transactions on Applied Superconductivity, 11, 812–815.Google Scholar
Liu, X., and Pohl, R. O. 1998. Low-energy excitations in amorphous films of silicon and germanium. Physical Review B, 58, 9067–9081.Google Scholar
Liu, Xiao, Vignola, J. F., Simpson, H. J.et al. 2005. A loss mechanism study of a very high Q silicon micromechanical oscillator. Journal of Applied Physics, 97(2), 023524.Google Scholar
Liu, Yuk Tung, and Thorne, Kip S. 2000. Thermoelastic noise and homogeneous thermal noise in finite sized gravitational-wave testmasses. Physical ReviewD, 62(12), 122002.Google Scholar
Lodewyck, J., Westergaard, P. G., and Lemonde, P. 2009. Nondestructive measurement of the transition probability in a Sr optical lattice clock. Physical Review A, 79(6), 061401.Google Scholar
Lück, H., and The GEO 600 Collaboration. 2006. Status of the GEO 600 detector. Classical and Quantum Gravity, 23, S71–S78.Google Scholar
Lück, H., Freise, A., Goßler, S.et al. 2007. Thermal correction of the radii of curvature of mirrors for GEO 600. Classical and Quantum Gravity, 21, S985–S989.Google Scholar
Lück, H., Degallaix, J., Grote, H.et al. 2008. Opto-mechanical frequency shifting of scattered light. Journal of Optics A: Pure and Applied Optics, 085004 (6pp).Google Scholar
Ludlow, Andrew D., Boyd, Martin M., Zelevinsky, Tanyaet al. 2006. Systematic study of the 87Sr clock transition in an optical lattice. Physical Review Letters, 96, 033003.Google Scholar
Ludlow, A. D., Huang, X., Notcutt, M.et al. 2007. Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1 × 10-15. Optics Letters, 32(Mar.), 641–643.Google Scholar
Ludlow, A. D., Zelevinsky, T., Campbell, G. K.et al. 2008. Sr lattice clock at 1 × 10-16 fractional uncertainty by remote optical evaluation with a Ca clock. Science, 319, 1805–1808.Google Scholar
Ludlow, A. D., Huang, X., Notcutt, M.et al. 2009. A narrow linewidth and frequency-stable probe laser source for the 88Sr+ single ion optical frequency standard. Applied Physics B, 95, 45–54.Google Scholar
Ludowise, M. J. 1985. Metalorganic chemical vapor deposition of III-V semiconductors. Journal of Applied Physics, 58(8), R31–R55.Google Scholar
Lunin, B. S. 2005. Physical and Chemical Bases for the Development of Hemispherical Resonators for Solid-State Gyroscopes. Moscow: Moscow Aviation Institute.
Lyon, K. G., Salinger, G. L., Swenson, C. A., and White, G. K. 1977. Linear thermal expansion measurements on silicon from 6 to 340 K. Journal of Applied Physics, 48, 865–868.Google Scholar
Macfarlane, G. G., McLean, T. P., Quarrington, J. E., and Roberts, V. 1958. Fine structure in the absorption-edge spectrum of Si. Physical Review, 111, 1245–1254.Google Scholar
Macfarlane, G. G., McLean, T. P., Quarrington, J. E., and Roberts, V. 1959. Exciton and phonon effects in the absorption spectra of germanium and silicon. Journal of Physics and Chemistry of Solids, 8, 388–392.Google Scholar
Macleod, A. H. 1981. Monitoring of optical coatings. Applied Optics, 20, 82–89.Google Scholar
Macleod, A. H. 2010. Thin Film Optical Filters. 4th edn. Taylor & Francis Group.
Madej, A. A., Bernard, J. E., Dubé, P., Marmet, L., and Windeler, R. S. 2004. Absolute frequency of the 88Sr+ 5s2S1/2–4d2D5/2 reference transition at 445 THz and evaluation of systematic shifts. Physical Review A, 70(1), 012507.Google Scholar
Majorana, E., and Ogawa, Y. 1997. Mechanical thermal noise in coupled oscillators. Physics Letters A, 233(3), 162–168.Google Scholar
Mancini, S., and Tombesi, P. 1994. Quantum noise reduction by radiation pressure. Physical Review A, 49(5), 4055–4065.Google Scholar
Margolis, H. S., Barwood, G. P., Huang, G.et al. 2004. Hertz-level measurement of the optical clock frequency in a single 88Sr+ ion. Science, 306(5700), 1355–1358.Google Scholar
Mari, A., and Eisert, J. 2009. Gently modulating optomechanical systems. Physical Review Letters, 103, 213603.Google Scholar
Markosyan, Ashot, Armandula, Helena, Fejer, Martin M., and Route, Roger. 2008. PCI technique for thermal absorption measurements. LIGO-G080315-00.
Marquardt, F., and Girvin, S. M. 2009. Optomechanics. Physics, 2, 40.Google Scholar
Marquardt, Florian, Chen, Joe P., Clerk, A. A., and Girvin, S. M. 2007. Quantum theory of cavity-assisted sideband cooling of mechanical motion. Physical Review Letters, 99(9), 093902.Google Scholar
Marshall, W., Simon, C., Penrose, R., and Bouwmeester, D. 2003. Towards quantum superposition of a mirror. Physical Review Letters, 91, 130401.Google Scholar
Martin, I. 2009. Studies of materials for use in future interferometric gravitational wave detectors. Ph.D. thesis, University of Glasgow.
Martin, I., Armandula, H., Comtet, C.et al. 2008. Measurements of a low-temperature mechanical dissipation peak in a single layer of Ta2O5 doped with TiO2. Classical and Quantum Gravity, 25, 055005.Google Scholar
Martin, I. W., Chalkley, E., Nawrodt, R.et al. 2009. Comparison of the temperature dependence of the mechanical dissipation in thin films of Ta2O5 and Ta2O5 doped with TiO2. Classical and Quantum Gravity, 26(15), 155012.Google Scholar
Martin, I. W., Bassiri, R., Nawrodt, R.et al. 2010. Effect of heat treatment on mechanical dissipation in Ta2O5 coatings. Classical and Quantum Gravity, 27(22), 225020.Google Scholar
Martin, P. J., and Netterfield, R. P. 1989. Handbook of Ion Beam Processing Technology. Noyes. Chap. Ion-assisted dielectric and optical coatings.
Matsko, A. B., Savchenkov, A. A., Yu, N., and Maleki, L. 2007. Whispering-gallery-mode resonators as frequency references. I. Fundamental limitations. Journal of the Optical Society of America B, 24, 1324–1334.Google Scholar
Mauceli, E., Geng, Z. K., Hamilton, W. O.et al. 1996. The Allegro gravitational wave detector: Data acquisition and analysis. Physical Review D, 54(2), 1264–1275.Google Scholar
Maunz, P., Puppe, T., Schuster, I.et al. 2004. Cavity cooling of a single atom. Nature, 428, 50–52.Google Scholar
McClelland, D. E., Camp, J. B., Mason, J., Kells, W., and Whitcomb, S. E. 1999. Arm cavity resonant sideband control for laser interferometric gravitationalwave detectors. Optics Letters, 24(15), 1014–1016.Google Scholar
McGuigan, D. H., Lam, C. C., Gram, R. Q.et al. 1978. Measurements of the mechanical Q of single-crystal silicon at low temperatures. Journal of Low Temperature Physics, 30, 621–629.Google Scholar
McIvor, G., Waldman, S., and Willems, P. 2007. Analysis of LIGO test mass internal modes as a measure of coating absorption. LIGO-G070636-00.
