Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-28T12:17:35.728Z Has data issue: false hasContentIssue false

5 - Miocene Snakes of Eurasia

A Review of the Evolution of Snake Communities

from Part I - The Squamate and Snake Fossil Record

Published online by Cambridge University Press:  30 July 2022

David J. Gower
Affiliation:
Natural History Museum, London
Hussam Zaher
Affiliation:
Universidade de São Paulo
Get access

Summary

Eurasian Miocene snake taxa, localities, stratigraphy, palaeogeography, and palaeoenvironment are reviewed. Palaeogeographic evolution of Paratethys facilitated communication between European and Asiatic faunas since the early Oligocene, with at least two main routes from Asia or Africa into Europe. The early Burdigalian saw spreading of non-erycid Booidea and the first ‘Oriental vipers’ in Europe, which dispersed substantially within Eurasia during late Ottnangian warming. This warm climate, culminating as the Miocene Climatic Optimum, was associated with the middle Burdigalian first appearance of highly thermophilic Naja and Python in Europe. Python disappeared in Europe at the end of the Langhian due to rapid cooling, but Naja and ‘Oriental vipers’ persisted until the late Pliocene and early Pleistocene, respectively. Communication among mid-latitude Asian and European assemblages occurred across the early–middle Miocene, but this Eurasian fauna was heterogeneous, at least since the middle Miocene. Miocene S and SE Asian snakes resemble those of today. Increasing end-Miocene aridity and Eurasia–Africa connection facilitated invasion into Eurasia of African and SW Asian taxa.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bohaty, S. M. and Zachos, J. C., Significant Southern Ocean warming event in the late middle Eocene. Geology, 31 (2003), 10171020.Google Scholar
Bohaty, S. M., Zachos, J. C., Florindo, F., and Delaney, M. L., Coupled greenhouse warming and deep-sea acidification in the middle Eocene. Paleoceanography, 24 (2009), PA2207.Google Scholar
Rage, J.-C., Mesozoic and Cenozoic squamates of Europe. Palaeobiodiversity and Palaeoenvironments, 93 (2013), 517543.Google Scholar
Cleary, T. J., Benson, R. B. J., Evans, S. E., and Barrett, P. M., Lepidosaurian diversity in the Mesozoic–Palaeogene: the potential roles of sampling biases and environmental drivers. Royal Society Open Science, 5 (2018), 171830.Google Scholar
Szyndlar, Z. and Rage, J.-C., Fossil record of the true vipers. In Schuett, G. W., Höggren, M., Douglas, M. E. and Greene, H. W., eds., Biology of the Vipers (Eagle Mountain: Eagle Mountain Publishing, 2002), pp. 419444.Google Scholar
Szyndlar, Z. and Rage, J.-C., Non-erycine Booidea from the Oligocene and Miocene of Europe (Kraków: Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, 2003).Google Scholar
Szyndlar, Z., Early Oligocene to Pliocene Colubridae of Europe: a review. Bulletin de la Société Géologique de France, 183 (2012), 661681.Google Scholar
Szyndlar, Z., A review of Neogene and Quaternary snakes of Central and Eastern Europe. Part I: Scolecophidia, Boidae, Colubridae. Estudios geológicos, 47 (1991), 103126.Google Scholar
Szyndlar, Z., A rewiew of Neogene and Quaternary snakes of Central and Eastern Europe. Part II: Natricinae, Elapidae, Viperidae. Estudios geológicos, 47 (1991), 237266.Google Scholar
Venczel, M., Middle-late Miocene snakes from the Pannonian Basin. Acta Palaeontologica Romaniae, 7 (2011), 343349.Google Scholar