McKeever, J., Boca, A., Boozer, A. D., Buck, J. R., and Kimble, H. J. 2003. Experimental realization of a one-atom laser in the regime of strong coupling. Nature, 425, 268–271.Google Scholar
McKeever, J., Boca, A., Boozer, A. D.et al. 2004. Deterministic generation of single photons from one atom trapped in a cavity. Science, 303, 1992–1994.Google Scholar
McLachlan, D. Jr., and Chamberlain, L. L. 1964. Atomic vibrations and melting point in metals. Acta Metallurgica, 12, 571–576.Google Scholar
McSkimin, H. J. 1953. Measurement of elastic constants at low temperatures by means of ultrasonic waves – data for silicon and germanium single crystals, and for fused silica. Journal of Applied Physics, 24, 988–997.Google Scholar
Meers, Brian J. 1988. Recycling in laser-interferometric gravitational-wave detectors. Physical Review D, 38(8), 2317–2326.Google Scholar
Melliar-Smith, C. M., and Mogab, C. J. 1978. Thin Film Processes. Academic Press. Chap. Plasma-assisted etching techniques for pattern delineation.
Melninkaitis, Andrius, Tolenis, Tomas, Mažulė, Linaet al. 2011. Characterization of zirconia–and niobia–silicamixture coatings produced by ion-beam sputtering. Applied Optics, 50(9), C188–C196.Google Scholar
Metzger, C. H., and Karrai, K. 2004. Cavity cooling of a microlever. Nature, 432(7020), 1002–1005.
Michael, C. P., Srinivasan, K., Johnson, T. J. et al. 2007. Wavelength- and materialdependent absorption in GaAs and AlGaAs microcavities. Applied Physics Letters, 90(5), 051108–051108–3.Google Scholar
Mie, G. 1908. Beiträge zur Optik Trüber Medien, speziell Kolloidaler Metallösungen. Annalen der Physik, 25, 377–452.Google Scholar
Milam, D., Lowdermilk, W. H.Rainer, F. et al. 1982. Influence of deposition parameters on laser-damage threshold of silica-tantala AR coatings. Applied Optics, 21(20), 3689–3694.Google Scholar
Milatz, J. M. W., Van Zolingen, J., and Van Iperen, B. B. 1953. The reduction in the brownian motion of electrometers. Physica, 19, 195–202.Google Scholar
Milburn, G. J., Jacobs, K., and Walls, D. F. 1994. Quantum-limited measurements with the atomic force microscope. Physical Review A, 50(6), 5256–5263.Google Scholar
Miller, John. 2010. On non-Gaussian beams and optomechanical parametric instabilities in interferometric gravitational wave detectors. Ph.D. thesis, University of Glasgow.
Miller, R., Northup, T. E., Birnbaum, K. M. et al. 2005. Trapped atoms in cavity QED: coupling quantized light and matter. Journal of Physics B: Atomic, Molecular and Optical Physics, 38(9), S551–S565.Google Scholar
Millo, J., Magalhães, D. V., Mandache, C. et al. 2009. Ultrastable lasers based on vibration insensitive cavities. Physical Review A, 79(5), 053829.Google Scholar
Misner, Charles W., Thorne, Kip S., and Wheeler, John A. 1973. Gravitation (Physics Series). 2nd edn. W. H. Freeman.
Mitrofanov, V. P., and Tokmakov, K. V. 2003. Effect of heating on dissipation ofmechanical energy in fused silica fibers. Physics Letters A, 308(2–3), 212–218.Google Scholar
Mitrofanov, V. P., Prokhorov, L. G., and Tokmakov, K. V. 2002. Variation of electric charge on prototype of fused silica test mass of gravitational wave antenna. Physics Letters A, 300, 370–374.Google Scholar
Miyoki, S., and The CLIO and LCGT Collaboration. 2010. Underground cryogenic laser interferometer CLIO. Journal of Physics: Conference Series, 203, 012075.Google Scholar
Miyoki, S., Tomaru, T., Ishitsuka, H. et al. 2001. Cryogenic contamination speed for cryogenic laser interferometric gravitational wave detector. Cryogenics, 41, 415–420.Google Scholar
Mizuno, J., Strain, K. A., Nelson, P. G. et al. 1993. Resonant sideband extraction: A new configuration for interferometric gravitational wave detectors. Physics Letters A, 175(5), 273–276.Google Scholar
Mohanty, P., Harrington, D. A., Ekinci, K. L. et al. 2002. Intrinsic dissipation in highfrequency micromechanical resonators. Physical Review B, 66(8), 085416.Google Scholar
Mor, O., and Arie, A. 1997. Performance analysis of Drever–Hall laser frequency stabilization using a proportional+integral servo. IEEE Journal of Quantum Electronics, 33(4), 532–540.Google Scholar
Mortonson, M. J., Vassiliou, C. C., Ottaway, D. J., Shoemaker, D. H., and Harry, G. M. 2003. Effects of electrical charging on the mechanical Q of a fused silica disk. Review of Scientific Instruments, 74, 4840–4845.Google Scholar
Mours, B., Tournefier, E., and Vinet, J.-Y. 2006. Thermal noise reduction in interferometric gravitational wave antennas: Using high order TEM modes. Classical and Quantum Gravity, 23(Oct.), 5777–5784.Google Scholar
Muller, Andreas, Flagg, Edward B, Lawall, , John, R., and Solomon, Glenn S. 2010. Ultrahigh-finesse, low-mode-volume Fabry–Perot microcavity. Optics Letters, 35(13), 2293–2295.Google Scholar
Müller, H., Braxmaier, C., Herrmann, S. et al. 2002. Testing the foundations of relativity using cryogenic optical resonators. International Journal of Modern Physics D, 11, 1101–1108.Google Scholar
Müller, H., Herrmann, S., Braxmaier, C., Schiller, S., and Peters, A. 2003a. Modern Michelson–Morley experiment using cryogenic optical resonators. Physical Review Letters, 91(2), 020401.Google Scholar
Müller, H., Herrmann, S., Braxmaier, C., Schiller, S., and Peters, A. 2003b. Precision test of the isotropy of light propagation. Applied Physics B, 77, 719–731.Google Scholar
Mundt, A. B., Kreuter, A., Becher, C. et al. 2002. Coupling a single atomic quantum bit to a high finesse optical cavity. Physical Review Letters, 89(10), 103001.Google Scholar
Münstermann, P., Fischer, T., Pinkse, P. W. H., and Rempe, G. 1999. Single slowatoms from an atomic fountain observed in a high-finesse optical cavity. Optics Communications, 159, 63–67.Google Scholar
Murray, Peter. 2008. Measurement of the mechanical loss of test mass materials for advanced gravitational wave detectors. Ph.D. thesis, University of Glasgow.
Nakagawa, N., Auld, B. A., Gustasfson, E., and Fejer, M. M. 1997. Estimation of thermal noise in the mirrors of laser interferometric gravitational wave detectors: Two point correlation function. Review of Scientific Instruments, 68, 3553–3556.Google Scholar
Nakagawa, N., Gustafson, E. K., Beyersdorf, Peter T., and Fejer, M. M. 2002a. Estimating the off resonance thermal noise in mirrors, Fabry-Perot interferometers, and delay lines: The half infinite mirror with uniform loss. Physical Review D, 65(Mar.), 082002.Google Scholar
Nakagawa, N., Gretarsson, A. M., Gustafson, E. K., and Fejer, M. M. 2002b. Thermal noise in half-infinite mirrors with nonuniform loss: A slab of excess loss in a half-infinite mirror. Physical Review D, 65(Apr), 102001.Google Scholar
Narayan, R., Paczynski, B., and Piran, T. 1992. Gamma-ray bursts as the death throes of massive binary stars. Astrophysical Journal, Part 2 – Letters, 395(Aug.), L83–L86.Google Scholar
Nawrodt, R., Zimmer, A., Koettig, T. et al. 2007a. High mechanical Q-factor measurements on calcium fluoride at cryogenic temperatures. The European Physical Journal – Applied Physics, 38, 53–59.Google Scholar
Nawrodt, R., Zimmer, A., Koettig, T. et al. 2007b. Mechanical Q-factor measurements on a test mass with a structured surface. New Journal of Physics, 9, 225.Google Scholar
Nawrodt, R., Zimmer, A., Koettig, T. et al. 2008. High mechanical Q-factor measurements on silicon bulk samples. Journal of Physics: Conference Series, 122(1), 012008.Google Scholar
Netterfield, R. P., and Gross, M. 2007. Investigation of ion beam sputtered silica-titania mixtures for use in gravitational-wave detectors. Page ThD2 of:Proceedings of Optical Interference Coatings (CD). Optical Society of America.
Netterfield, Roger P., Gross, Mark, Baynes, Fred N. et al. 2005. Low mechanical loss coatings for LIGO optics: Progress report. Page 58700 of:Fulton, Michael L., and Kruschwitz, Jennifer D. T. (eds), Proceedings of SPIE, Advances in Thin-Film Coatings for Optical Applications II, vol. 5870.Google Scholar
Neugebauer, P. A. 1970. Handbook of Thin Film Technology. McGraw Hill. Chap. Condensation, nucleation, and growth of thin films.
Neuroth, N. 1995. The Properties of Optical Glass. Springer-Verlag. Chap. Transmission and reflection.
Nichols, E. F., and Hull, G. F. 1901. A preliminary communication on the pressure of heat and light radiation. Physical Review (Series I), 13(5), 307–320.Google Scholar
Notcutt, M., Taylor, C. T., Mann, A. G., and Blair, D. G. 1995. Temperature compensation for cryogenic cavity stabilized lasers. Journal of Physics D: Applied Physics, 28, 1807–1810.Google Scholar
Notcutt, M., Taylor, C. T., Mann, A. G., Gummer, R., and Blair, D. G. 1996. Cryogenic system for a sapphire Fabry–Perot optical frequency standard. Cryogenics, 36, 13–16.Google Scholar
Notcutt, Mark, Ma, Long-Sheng, Ye, Jun, and Hall, John L. 2005. Simple and compact 1Hz laser system via an improvedmounting configuration of a reference cavity. Optics Letters, 30(14), 1815–1817.Google Scholar
Notcutt, Mark, Ma, Long-Sheng, Ludlow, Andrew D. et al. 2006. Contribution of thermal noise to frequency stability of rigid optical cavity via Hertz-linewidth lasers. Physical Review A, 73(3), 031804.Google Scholar
Nowick, A. S., and Berry, B. S. 1972. Anelastic Relaxation in Crystalline Solids. Academic Press.
Numata, Kenji. 2003 (March). Direct measurement of mirror thermal noise. Ph.D. thesis, University of Tokyo, Tokyo, Japan.
Numata, Kenji, Bianc, Giuseppe Bertolotto, Tanaka, Mitsuru et al. 2001. Measurement of the mechanical loss of crystalline samples using a nodal support. Physics Letters A, 284(4–5), 162–171.Google Scholar
Numata, Kenji, Ando, Masaki, Yamamoto, Kazuhiro, Otsuka, Shigemi, and Tsubono, Kimio. 2003. Wide-band direct measurement of thermal fluctuations in an interferometer. Physical Review Letters, 91(26), 260602.Google Scholar
Numata, K., Kemery, A., and Camp, J. 2004. Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. Physical Review Letters, 93(25), 250602.Google Scholar
Nußmann, Stefan, Hijlkema, Markus, Weber, Bernhard et al. 2005. Submicron positioning of single atoms in a microcavity. Physical Review Letters, 95(17), 173602.Google Scholar
Obeidat, Amjad, Khurgin, Jacob, and Knox, Wayne. 1997. Effects of two-photon absorption in saturable Bragg reflectors used in femtosecond solid state lasers. Optics Express, 1(3), 68–72.Google Scholar
Ohring, M. 2002. The Materials Science of Thin Films: Deposition and Structure. Academic Press.
Okaji, M., Yamada, N., Nara, K., and Kato, H. 1995. Laser interferometric dilatometer at low temperatures: Application to fused silica SRM 739. Cryogenics, 35, 887–891.Google Scholar
Ono, Takahito, Wang, Dong F., and Esashi, Masayoshi. 2003. Time dependence of energy dissipation in resonating silicon cantilevers in ultrahigh vacuum. Applied Physics Letters, 83(10), 1950–1952.Google Scholar
O'Shaughnessy, R., Strigin, S., and Vyatchanin, S. 2004. The implications of Mexicanhat mirrors: Calculations of thermoelastic noise and interferometer sensitivity to perturbation for the Mexican-hat-mirror proposal for advanced LIGO. arXiv:gr-qc/ 0409050.
O'Shaughnessy, R., Kalogera, V., and Belczynski, Krzysztof. 2010. Binary compact object coalescence rates: The role of elliptical galaxies. The Astrophysical Journal, 716(1), 615–633.Google Scholar
Oskay, W. H., Diddams, S. A., Donley, E. A. et al. 2006. Single-atom optical clock with high accuracy. Physical Review Letters, 97(2), 020801.Google Scholar
Ottaway, David, Betzwieser, Joseph, Ballmer, Stefan, Waldman, Sam, and Kells, William. 2006. In situ measurement of absorption in high-power interferometers by using beam diameter measurements. Optics Letters, 31(4), 450–452.Google Scholar
Park, Young-Shin, and Wang, Hailin. 2009. Resolved-sideband and cryogenic cooling of an optomechanical resonator. Nature Physics, 5, 489–493.Google Scholar
Parker, E. H. C. (ed). 1985. The Technology and Physics of Molecular Beam Epitaxy. Plenum Press.
Paternostro, M., Vitali, D., Gigan, S. et al. 2007. Creating and probing multipartite macroscopic entanglement with light. Physical Review Letters, 99, 250401.Google Scholar
Penn, S. D., Harry, G. M., Gretarsson, A. M.et al. 2001. High quality factor measured in fused silica. Review of Scientific Instruments, 72(9), 3670–3673.Google Scholar
Penn, Steven D., Sneddon, Peter H., Armandula, Helenaet al. 2003. Mechanical loss in tantala/silica dielectric mirror coatings. Classical and Quantum Gravity, 20(13), 2917–2928.Google Scholar
Penn, Steven D., Ageev, Alexander, Busby, Danet al. 2006. Frequency and surface dependence of the mechanical loss in fused silica. Physics Letters A, 352, 3–6.Google Scholar
Phillips, W. A. 1972. Tunneling states in amorphous solids. Journal of Low Temperature Physics, 7, 351–360.Google Scholar
Pierro, V., Galdi, V., Castaldi, G.et al. 2007. Perspectives on beam-shaping optimization for thermal-noise reduction in advanced gravitational-wave interferometric detectors: Bounds, profiles, and critical parameters. Physical Review D, 76(12), 122003.Google Scholar
Pinard, L., and The Virgo Collaboration. 2004. Low loss coatings for the Virgo large mirrors. Pages 483–492 of: Amra, C., Kaiser, N., and Macleod, H. A. (eds.), Proceedings of SPIE, Advances in Optical Thin Films, vol. 5250.
Pinard, M., Fabre, C., and Heidmann, A. 1995. Quantum-nondemolition measurement of light by a piezoelectric crystal. Physical Review A, 51(3), 2443–2449.Google Scholar
Pinto, Innocenzo M., Piero, Vincenzo, Principe, Maria, and DeSalvo, Riccardo. 2010. Mixture theory approach to coating materials optimization. LIGO-G1000537.