Pyron, R. A., Reynolds, R. G., and Burbrink, F. T., A taxonomic revision of boas (Serpentes: Boidae). Zootaxa, 3846 (2014), 249260.Google Scholar
Zaher, H., Murphy, R. W., Arredondo, J. C., et al.Large-scale molecular phylogeny, morphology, divergence-time estimation, and the fossil record of advanced caenophidian snakes (Squamata: Serpentes). PloS ONE14 (2019), e0216148.Google Scholar
Burbrink, F. T., Grazziotin, F. G., Pyron, R. A., et al., Interrogating genomic-scale data for Squamata (lizards, snakes, and amphisbaenians) shows no support for key traditional morphological relationships. Systematic Biology, 69 (2020), 502520.Google Scholar
Ivanov, M., Changes in the composition of the European snake fauna during the Early Miocene and at the Early/Middle Miocene transition. Paläontologische Zeitschrift, 74/4 (2001), 563573.Google Scholar
Čerňanský, A., Vasilyan, D., Georgalis, G. L., et al., First record of fossil anguines (Squamata; Anguidae) from the Oligocene and Miocene of Turkey. Swiss Journal of Geosciences, 110 (2017), 741751.Google Scholar
Vasilyan, D., Roček, Z., Ayvazyan, A., and Claessens, L., Fish, amphibian and reptilian faunas from latest Oligocene to middle Miocene localities from Central Turkey. Palaeobiodiversity and Palaeoenvironments, 99 (2019), 723757.Google Scholar
Bernor, R. L., Brunet, M., Ginsburg, L., et al., A consideration of some major topics concerning Old World Miocene Mammalian chronology, migrations and paleogeography. Geobios, 20 (1987), 431439.Google Scholar
Mosbrugger, V., Utescher, T., and Dilcher, D. L., Cenozoic continental climatic evolution of Central Europe. PNAS, 102 (2005), 1496414969.Google Scholar
Zhang, Q-Q, Smith, T., Yang, J., and Li, C.-S., Evidence of a cooler continental climate in East China during the warm early Cenozoic. PLoS ONE, 11 (2016), e0155507.Google Scholar
Rögl, F., Circum-Mediterranean Miocene palaeogeography. In Rössner, G. E. and Heissig, K., eds., The Miocene Land Mammals of Europe (München: Verlag Dr. Friedrich Pfeil, 1999), pp. 3948.Google Scholar
Szyndlar, Z. and Hoşgör, I., Bavarioboa sp. (Serpentes, Boidae) from the Oligocene/Miocene of eastern Turkey with comments on connections between European and Asiatic snake faunas. Acta Palaeontologica Polonica, 57 (2012), 667671.Google Scholar
Syromyatnikova, E., Georgalis, G. L., Mayda, S., Kaya, T., and Saraç, G., A new early Miocene herpetofauna from Kilçak, Turkey. Russian Journal of Herpetology, 26 (2019), 205224.Google Scholar
Head, J. J., Mohabey, D. M., and Wilson, J. A., Acrochordus Hornstedt (Serpentes, Caenophidia) from the Miocene of Gujarat, western India: temporal constraints on dispersal of a derived snake. Journal of Vertebrate Paleontology, 27 (2007), 720723.Google Scholar
Hoffstetter, R., Les serpents du Néogène du Pakistan (couches des Siwaliks). Bulletin de la Société Géologique de France, 7 (1964), 467474.Google Scholar
West, R. M., Hutchison, J. H., and Munthe, J., Miocene vertebrates from the Siwalik Group, western Nepal. Journal of Vertebrate Paleontology, 11 (1991), 108129.Google Scholar
J-C. Rage, and Ginsburg, L., Amphibians and squamates from the Early Miocene of Li Mae Long, Thailand: the richest and most diverse herpetofauna from the Cainozoic of Asia. In Roček, Z. and Hart, S., eds., Herpetology ’97 (Prague: Ministry of Environment of the Czech Republic, 1997), pp. 167168.Google Scholar
Rage, J.-C., Gupta, S. S., and Prasad, G. V. R., Amphibians and squamates from the Neogene Siwalik beds of Jammu and Kashmir, India. Paläontologische Zeitschrift, 75 (2001), 197205.CrossRefGoogle Scholar