Plissi, M. V., Torrie, C. I., Husman, M. E.et al. 2000. GEO 600 triple pendulum suspension system: Seismic isolation and control. Review of Scientific Instruments, 71, 2539–2545.Google Scholar
Plissi, M. V., Torrie, C. I., Barton, M.et al. 2004. An investigation of eddy-current damping of multi-stage pendulum suspensions for use in interferometric gravitational wave detectors. Review of Scientific Instruments, 75, 4516–4522.Google Scholar
Poirson, Jérôme, Bretenaker, Fabien, Vallet, Marc, and Floch, Albert Le. 1997. Analytical and experimental study of ringing effects in a Fabry–Perot cavity. Application to the measurement of high finesses. Journal of the Optical Society of America B, 14(11), 2811–2817.Google Scholar
Pollack, S. E., Turner, M. D., Schlamminger, S., Hagedorn, C. A., and Gundlach, J. H. 2010. Charge management for gravitational-wave observatories using UV LEDs. Physical Review D, 81(2), 021101.Google Scholar
Pond, B. J., DeBar, J. I., Carniglia, C. K., and Raj, T. 1989. Stress reduction in ion beam sputtered mixed oxide films. Applied Optics, 28(14), 2800–2805.Google Scholar
Principe, M., Pinto, I. M., and Galdi, V. 2007. A general formula for the thermorefractive noise coefficient of stacked-doublet mirror coatings. LIGO-T070159.
Principe, Maria, DeSalvo, Riccardo, Pinto, Innocenzo, and Galdi, Vincenzo. 2008. Minimum Brownian noise dichroic dielectricmirror coatings for AdLIGO. LIGO-T080337.
Pulker, H. K. 1984a. Coatings on Glass. Elsevier. Chap. Glass and thin films.
Pulker, H. K. 1984b. Coatings on Glass. Elsevier. Chap. Cleaning of substrate surfaces.
Pulker, H. K. 1984c. Coatings on Glass. Elsevier. Chap. Film formation methods.
Punturo, M., and The Einstein Telescope Collaboration. 2007. Einstein gravitational wave telescope, proposal to the European Commission, Framework Programme 7. http://www.ego-gw.it/ILIAS-GW/FP7-DS/fp7-DS.htm.
Punturo, M, and The Einstein Telescope Collaboration. 2010. The third generation of gravitational wave observatories and their science reach. Classical and Quantum Gravity, 27(8), 084007.Google Scholar
Puppe, T., Schuster, I., Grothe, A.et al. 2007. Trapping and observing single atoms in a blue-detuned intracavity dipole trap. Physical Review Letters, 99(1), 013002.Google Scholar
Quessada, A., Kovacich, R. P., Courtillot, I.et al. 2003. The Dick effect for an optical frequency standard. Journal of Optics B: Quantum and Semiclassical Optics, 5, S150–S154.Google Scholar
Quetschke, V., Gleason, J., Rakhmanov, M.et al. 2006. Adaptive control of laser modal properties. Optics Letters, 31(2), 217–219.Google Scholar
Quinn, T. J., Speake, C. C., and Brown, L. M. 1997. Materials problems in the construction of long-period pendulums. Philosophical Magazine A, 65, 261–276.Google Scholar
Rabl, P., Genes, C., Hammerer, K., and Aspelmeyer, M. 2009. Phase-noise induced limitations on resolved-sideband cavity cooling of mechanical resonators. Physical Review A, 80, 063819.Google Scholar
Rabl, P., Kolkowitz, S. J., Koppens, F. H.et al. 2010. A quantum spin transducer based on nano electro-mechanical resonator arrays. Nature Physics, 6(8), 602–608.Google Scholar
Radebaugh, R. 2009. Cryocoolers: the state of the art and recent developments. Journal of Physics: Condensed Matter, 21, 164219.Google Scholar
Rafac, R. J., Young, B. C., Beall, J. A.et al. 2000. Sub-dekahertz ultraviolet spectroscopy of 199Hg+. Physical Review Letters, 85(Sep.), 2462–2465.Google Scholar
Raimond, J. M., Brune, M., and Haroche, S. 2001. Manipulating quantum entanglement with atoms and photons in a cavity. Reviews of Modern Physics, 73(3), 565–582.Google Scholar
Rao, S. 2003. Mirror thermal noise in interferometric gravitational wave detectors. Ph.D. thesis, California Institute of Technology.
Reid, S., Cagnoli, G., Crooks, D. R. M.et al. 2006. Mechanical dissipation in silicon flexures. Physics Letters A, 351, 205–211.Google Scholar
Reinisch, J., and Heuer, A. 2005. What is moving in silica at 1 K? A computer study of the low-tempreature anomalies. Physical Review Letters, 95, 155502.Google Scholar
Reitzenstein, S., Hofmann, C., Gorbunov, A.et al. 2007. AlAs/GaAs micropillar cavities with quality factors exceeding 150, 000. Applied Physics Letters, 90(25), 251109–251109–3.Google Scholar
Rempe, G., Thompson, R. J., Brecha, R. J., Lee, W. D., and Kimble, H. J. 1991. Optical bistability and photon statistics in cavity quantum electrodynamics. Physical Review Letters, 67(13), 1727–1730.Google Scholar
Rempe, G., Thompson, J., Kimble, H. J., and Lalezari, R. 1992. Measurement of ultralow losses in an optical interferometer. Optics Letters, 17(5), 363–365.Google Scholar
Richard, J.-P. 1992. Approaching the quantum limit with optically instrumented multimode gravitational-wave bar detectors. Physical Review D, 46(6), 2309–2317.Google Scholar
Richard, J.-P., and Hamilton, J. J. 1991. Cryogenic monocrystalline silicon Fabry–Perot cavity for the stabilization of laser frequency. Review of Scientific Instruments, 62(10), 2375–2378.Google Scholar
Richard, J.-P., Hamilton, J. J., and Pang, Y. 1990. Fabry–Perot optical resonator at low temperatures. Journal of Low Temperature Physics, 81, 189–198.Google Scholar
Rocheleau, T., Ndukum, T., Macklin, C.et al. 2009. Preparation and detection of a mechanical resonator near the ground state of motion. Nature, 463, 72–75.Google Scholar
Romero-Isart, O., Pflanzer, A. C., Blaser, F.et al. 2011. Large quantum superpositions and interference of massive nano-objects. Physical Review Letters, 107, 020405.Google Scholar
Rosenband, T., Hume, D. B., Schmidt, P. O.et al. 2008. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science, 319(5871), 1808–1812.Google Scholar
Rowan, S. 2000. Implications of thermo-elastic damping for cooled detectors. Aspen 2000 Winter Conference on Gravitational Waves and Their Detection.