Head, J., Snakes of the Siwalik Group (Miocene of Pakistan): Systematics and relationships to environmental change. Palaeontologia Electronica, 8.1.18A (2005), 133.Google Scholar
Sanders, K. L., Mumpuni, A. Hamidy, J. J. Head, , and Gower, D. J., Phylogeny and divergence times of filesnakes (Acrochordus): inferences from morphology, fossils and three molecular loci. Molecular Phylogenetics and Evolution, 56 (2010), 857867.Google Scholar
Head, J. J., Mahlow, K., and Müller, J., Fossil calibration dates for molecular phylogenetic analysis of snakes 2: Caenophidia, Colubroidea, Elapoidea, Colubridae. Palaeontologia Electronica, 19 (2016), 121.Google Scholar
Szyndlar, Z., Snake fauna (Reptilia: Serpentes) from the Early/Middle Miocene of Sandelzhausen and Rothenstein 13 (Germany). Paläontologische Zeitschrift, 83 (2009), 5566.Google Scholar
Mennecart, B., Zoboli, D., Costeur, L., and Pillola, G. L., On the systematic position of the oldest insular ruminant Sardomeryx oschiriensis (Mammalia, Ruminantia) and the early evolution of the Giraffomorpha. Journal of Systematic Palaeontology (published online June 2018): https://doi.org/10.1080/14772019.2018.1472145.Google Scholar
Venczel, M. and Sanchíz, B., Lower Miocene Amphibians and Reptiles from Oschiri (Sardinia, Italy). Hantkeniana, 5 (2006), 7275.Google Scholar
Čerňanský, A., Rage, J.-C., and Klembara, J., The Early Miocene squamates of Amöneburg (Germany): The first stages of modern squamates in Europe. Journal of Systematic Palaeontology, 13/2 (2015), 97128.Google Scholar
Kayseri-Özer, M. S., Spatial distribution of climatic conditions from the Middle Eocene to Late Miocene based on palynoflora in Central, Eastern and Western Anatolia. Geodinamica Acta, 26/1–2 (2013), 122–157.Google Scholar
Hoffstetter, R. and Rage, J.-C., Les Erycinae fossiles de France (Serpentes, Boidae). Compréhension et histoire de la sous-famille. Annales de Paléontologie (Vertébrés), 58/1 (1972), 81124.Google Scholar
Szyndlar, Z. and Böhme, W., Die fossile Schlangen Deutschlands: Geschichte der Faunen und ihrer Erforschung. Mertensiella, 3 (1993), 381431.Google Scholar
Müller, J., Untermiozäne Kieferfragmente von Schlangen (Reptilia: Serpentes: Erycinae) aus der französischen Lokalität Poncenat. Neues Jahrbuch für Geologie und Paläontologie, Mh., 1998/2 (1998), 119128.Google Scholar
Szyndlar, Z. and Schleich, H. H., Description of Miocene Snakes from Petersbuch 2 with comments on the Lower and Middle Miocene Ophidian faunas of Southern Germany. Stuttgarter Beiträge zur Naturkunde, B 192 (1993), 147.Google Scholar
Kuch, U., Müller, J., Mödden, C., and Mebs, D., Snake fangs from the Lower Miocene of Germany: evolutionary stability of perfect weapons. Naturwissenschaften, 93 (2006), 8487.Google Scholar
Rage, J.-C., The oldest known colubrid snakes. The state of the art. In Z. Szyndlar, ed., A Festschrift in honour of Professor Marian Młynarski on the occasion of his retirement, Acta zoologica cracoviensia, 31/13 (1988), 457–474.Google Scholar
Grunert, P., Tzanova, A., Harzhauser, M., and Piller, W. E., Mid-Burdigalian Paratethyan alkenone record reveals link between orbital forcing, Antarctic ice-sheet dynamics and European climate at the verge to Miocene Climate Optimum. Global and Planetary Change, 123(Part A) (2014), 3643.Google Scholar
Böhme, M., Bruch, A., and Selmeier, A., The reconstruction of Early and Middle Miocene climate and vegetation in Southern Germany as determined from the fossil wood flora. Palaeogeography, Palaeoclimatology, Palaeoecology, 253 (2007), 91114.Google Scholar