Rowan, S., Twyford, S., Hutchins, R., and Hough, J. 1997. Investigations into the effects of electrostatic charge on the Q factor of a prototype fused silica suspension for use in gravitational wave detectors. Classical and Quantum Gravity, 14, 1537–1541.Google Scholar
Rowan, S., Byer, R. L., Fejer, M. M.et al. 2003. Test mass materials for a new generation of gravitational wave detectors. Proceedings of SPIE, 4856, 292–297.Google Scholar
Russo, C., Barros, H., Stute, A.et al. 2009. Raman spectroscopy of a single ion coupled to a high-finesse cavity. Applied Physics B: Lasers and Optics, 95(2), 205–212.Google Scholar
Rutman, J., and Walls, F. L. 1991. Characterization of frequency stability in precision frequency sources. Proceedings of the IEEE, 79(7), 952–960.Google Scholar
Ryazhskaya, O. G. 1996. Muons and neutrinos in the cosmic radiation. Il Nuovo Cimento, 19C, 655–670.Google Scholar
Salomon, C., Hils, D., and Hall, J. L. 1988. Laser stabilization at the millihertz level. Journal of the Optical Society of America B, 5, 1576–1587.Google Scholar
Sankur, Haluk, Gunning, William J., and DeNatale, Jeffrey F. 1988. Intrinsic stress and structural properties of mixed composition thin films. Applied Optics, 27(8), 1564–1567.Google Scholar
Santarelli, G., Audoin, C., Makdissi, A.et al. 1998. Frequency stability degradation of an oscillator slaved to a periodically interrogated atomic resonator. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 45(4), 887–894.Google Scholar
Sassolas, B., Flaminio, R., Franc, J.et al. 2009. Masking technique for coating thickness control on large and strongly curved aspherical optics. Applied Optics, 48, 3760–3765.Google Scholar
Sauer, J. A., Fortier, K. M., Chang, M. S., Hamley, C. D., and Chapman, M. S. 2004. Cavity QED with optically transported atoms. Physical Review A, 69(5), 051804.Google Scholar
Saulson, Peter R. 1990. Thermal noise in mechanical experiments. Physical Review D, 42(8), 2437–2445.Google Scholar
Saulson, Peter R., Stebbins, Robin T., Dumont, Frank D., and Mock, Scott E. 1994. The inverted pendulum as a probe of anelasticity. Review of Scientific Instruments, 65, 182–191.Google Scholar
Savchenkov, A.A., Matsko, A. B., Yu, N., Ilchenko, V. S., and Maleki, L. 2007. Whispering-gallery-mode resonators as frequency references. II. Stabilization. Journal of the Optical Society of America B, 24, 2988–2998.Google Scholar
Schermer, J. J., Bauhuis, G. J., Mulder, P.et al. 2006. Photon confinement in high-efficiency, thin-film III-V solar cells obtained by epitaxial lift-off. Thin Solid Films, 511–512, 645–653.Google Scholar
Schiller, S., Lämmerzahl, C., Müller, H.et al. 2004. Experimental limits for low-frequency space-time fluctuations from ultrastable optical resonators. Physical Review D, 69, 027504.Google Scholar
Schiller, S., Antonini, P., and Okhapkin, M. 2006. Lecture Notes in Physics. Springer. Chap. A precision test of the isotropy of the speed of light using rotating cryogenic optical cavities, pages 401–415.
Schliesser, A., Del'Haye, P., Nooshi, N., Vahala, K. J., and Kippenberg, T. J. 2006. Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Physical Review Letters, 97(24), 243905.Google Scholar
Schmidt-Kaler, F., Gulde, S., Riebe, M.et al. 2003. The coherence of qubits based on single Ca+ ions. Journal of Physics B: Atomic, Molecular and Optical Physics, 36, 623–636.Google Scholar
Schnabel, R., Britzger, M., Brückner, F.et al. 2010. Building blocks for future detectors: Silicon test masses and 1550 nm laser light. Journal of Physics: Conference Series, 228, 012029.Google Scholar
Schubert, E. F. 2003. Light Emitting Diodes. Cambridge University Press.
Schutz, Bernard. 2009. A First Course in General Relativity. 2nd edn. Cambridge University Press.
Scott, W. W., and MacCrone, R. K. 1968. Apparatus for mechanical loss measurements at audio frequencies and low temperatures. Review of Scientific Instruments, 39, 821–823.Google Scholar
Seeber, B., and White, G. K. 1998. Handbook of Applied Superconductivity, Volume 2. 2nd edn. Taylor & Francis.
Seel, S., Storz, R., Ruoso, G., Mlynek, J., and Schiller, S. 1997. Cryogenic optical resonators: A new tool for laser frequency stabilization at the 1 Hz level. Physical Review Letters, 78, 4741–4744.Google Scholar
Selhofer, Hubert, and Müller, René. 1999. Comparison of pure and mixed coating materials for AR coatings for use by reactive evaporation on glass and plastic lenses. Thin Solid Films, 351(1–2), 180–183.Google Scholar
Seshan, Krishna (ed). 2002. Handbook of Thin-Film Deposition Processes and Techniques – Principles, Methods, Equipment and Applications. William Andrew Publishing/Noyes.
Sheard, Benjamin S., Gray, Malcolm B., Mow-Lowry, Conor M., McClelland, David E., and Whitcomb, Stanley E. 2004. Observation and characterization of an optical spring. Physical Review A, 69(5), 051801.Google Scholar
Sheppard, C. J. R., and Saghafi, S. 1996. Flattened light beams. Optics Communications, 132(Feb.), 144–152.Google Scholar
Sherstov, I., Okhapkin, M., Lipphardt, B., Tamm, C., and Peik, E. 2010. Diode-laser system for high-resolution spectroscopy of the 2S½ → 2F7/2 octupole transition in 171Yb+. Physical Review A, 81(2), 021805.Google Scholar
Shoemaker, D., Schilling, R., Schnupp, L.et al. 1988. Noise behavior of the Garching 30-meter prototype gravitational-wave detector. Physical Review D, 38(2), 423–432.Google Scholar
Siegman, A. E. 1986. Lasers. University Science Books. See also: Errata List for LASERS, http://www.stanford.edu/∼siegman/lasers_book_errata.pdf.
Smith, G. L., Hoyle, C. D., Gundlach, J. H.et al. 1999. Short-range tests of the equivalence principle. Physical Review D, 61(2), 022001.Google Scholar
Soloviev, A. A., Kozhevatov, I. E., Palashov, O. V., and Khazanov, E. A. 2006. Compensation for thermally induced aberrations in optical elements by means of additional heating by CO2 laser radiation. Quantum Electronics, 36, 939–945.Google Scholar
Somiya, K. 2009a. Discussion about losses in the perpendicular and parallel directions. LIGO-T0900033.
Somiya, Kentaro. 2009b. Reduction and possible elimination of coating thermal noise using a rigidly controlled cavity with a quantum-nondemolition technique. Physical Review Letters, 102(23), 230801.Google Scholar
Somiya, Kentaro, and Yamamoto, Kazuhiro. 2009. Coating thermal noise of a finite-size cylindrical mirror. Physical Review D, 79(10), 102004.Google Scholar
Somiya, Kentaro, Kokeyama, Keiko, and Nawrodt, Ronny. 2010. Remarks on thermoelastic effects at low temperatures and quantum limits in displacement measurements. Physical Review D, 82, 127101.Google Scholar
Spitzer, W. G., and Whelan, J. M. 1959. Infrared absorption and electron effective mass in n-type gallium arsenide. Physical Review, 114(1), 59–63.Google Scholar
Stannigel, K., Rabl, P., Sørensen, A. S.et al. 2010. Opto-mechanical transducers for longdistance quantum communication. Physical Review Letters, 105, 220501.Google Scholar
Steinmetz, T., Colombe, Y., Hunger, D.et al. 2006. Stable fiber-based Fabry–Pérot cavity. Applied Physics Letters, 89, 111110.Google Scholar
Stenzel, Olaf, Wilbrandt, Steffen, Schürmann, Market al. 2011. Mixed oxide coatings for optics. Applied Optics, 50(9), C69–C74.Google Scholar
Sterr, U., Degenhardt, C., Stoehr, H.et al. 2004. The optical calcium frequency standards of PTB and NIST. Comptes Rendus Physique, 5, 845–855.Google Scholar
Sterr, U., Legero, T., Kessler, T.et al. 2009 (Aug.). Ultrastable lasers: New developments and applications. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, vol. 7431.
Stolz, C. J., and Taylor, J. R. 1992. Damage threshold study of ion beam sputtered coatings for a visible high-repetition laser at LLNL. Proceedings of SPIE, 1848, 182–191.Google Scholar
Stone, J. 1988. Stress-optic effects, birefringence, and reduction of birefringence by annealing in fiber Fabry–Perot interferometers. Journal of Lightwave Technology, 6(7), 1245–1248.Google Scholar
Storz, R., Braxmaier, C., Jäack, K., Pradl, O., and Schiller, S. 1998. Ultrahigh long-term dimensional stability of a sapphire cryogenic optical resonator. Optics Letters, 23, 1031–1033.Google Scholar
Stover, John C. 1995. Optical scattering: measurement and analysis. 2nd edn. SPIE – The International Society for Optical Engineering.