Paclík, V., Ivanov, M., and Luján, A. H., Early Miocene snakes from the locality of Wintershof-West (Germany). In Marcola, M., Mateus, O. and Moreno-Azanza, M., eds., Abstract book of the XVI Annual Meeting of the European Association of Vertebrate Palaeontology, Caparica, Portugal June 26th–July 1st (Lisbon, 2018), p. 144.Google Scholar
Ivanov, M., The oldest known Miocene snake fauna from Central Europe: Merkur-North locality, Czech Republic. Acta Palaeontologica Polonica, 47/3 (2002), 513534.Google Scholar
Römer, F., Über Python Euboïcus, eine fossile Riesenschlange aus tertiärem Kalkschiefer von Kumi auf der Insel Euboea [On Python Euboïcus, a fossil giant snake from the Tertiary shale of Kumi in the island of Euboea]. Zeitschrift der Deutschen Geologische Gesellschaft, 22 (1870), 582–590.Google Scholar
Georgalis, G. L., Abdel Gawad, M. K., Hassan, S. M., et al., Oldest co-occurrence of Varanus and Python from Africa–first record of squamates from the early Miocene of Moghra Formation, Western Desert, Egypt. PeerJ, 8 (2020), e9092.Google Scholar
Figueroa, A., McKelvy, A. D., Grismer, L. L. et al., A species-level phylogeny of extant snakes with description of a new colubrid subfamily and genus. PLoS ONE, 11 (2016), e0161070.Google Scholar
Ivanov, M., Snakes of the lower/middle Miocene transition at Vieux-Collonges (Rhône; France), with comments on the colonization of western Europe by colubroids. Geodiversitas, 22/4 (2000), 559588.Google Scholar
Szyndlar, Z., Snake fauna from the Late Miocene of Rudabánya. Palaeontographia Italica, 90/2003 (2005), 3152.Google Scholar
Rage, J.-C. and Bailon, S., Amphibians and squamate reptiles from the late early Miocene (MN 4) of Béon 1 (Montréal-du-Gers, southwestern France). Geodiversitas, 27/3 (2005), 413–441.Google Scholar
Böhme, M., The Miocene Climatic Optimum: evidence from the ectothermic vertebrates of Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 195 (2003), 389401.Google Scholar
Zachos, J. C., Dickens, G. R., and Zeebe, R. E., An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451 (2008), 279283.Google Scholar
Ivanov, M. and Böhme, M., Snakes from Griesbeckerzell (Langhian, Early Badenian), North Alpine Foreland Basin (Germany), with comments on the evolution of snake fauna in Central Europe during the Miocene Climatic Optimum. Geodiversitas, 33/3 (2011), 411449.Google Scholar
Bruch, A. A., Utescher, T., Alcalde Olivares, C., et al., Middle and Late Miocene spatial temperature patterns and gradients in Europe – preliminary results based on palaeobotanical climate reconstructions. Courier Forschungsinstitut Senckenberg, 249 (2004), 1527.Google Scholar
Böhme, M., Ilg, A., Ossig, A., and Küchenhoff, H., New method to estimate paleoprecipitation using fossil amphibians and reptiles and the middle and late Miocene precipitation gradients in Europe. Geology, 34/6 (2006), 425428.Google Scholar
Böhme, M., Lower Vertebrates (Teleostei, Amphibia, Sauria) from the Karpatian of the Korneuburg Basin – palaeoecological, environmental and palaeoclimatical implications. Beiträge zur Paläontologie, 27 (2002), 339353.Google Scholar
Tempfer, P. M., Amphibians and Reptiles of the Karpatian Central Paratethys. In Brzobohatý, R., Cicha, I., Kováč, M. and Rögl, F., eds., The Karpatian. A Lower Miocene Stage of the Central Paratethys (Brno: Masaryk University, 2003), pp. 285290.Google Scholar