Strakna, R. E. 1961. Investigation of low temperature ultrasonic absorption in fast-neutron irradiated SiO2 glass. Physical Review, 123, 2020–2026.Google Scholar
Stringfellow, G. B. 1989. Organometallic Vapor Phase Epitaxy: Theory and Practice. Academic Press.
Stuart, R. V., and Wehner, G. K. 1964. Angular distribution of sputtered Cu atoms. Journal of Applied Physics, 35(6), 1819.Google Scholar
Sullivan, B. T., and Dobrowski, J. A. 1992a. Deposition error compensation for optical multilayer coatings. I. Theoretical description. Applied Optics, 31, 3821–3835.Google Scholar
Sullivan, B. T., and Dobrowski, J. A. 1992b. Deposition error compensation for optical multilayer coatings. II. Experimental results-sputtering system. Applied Optics, 32, 2351–2360.Google Scholar
Sun, Ke-Xun, and Byer, Robert L. 1998. All-reflective Michelson, Sagnac, and Fabry–Perot interferometers based on grating beam splitters. Optics Letters, 23(8), 567–569.Google Scholar
Sun, Ke-Xun, Allard, Brett, Buchman, Saps, Williams, Scott, and Byer, Robert L. 2006. LED deep UV source for charge management of gravitational reference sensors. Classical and Quantum Gravity, 23(8), S141–S150.Google Scholar
Sun, Ke-Xun, Leindecker, Nick, Markosyan, Ashotet al. 2008. Effects of ultraviolet irradiation to LIGO mirror coatings. LIGO-G080150-00.
Swenson, C. A. 1983. Recommended values for the thermal expansivity of silicon from 0 to 1000 K. Journal of Physical and Chemical Reference Data, 12(2), 179–182.Google Scholar
Takahashi, Ryutaro, and the TAMA Collaboration. 2004. Status of TAMA300. Classical and Quantum Gravity, 21, S403–S408.Google Scholar
Takamoto, M., Hong, F., Higashi, R., and Katori, H. 2005. An optical lattice clock. Nature, 435, 321–324.Google Scholar
Takashashi, Haruo. 1995. Temperature stability of thin-film narrow-bandpass filters produced by ion-assisted deposition. Applied Optics, 34(4), 667–675.Google Scholar
Tarallo, Marco G., Miller, John, Agresti, J.et al. 2007. Generation of a flat-top laser beam for gravitational wave detectors by means of a nonspherical Fabry–Perot resonator. Applied Optics, 46(26), 6648–6654.Google Scholar
Tavis, Michael, and Cummings, Frederick W. 1968. Exact solution for an N-moleculeradiation-field Hamiltonian. Physical Review, 170(2), 379–384.Google Scholar
Taylor, C. T., Notcutt, M., Wong, E. K., Mann, A. G., and Blair, D. G. 1996. Measurement of the coefficient of thermal expansion of a cryogenic, all-sapphire, Fabry-Perot optical cavity. Optics Communications, 131, 311–314.Google Scholar
Taylor, C. T., Notcutt, M., Wong, Eng Kiong, Mann, A. G., and Blair, D. G. 1997. Measurement of the thermal expansion coefficient of an all-sapphire optical cavity. IEEE Transactions on Instrumentation and Measurement, 46(2), 183–185.Google Scholar
Tellier, C. R. 1982. Some results on chemical etching of AT-cut quartz wafers in ammonium bifluoride solutions. Journal of Materials Science, 17, 1348–1354.Google Scholar
Teufel, J. D., Donner, T., Li, D., et al. 2011. Sideband cooling of micromechanical motion to the ground state. Nature, 475, 359–363.Google Scholar
,The LIGO Scientific Collaboration. 2010. A gravitational wave observatory operating beyond the quantum limit: Squeezed light in application. In press, Nature Physics.
Thompson, J. D., Zwickl, B. M., Jayich, A. M.et al. 2008. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature, 452(7183), 72–45.Google Scholar
Thompson, R. J., Rempe, G., and Kimble, H. J. 1992. Observation of normal-mode splitting for an atom in an optical cavity. Physical Review Letters, 68(8), 1132–1135.Google Scholar
Thorne, Kip S., O'Shaugnessy, Richard, and d'Ambrosio, Erika. 2000. Beam reshaping to reduce thermoelastic noise. LIGO-G000223-00-D.Google Scholar
Thorpe, M. J., Moll, K. D., Jones, R. J., Safdi, B., and Ye, J. 2006. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science, 311(5767), 1595–1599.Google Scholar
Ting, S. M., and Fitzgerald, E. A. 2000. Metal-organic chemical vapor deposition of single domainGaAs onGe/GexSi1-x/Si and Ge substrates. Journal of Applied Physics, 87(5), 2618–2628.Google Scholar
Tittonen, I., Breitenbach, G., Kalkbrenner, T.et al. 1999. Interferometric measurements of the position of a macroscopic body: Towards observation of quantum limits. Physical Review A, 59(2), 1038–1044.Google Scholar
Tomaru, Takayuki, Uchiyama, Takashi, Tatsumi, Daisukeet al. 2001. Cryogenic measurement of the optical absorption coefficient in sapphire crystals at 1.064μm for the large-scale cryogenic gravitational wave telescope. Physics Letters A, 283(1–2), 80–84.Google Scholar
Tomaru, T., Suzuki, T., Miyoki, S.et al. 2002. Thermal lensing in cryogenic sapphire substrates. Classical and Quantum Gravity, 19(7), 2045–2049.Google Scholar
Tomaru, T., Suzuki, T., Haruyama, T.et al. 2004. Vibration analysis of cryocoolers. Cryogenics, 44, 309–317.Google Scholar
Tomaru, T., Tokunari, M., Kuroda, K.et al. 2008a. Reduction of heat load of LCGT cryostat. Journal of Physics: Conference Series, 122, 012009.Google Scholar
Tomaru, Takayuki, Tokunari, Masao, Kuroda, Kazuakiet al. 2008b. Conduction effect of thermal radiation in a metal shield pipe in a cryostat for a cryogenic interferometric gravitational wave detector. Japanese Journal of Applied Physics, 47, 1771–1774.Google Scholar
Topp, K. A., and Cahill, David G. 1996. Elastic properties of several amorphous solids and disordered crystals below 100 K. Zeitschrift für Physik B, 101, 235–245.Google Scholar
Touloukian, Y. S., and Ho, C. Y. 1970. Thermophysical Properties of Matter: The TRPC Data Series. Plenum Press.
Tovar, A. A. 2001. Propagation of flat-topped multi-Gaussian laser beams. Journal of the Optical Society of America A, 18(Aug.), 1897–1904.Google Scholar
Trupke, M., Hinds, E. A., Eriksson, S.et al. 2005. Microfabricated high-finesse optical cavity with open access and small volume. Applied Physics Letters, 87, 211106.Google Scholar
Tsao, J. Y. 1993. Materials Fundament of Molecular Beam Epitaxy. Academic Press.