Doláková, N. and Slamková, M., Palynological Characteristics of Karpatian Sediments. In Brzobohatý, R., Cicha, I., Kováč, M. and Rögl, F., eds., The Karpatian. A Lower Miocene Stage of the Central Paratethys (Brno: Masaryk University, 2003), pp. 325–337.Google Scholar
Thomas, H., Sen, S., Khan, M., Battail, B., and Ligabue, G., The Lower Miocene fauna of Al-Sarrar (Eastern province, Saudi Arabia), Atlal, Journal of Saudi Arabian Archaeology, 5 (1982), 109136.Google Scholar
Georgalis, G. L., Mayda, S., Alpagut, B., et al., The westernmost Asian record of pythonids (Serpentes): the presence of Python in a Miocene hominoid locality of Anatolia. Journal of Vertebrate Paleontology, (2020), https://doi.org/10.1080/02724634.2020.1781144.Google Scholar
Malakhov, D. V., The early Miocene herpetofauna of Ayakoz (Eastern Kazakhstan). Biota, 6/1–2 (2005), 2935.Google Scholar
Chkhikvadze, V. M., Preliminary results of studies on tertiary amphibians and squamate reptiles of the Zaisan Basin. In Darevsky, I., ed., Questions of herpetology, The Sixth All-Union Herpetological Conference (Tashkent: Nauka, 1985) pp. 234235. (in Russian)Google Scholar
Sun, A., Notes on fossil snakes from Shanwang, Shangtung. Vertebrata Palasiatica, 4 (1961), 310312.Google Scholar
Holman, J. A. and Tanimoto, M., Cf. Trimeresurus Lacépède (Reptilia: Squamata: Viperidae: Crotalinae) from the Early Miocene of Japan. Acta zoologica cracoviensia, 47/1 (2004), 17.Google Scholar
Ivanov, M., Čerňanský, A., Bonilla Salomón, I., and Luján, A. H., Early Miocene squamate assemblage from the Mokrá-Western Quarry (Czech Republic) and its palaeobiogeographical and palaeoenvironmental implications. Geodiversitas, 42/20 (2020), 343376.Google Scholar
Rage, J.-C. and Szyndlar, Z., Latest Oligocene-Early Miocene in Europe: Dark Period for booid snakes. Comptes Rendus Palevol, 4 (2005), 428435.Google Scholar
Augé, M. and Rage, J.-C., Les Squamates (Reptilia) du Miocéne moyen de Sansan (Gers, France). Mémoires du Muséum national d’Histoire naturelle, 183 (2000), 263313.Google Scholar
Szyndlar, Z. and Schleich, H. H., Two species of the genus Eryx (Serpentes; Boidae; Erycinae) from the Spanish Neogene with comments on the past distribution of the genus in Europe. Amphibia – Reptilia, 15 (1994), 233–248.CrossRefGoogle Scholar
Szyndlar, Z. and Alférez, F., Iberian snake fauna of the Early/Middle Miocene transition. Revista Española de Herpetología, 19 (2005), 5770.Google Scholar
Szyndlar, Z. and Rage, J.-C., Oldest fossil vipers (Serpentes: Viperidae) from the Old World. Kaupia, 8 (1999), 920.Google Scholar
Szyndlar, Z. and Rage, J.-C., West Palearctic cobras of the genus Naja (Serpentes: Elapidae): interrelationships among extinct and extant species. Amphibia – Reptilia, 11 (1990), 385400.Google Scholar
Miklas-Tempfer, P. M., The Miocene Herpetofaunas of Grund (Caudata; Chelonii, Sauria, Serpentes) and Mühlbach am Manhartsberg (Chelonii, Sauria, Amphisbaenia, Serpentes), Lower Austria. Annalen des Naturhistorischen Museums in Wien, A 104 (2003), 195235.Google Scholar
Daxner-Höck, G., Miklas-Tempfer, P. M., Göhlich, U. B., et al., Marine and terrestrial vertebrates from the Middle Miocene of Grund (Lower Austria). Geologica Carpathica, 55/2 (2004), 191197.Google Scholar
McCartney, J. A., Stevens, N. J., and O’Connor, P. M., The Earliest Colubroid-Dominated Snake Fauna from Africa: Perspectives from the Late Oligocene Nsungwe Formation of Southwestern Tanzania. PLoS ONE, 9(3) (2014), e90415.Google Scholar