Uchiyama, T., Tomaru, T., Tobar, M. E.et al. 1999. Mechanical quality factor of a cryogenic sapphire test mass for gravitational wave detectors. Physics Letters A, 261(1–2), 5–11.Google Scholar
Uchiyama, T., Miyoki, S., Ohashi, M.et al. 2006. Cryogenic systems of the Cryogenic Laser Interferometer Observatory. Journal of Physics: Conference Series, 32, 259–264.Google Scholar
Udem, T., Holzwarth, R., and Hänsch, T. W. 2002. Optical frequency metrology. Nature, 416(6877), 233–237.Google Scholar
Ugolini, D., Girard, M., Harry, G. M., and Mitrofanov, V. P. 2008. Discharging fused silica test masses with ultraviolet light. Physics Letters A, 372(36), 5741–5744.Google Scholar
Vahala, Kerry J. 2003. Optical microcavities. Nature, 424(6950), 839–846.Google Scholar
Vahlbruch, Henning, Mehmet, Moritz, Chelkowski, Simonet al. 2008. Observation of squeezed light with 10-dB quantum-noise reduction. Physical Review Letters, 100(3), 033602.Google Scholar
van Enk, S. J., McKeever, J., Kimble, H. J., and Ye, J. 2001. Cooling of a single atom in an optical trap inside a resonator. Physical Review A, 64(1), 013407.Google Scholar
van Vliet, K. M., and Menta, H. 1981. Theory of transport noise in semiconductors. Physica Status Solidi. B, Basic Research, 106, 11–30.Google Scholar
van Vliet, K. M., van der Ziel, A., and Schmidt, R. 1980. Temperature fluctuation noise of thin films supported by a substrate. Journal of Applied Physics, 51, 2947–2956.Google Scholar
VanDevender, A. P., Colombe, Y., Amini, J., Leibfried, D., and Wineland, D. J. 2010. Efficient fiber optic detection of trapped ion fluorescence. Physical Review Letters, 105(2), 023001.Google Scholar
Vanner, M. R., Dikovski, I., Cole, G. D.et al. 2011. Pulsed quantum optomechanics. Proceedings of the National Academy of Sciences (USA), 108.Google Scholar
Ventura, G., and Risegari, L. 2007. The Art of Cryogenics: Low-Temperature Experimental Techniques. Elsevier Science.
Villa, F., Martinez, A., and Regalado, F. E. 2000. Correction mask for thickness uniformity in large-area thin films. Applied Optics, 39(10), 1602–1610.Google Scholar
Villar, A., Black, E., Ogin, G.et al. 2010a. Loss angles from the direct measurement of Brownian noise in coatings. LIGO-G1000937.
Villar, Akira E., Black, Eric D., DeSalvo, Riccardoet al. 2010b. Measurement of thermal noise in multilayer coatings with optimized layer thickness. Physical Review D, 81(12), 122001.Google Scholar
Vinet, Jean-Yves. 2009. On special optical modes and thermal issues in advanced gravitational wave interferometric detectors. Living Reviews in Relativity, 12(5).Google Scholar
Vinet, J.-Y., Hello, P., Man, C. N., and Brillet, A. 1992. A high accuracy method for the simulation of non-ideal optical cavities. Journal de Physique I, 2(July), 1287–1303.Google Scholar
Vitali, D., Gigan, S., Ferreira, A.et al. 2007. Optomechanical entanglement between a movable mirror and a cavity field. Physical Review Letters, 98, 030405.Google Scholar
Volpyan, O. D., and Yakovlev, P. P. 2002. The effect of heat treatment on the optical properties of Ta2O5 films. Journal of Optical Technology, 69(5), 319–321.Google Scholar
Vossen, J. L., and Kern, W. (eds). 1978. Thin Film Processes. Academic Press.
Vukcevich, M. R. 1972. A new interpretation of the anomalous properties of vitreous silica. Journal of Non-Crystalline Solids, 11, 25–63.Google Scholar
Walsh, Christopher J., Leistner, Achim J., Seckold, Jeffrey, Oreb, Bozenko F., and Farrant, David I. 1999. Fabrication and measurement of optics for the Laser Interferometer Gravitational Wave Observatory. Applied Optics, 38(13), 2870–2879.Google Scholar
Wang, C., and Hartnett, J. G. 2010. A vibration free cryostat using pulse tube cryocooler. Cryogenics, 50, 336–341.Google Scholar
Wang, C., Thummes, G., Heiden, C., Best, K.-J., and Oswald, B. 1999. Cryogen free operation of a niobium–tin magnet using a two-stage pulse tube cooler. IEEE Transactions on Applied Superconductivity, 9, 402–405.Google Scholar
Wang, Wen-Hsiang, and Chao, Shiuh. 1998. Annealing effect on ion-beam-sputtered titanium dioxide film. Optics Letters, 23(18), 1417–1419.Google Scholar
Wanser, K. H. 1992. Fundamental phase noise limit in optical fibres due to temeperature fluctuations. Electronics Letters, 28, 53–54.Google Scholar
Weber, B., Specht, H. P., Müller, T.et al. 2009. Photon-photon entanglement with a single trapped atom. Physical Review Letters, 102(3), 030501.Google Scholar
Weber, J. 1960. Detection and generation of gravitational waves. Physical Review, 117(1), 306–313.Google Scholar
Webster, Stephen A., Oxborrow, Mark, and Gill, Patrick. 2004. Subhertz-linewidth Nd:YAG laser. Optics Letters, 29, 1497–1499.Google Scholar
Webster, S. A., Oxborrow, M., and Gill, P. 2007. Vibration insensitive optical cavity. Physical Review A, 75(1), 011801.Google Scholar
Webster, S. A., Oxborrow, M., Pugla, S., Millo, J., and Gill, P. 2008. Thermal-noise-limited optical cavity. Physical Review A, 77(3), 033847.Google Scholar
Wehner, G. K., and Anderson, G. S. 1970. Handbook of Thin Film Technology. McGraw Hill. Chap. The nature of physical sputtering.
Wehner, G. K., and Rosenberg, D. 1960. Angular distribution of sputtered material. Journal of Applied Physics, 31(1), 177–179.Google Scholar
Wei, D. T., and Louderback, A. W. 1979. US Patent 4, 142, 958: Method for fabricating multi-layer optical films.
Weisberg, J. M., Nice, D. J., and Taylor, J. H. 2010. Timing measurements of the relativistic binary pulsar PSR B1913+16. The Astrophysical Journal, 722(Oct.), 1030–1034.Google Scholar
Weiss, Rai. 1972. Electromagnetically coupled broad-band gravitational wave antenna. Tech. rept. Massachusetts Institute of Technology. LIGO-P720002-00.
Wen, Linqing, and Chen, Yanbei. 2010. Geometrical expression for the angular resolution of a network of gravitational-wave detectors. Physical Review, 81(8), 082001.Google Scholar
White, G. K. 1993. Reference materials for thermal expansion: Certified or not?Thermochimica Acta, 218, 83–99.Google Scholar
Wiedersich, J., Adichtchev, S. V., and Rössler, E. 2000. Spectral shape of relaxations in silica glass. Physical Review Letters, 84, 2718–2721.Google Scholar
Wilk, T., Webster, S. C., Kuhn, A., and Rempe, G. 2007. Single-atom single-photon quantum interface. Science, 317, 488–490.Google Scholar
Willke, B., and The GEO-HF Collaboration. 2006. The GEO-HF project. Classical and Quantum Gravity, 23(8), S207–S214.Google Scholar
Willke, B., Danzmann, K., Frede, M.et al. 2008. Stabilized lasers for advanced gravitational wave detectors. Classical and Quantum Gravity, 25(11), 114040.Google Scholar
Wilmsen, C. W., Temkin, H., and Coldren, L. A. (eds). 1999. Vertical-Cavity Surface- Emitting Lasers: Design, Fabrication, Characterization, and Applications. Cambridge University Press.