Szyndlar, Z., Snakes from the Lower Miocene locality of Dolnice (Czechoslovakia). Journal of Vertebrate Paleontology, 7 (1987), 5571.Google Scholar
Szyndlar, Z., Vertebrates from the Early Miocene lignite deposits of the opencast mine Oberdorf (Western Styrian Basin, Austria). Annalen des Naturhistorischen Museums in Wien, A 99 (1998), 3138.Google Scholar
Salvi, D., Mendes, J., Carranza, S., and Harris, D. J., Evolution, biogeography and systematics of the western Palaearctic Zamenis ratsnakes. Zoologica Scripta, 47 (2018), 441461.Google Scholar
Rage, J.-C. and Holman, J. A., Des Serpents (Reptilia, Squamata) de type Nord-Américain dans le Miocéne francais. Evolution paralléle ou dispersion? Géobios , 17 (1984), 89104.Google Scholar
Holman, J. A., Reptiles of the Egelhoff local fauna (Upper Miocene) of Nebraska. Contributions from the Museum of Paleontology, the University of Michigan, 24 (1973), 125134.Google Scholar
Holman, J. A., Fossil Snakes of North America. Origin, Evolution, Distribution, Paleoecology (Bloomington: Indiana University Press, 2000).Google Scholar
Georgalis, G. L., Villa, A., Ivanov, M. et al. Early Miocene herpetofaunas from the Greek localities of Aliveri and Karydia – bridging a gap in the knowledge of amphibians and reptiles from the early Neogene of southeastern Europe. Historical Biology, 31 (2019), 10451064.Google Scholar
Zerova, G. A.. The first find of a fossil Sand Boa of the genus Albaneryx (Serpentes, Boidae) in the USSR. Vestnik Zoologii, 5 (1989), 3035.Google Scholar
Ivanov, M., Vasilyan, D., Böhme, M., and Zazhigin, V. S., Miocene snakes from northeastern Kazakhstan: new data on the evolution of snake assemblages in Siberia. Historical Biology, 31/10 (2019), 12841303.Google Scholar
Szyndlar, Z. and Zerova, G. A., Miocene snake fauna from Cherevichnoie (Ukraine, USSR), with description of a new species of Vipera . Neues Jahrbuch für Geologie und Paläontologie, A, 184 (1992), 8799.Google Scholar
Chaimanee, Y., Yamee, C., Marandat, B., and Jaeger, J.-J., First middle Miocene rodents from the Mae Moh Basin (Thailand): Biochronological and paleoenvironmental implications. Bulletin of Carnegie Museum of Natural History, 39 (2007), 157–63.CrossRefGoogle Scholar
Rage, J.-C. and Danilov, I. G., A new Miocene fauna of snakes from eastern Siberia, Russia. Was the snake fauna largely homogenous in Eurasia during the Miocene? Comptes Rendus Palevol, 7 (2008), 383390.Google Scholar
Zerova, G. A., Lungu, A. N., and Chkhikvadze, V. M., Large fossil vipers from northern Black Seaside and Transcaucasus. Trudy zoologicheskogo Instituta Akademii Nauk S.S.S.R., 158/1986 (1987), 8999. (in Russian)Google Scholar
Zerova, G. A., Vipera (Daboia) ukrainica - a new viper (Serpentes; Viperidae) from the Middle Sarmatian (Upper Miocene) of the Ukraine. Neues Jahrbuch für Geologie und Paläontologie, A, 184 (1992), 235249.Google Scholar
Šmíd, J. and Tolley, K. A., Calibrating the tree of vipers under the fossilized birth-death model. Scientific Reports, 9 (2019), 5510 https://doi.org/10.1038/s41598–019-41290-2Google Scholar
Ivanov, M., The first European pit viper from the Miocene of Ukraine. Acta Palaeontologica Polonica, 44/3 (1999), 327334.Google Scholar
Ivanov, M., Fossil snake assemblages from the French Middle Miocene localities at La Grive (France). In Abstracts volume and excursions field guide, The 7th European workshop of vertebrate palaeontology, July 2–7, 2002, (Sibiu, 2002), pp. 26–27.Google Scholar
Georgalis, G. L., Villa, A., Ivanov, M., et al., Fossil amphibians and reptiles from the Neogene locality of Maramena (Greece), the most diverse European herpetofauna at the Miocene/Pliocene transition boundary. Palaeontologia Electronica, 22.3.68 (2019), 199.Google Scholar
Hoffstetter, R., Contribution à l’étude des Elapidae actuels et fossiles et de l’ostéologie des Ophidiens. Archives du Muséum d’Histoire Naturelle de Lyon, 15 (1939), 178.Google Scholar
Szyndlar, Z. and Zerova, G. A., Neogene cobras of the genus Naja (Serpentes: Elapidae) of East Europe. Annalen des Naturhistorischen Museums in Wien, A 91 (1990), 5361.Google Scholar
Rage, J.-C. and Szyndlar, Z., Natrix longivertebrata from the European Neogene, a snake with one of the longest known stratigraphic ranges. Neues Jahrbuch für Geologie und Paläontologie, Mh., 1 (1986), 5664.Google Scholar
Zerova, G. A., Late Cainozoic localities of snakes and lizards of Ukraine. Revue de Paléobiologie, 7 (1993), 273280.Google Scholar
Venczel, M. and Ştiucă, E., Late middle Miocene amphibians and squamate reptiles from Tauţ, Romania. Geodiversitas, 30 (2008), 731763.Google Scholar
Ivanov, M., Hadi evropského kenozoika. MS, PhD Thesis (Brno: Masaryk University, 1997), pp. 1217. (in Czech)Google Scholar
Ivanov, M., The snake fauna of Devínska Nová Ves (Slovak Republic) in relation to the evolution of snake assemblages of the European Middle Miocene. Acta Musei Moraviae, Scientiae geologicae, 83 (1998), 159172.Google Scholar
Böhme, M., Ilg, A., and Winklhofer, M., Late Miocene ‘washhouse’ climate in Europe. Earth and Planetary Science Letters, 275 (2008), 393401.Google Scholar
Agustí, J. and Antón, M., Mammoths, Sabertooths, and Hominids – 65 million Years of Mammalian Evolution in Europe, (New York: Columbia University Press, 2002).Google Scholar
Uetz, P., Freed, P., and Hošek, J., eds., The Reptile Database, www.reptile-database.org, (2020), accessed (20/04/2020).Google Scholar
Böhme, M., 3. Herpetofauna (Anura, Squamata) and palaeoclimatic implications: preliminary results. In G. Daxner-Höck, ed., Oligocene-Miocene vertebrates from the Valley of Lakes (Central Mongolia): morphology, phylogenetic and stratigraphic implications, Annalen des Naturhistorischen Museums in Wien, 108 (2007), 43–52.Google Scholar
Georgalis, G. L., Rage, J.-C., de Bonis, L., and Koufos, G. D., Lizards and snakes from the late Miocene hominoid locality of Ravin de la Pluie (Axios Valley, Greece). Swiss Journal of Geosciences, 111 (2018), 169181.Google Scholar
Bachmayer, F. and Szyndlar, Z., Ophidians (Reptilia: Serpentes) from the Kohfidisch fissures of Burgenland, Austria. Annalen des Naturhistorischen Museums in Wien, A 87 (1985), 79100.Google Scholar
Bachmayer, F. and Szyndlar, Z., A second contribution to the ophidian fauna (Reptilia, Serpentes) of Kohfidisch, Austria. Annalen des Naturhistorischen Museums in Wien, A 88 (1987), 2539.Google Scholar
Tempfer, P. M., The Herpetofauna (Amphibia: Caudata, Anura; Reptilia: Scleroglossa) of the Upper Miocene Locality Kohfidisch (Burgerland, Austria). Beiträge zur Paläontologie, 29 (2005), 145253.Google Scholar
Colombero, S., Angelone, C., Bonelli, E., et al., The Messinian vertebrate assemblages of Verduno (NW Italy): another brick for a latest Miocene bridge across the Mediterranean. Neues Jahrbuch für Geologie und Paläontologie, A, 272/3 (2014), 287324.Google Scholar
Codrea, V., Venczel, M., Ursachi, L., and Răţoi, B., A large viper from the early Vallesian (MN 9) of Moldova (E-Romania) with notes on the palaeobiogeography of late Miocene ‘Oriental vipers’. Geobios, 50 (2017), 401411.Google Scholar