Wilson, D. J., Regal, C. A., Papp, S. B., and Kimble, H. J. 2009. Cavity optomechanics with stoichiometric SiN films. Physical Review Letters, 103(20), 207204.Google Scholar
Wilson-Rae, I. 2008. Intrinsic dissipation in nanomechanical resonators due to phonon tunneling. Physical Review B, 77, 245418.Google Scholar
Wilson-Rae, I., Nooshi, N., Zwerger, W., and Kippenberg, T. J. 2007. Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Physical Review Letters, 99(9), 093901.Google Scholar
Wineland, D. J., Monroe, C., Itano, W. M.et al. 1998. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. Journal of Research of the National Institute of Standards and Technology, 103, 259–328.Google Scholar
Winkler, W., Danzmann, K., Rüdiger, A., and Schilling, R. 1991. Heating by optical absorption and the performance of interferometric gravitational-wave detectors. Physical Review A, 44(Dec.), 7022–7036.Google Scholar
Wong, N. C., and Hall, J. L. 1985. Servo control of amplitude modulation in frequencymodulation spectroscopy: Demonstration of shot-noise-limited detection. Journal of the Optical Society of America B, 2(9), 1527–1533.Google Scholar
Wortman, J. J., and Evans, R. A. 1965. Young's modulus, shear modulus, and Poisson's ratio in silicon and germanium. Journal of Applied Physics, 36, 153–156.Google Scholar
Wu, S. C., Wan, Z. Z., Li, H., and Z., Liu Z. 2006. Photo-thermal shot noise in end mirrors of LIGO due to correlation of power fluctuations. Chinese Physics Letters, 23, 3173–3176.Google Scholar
Xie, H., Zeng, X. T., and Yeo, W. K. 2008. Temperature dependent properties of titanium oxide thin films by spectroscopic ellipsometry. SimTech Reports, 9, 29.Google Scholar
Yablonovitch, Eli, Gmitter, T., Harbison, J. P., and Bhat, R. 1987. Extreme selectivity in the lift-off of epitaxial GaAs films. Applied Physics Letters, 51(26), 2222–2224.Google Scholar
Yamamoto, Hiro. 2007. LIGO I mirror scattering loss by microroughness. LIGO-T070082-03-E.
Yamamoto, K. 2000. Study of the thermal noise caused by inhomogeneously distributed loss. Ph.D. thesis, University of Tokyo.
Yamamoto, Kazuhiro, Otsuka, Shigemi, Ando, Masaki, Kawabe, Keita, and Tsubono, Kimio. 2001. Experimental study of thermal noise caused by an inhomogeneously distributed loss. Physics Letters A, 280(5–6), 289–296.Google Scholar
Yamamoto, Kazuhiro, Otsuka, Shigemi, Ando, Masaki, Kawabe, Keita, and Tsubono, Kimio. 2002. Study of the thermal noise caused by inhomogeneously distributed loss. Classical and Quantum Gravity, 19(7), 1689–1696.Google Scholar
Yamamoto, K., Miyoki, S., Uchiyama, T.et al. 2004. Mechanical loss of the reflective coating and fluorite at low temperature. Classical and Quantum Gravity, 21(5), S1075–S1081.Google Scholar
Yamamoto, K., Miyoki, S., Uchiyama, T.et al. 2006a. Measurement of the mechanical loss of a cooled refractive coating for gravitational wave detection. Physical Review D, 74, 022002.Google Scholar
Yamamoto, K., Uchiyama, T., Miyoki, S.et al. 2006b. Measurement of vibration of the top of the suspension in a cryogenic interferometer with operating cryocoolers. Journal of Physics: Conference Series, 32, 418–423.Google Scholar
Yamamoto, K., Uchiyama, T., Miyoki, S.et al. 2008. Current status of the CLIO project. Journal of Physics: Conference Series, 122(1), 012002.Google Scholar
Yang, Jinling, Ono, Takahito, and Esashi, Masayoshi. 2000. Surface effects and high quality factors in ultrathin single-crystal silicon cantilevers. Applied Physics Letters, 77(23), 3860–3862.Google Scholar
Yang, Jinling, Ono, T., and Esashi, M. 2002. Energy dissipation in submicrometer thick single-crystal silicon cantilevers. Journal of Microelectromechanical Systems, 11(6), 775–783.Google Scholar
Yasamura, K. Y., Stowe, T. D., Chow, E. M.et al. 2000. Quality factors in micron and submicron thick cantilevers. Journal of Microelectromechanical Systems, 9, 117–125.Google Scholar
Ye, J., and Lynn, T. W. 2003. Applications of optical cavities in modern atomic, molecular, and optical physics. Advances in Atomic, Molecular, and Optical Physics, 49, 1–83.Google Scholar
Ye, J., Vernooy, D. W., and Kimble, H. J. 1999. Trapping of single atoms in cavity QED. Physical Review Letters, 83(24), 4987–4990.Google Scholar
Ye, J., Kimble, H. J., and Katori, H. 2008. Quantum State engineering and precision metrology using state-insensitive light traps. Science, 320(5884), 1734–1738.Google Scholar
Yoon, Jongseung, Jo, Sungjin, Chun, Ik Suet al. 2010. GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies. Nature, 465(7296), 329–333.Google Scholar
Yost, D. C., Schibli, T. R., Ye, J.et al. 2009. Vacuum-ultraviolet frequency combs from below-threshold harmonics. Nature Physics, 5, 815–820.Google Scholar
Young, B. C., Cruz, F. C., Itano, W. M., and Bergquist, J. C. 1999. Visible lasers with subhertz linewidths. Physical Review Letters, 82(19), 3799–3802.Google Scholar
Zelenogorsky, Victor V., Solovyov, Alexander A., Kozhevator, Ilya E.et al. 2006. Highprecision methods and devices for in situ measurements of thermally induced aberrations in optical elements. Applied Optics, 45(17), 4092–4101.Google Scholar
Zelevinsky, T., Blatt, S., Boyd, M. M.et al. 2008. Highly coherent spectroscopy of ultracold atoms and molecules in optical lattices. ChemPhysChem, 9, 375–382.Google Scholar
Zeller, R. C., and Pohl, R. O. 1971. Thermal conductivity and specific heat of noncrystalline solids. Physical Review B, 4(6), 2029–2041.Google Scholar
Zener, C. 1937. Internal friction in solids. I. Theory of internal friction in reeds. Physical Review, 52(3), 230–235.Google Scholar
Zener, C. 1938. Internal friction in solids II. General theory of thermoelastic internal friction. Physical Review, 53(1), 90–99.Google Scholar
Zener, C. 1948. Elasticity and Anelasticity in Metals. University of Chicago Press.
Zhang, L.-T., Armandula, Helena, Billingsley, Garilynn, Cardenas, Lee, and Kells, Bill. 2008. The coating scattering and absorption measurements of LIGO mirrors at Caltech. LIGO-G080162-00.
Zhao, C., Degallaix, J., Ju, L.et al. 2006. Compensation of strong thermal lensing in high-optical-power cavities. Physical Review Letters, 96(23), 231101.Google Scholar
Zorn, M., Haberland, K., Knigge, A.et al. 2002. MOVPE process development for 650 nm VCSELS using optical in-situ techniques. Journal of Crystal Growth, 235(1–4), 25–34.Google Scholar
Zwickl, B. M., Shanks, W. E., Jayich, A. M.et al. 2008. High quality mechnaical and optical properties of commercial silicon nitride membranes. Applied Physics Letters, 92, 103125.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Edited by Gregory Harry, American University, Washington DC, Timothy P. Bodiya, Massachusetts Institute of Technology, Riccardo DeSalvo, Università degli Studi del Sannio, Italy
  • Book: Optical Coatings and Thermal Noise in Precision Measurement
  • Online publication: 05 January 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511762314.020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Edited by Gregory Harry, American University, Washington DC, Timothy P. Bodiya, Massachusetts Institute of Technology, Riccardo DeSalvo, Università degli Studi del Sannio, Italy
  • Book: Optical Coatings and Thermal Noise in Precision Measurement
  • Online publication: 05 January 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511762314.020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Edited by Gregory Harry, American University, Washington DC, Timothy P. Bodiya, Massachusetts Institute of Technology, Riccardo DeSalvo, Università degli Studi del Sannio, Italy
  • Book: Optical Coatings and Thermal Noise in Precision Measurement
  • Online publication: 05 January 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511762314.020
Available formats
×