Venczel, M. and Várdai, G., The genus Elaphe in the Carpathian Basin: Fossil record. Nymphaea Folia naturae Bihariae, 28 (2000), 6582.Google Scholar
Venczel, M., Late Miocene snakes from Polgárdi (Hungary). Acta zoologica cracoviensia, 37/1 (1994), 129.Google Scholar
Venczel, M., Late Miocene snakes (Reptilia: Serpentes) from Polgárdi (Hungary): a second contribution. Acta zoologica cracoviensia, 41/1 (1998), 122.Google Scholar
Bailon, S., Bover, P., Quintana, J., and Alcover, J. A., First fossil record of Vipera Laurenti 1768 ‘Oriental vipers complex’ (Serpentes: Viperidae) from the Early Pliocene of the western Mediterranean islands. Comptes Rendus Palevol, 9 (2010), 147154.Google Scholar
Torres, E., Bailon, S., Bover, P., and Alcover, J. A., Sobre la presencia de un vipérido de gran talla perteneciente al Complejo de Víboras Orientales en el yacimiento de Na Burguesa-1 (Mioceno Superior/Plioceno Inferior, Mallorca). Jornadas de Paleontología SEP, 30 (2014), 237240.Google Scholar
Blain, H.-A., Bailon, S., and Agustí, J., The geographical and chronological pattern of herpetofaunal Pleistocene extinctions on the Iberian Peninsula. Comptes Rendus Palevol, 15 (2016), 731744.Google Scholar
Szyndlar, Z., Fossil snakes from Poland. Acta zoologica cracoviensia, 28/1 (1984), 3156.Google Scholar
Pokrant, F., Kindler, C., Ivanov, M., et al., Integrative taxonomy provides evidence for the species status of the Ibero-Maghrebian grass snake Natrix astreptophora . Biological Journal of the Linnean Society, 118 (2016), 873888.Google Scholar
Delfino, M., Kotsakis, T., Arca, M., et al., Agamid lizards from the Plio-Pleistocene of Sardinia (Italy) and an overview of the European fossil record of the family. Geodiversitas, 30/3 (2008), 641656.Google Scholar
Georgalis, G. L., Villa, A., Vlachos, E., and Delfino, M., Fossil amphibians and reptiles from Plakias, Crete: A glimpse into the earliest late Miocene herpetofaunas of southeastern Europe. Geobios, 49 (2016), 433444.Google Scholar
Villa, A. and Delfino, M., Fossil lizards and worm lizards (Reptilia, Squamata) from the Neogene and Quaternary of Europe: an overview. Swiss Journal of Palaeontology, 138/2 (2019), 177211.Google Scholar
Szyndlar, Z., Ophidian fauna (Reptilia, Serpentes) from the Upper Miocene of Algora (Spain). Estudios geológicos, 41 (1985), 447465.Google Scholar
Szyndlar, Z., Two new extinct especies of the genera Malpolon and Vipera (Reptilia, Serpentes) from the Pliocene of Layna (Spain). Acta Zoologica Cracoviensia, 31/27 (1988), 687706.Google Scholar
Bailon, S. and Verbeke, C., Reptiles escamosos del Mioceno final (MN13) de Salobreña (Granada, España). In Martínez-Navarro, B., Palmqvist, P., Patrocinio Espigares, M. and Ros-Montoya, S., eds., Libro de resúmenes XXXV Jornadas de la Sociedad Española de Paleontología , (2019), pp. 3738.Google Scholar
Syromyatnikova, E. and Tesakov, A., Preliminary report on herpetofauna from the Solnechnodolsk locality (late Miocene), Russia. In MacKenzie, A., Maxwell, E. and Miller-Camp, J., eds., Abstracts of papers, 75th Annual Meeting of the Society of Vertebrate Paleontology, 14–17 October 2015, (Dallas, 2015), p. 221.Google Scholar
Villa, A. M., Carnevale, G., Pavia, M., et al., An overview on the late Miocene vertebrates from the fissure fillings of Monticino Quarry (Brisighella, Italy), with new data on non-mammalian taxa. Rivista Italiana di Paleontologia e Stratigrafia, 127 (2) (2021) 297354.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×