Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-14T23:08:26.110Z Has data issue: false hasContentIssue false

15 - Evolution to the white dwarf stage

Published online by Cambridge University Press:  04 November 2009

Sun Kwok
Affiliation:
University of Calgary
Get access

Summary

In Chapter 11 we discussed that the central stars of PN originate from the electrondegenerate carbon-oxygen core of AGB stars. After the thin H envelope has been depleted by nuclear burning and mass loss, CSPN will change from deriving their energies from the CNO process to gravitational contraction. This is accompanied by a drop in luminosity by at least an order of magnitude. He burning is unimportant (except during a thermal pulse) and also dies away eventually. The star now enters the “cooling track” with a gradual decline in both luminosity and temperature. These blue and faint stars are referred to as white dwarfs (WDs).

WDs were discovered as faint stars that are unusually dense that perturb the orbits of their normal companions through gravitational interaction. Most of the early WD discoveries are nearby single stars, which are found in surveys of stars with large proper motions (Luyten, 1979). More recent discoveries have resulted from surveys of faint blue stars, such as the quasar survey of Palomar-Green (Green et al., 1986). The PG survey has led to the discovery of hot, H-deficient stars known as PG 1159 stars (see Section 7.3). These are the hottest WDs and therefore can be considered as possible transition objects between the PN and WD stages.

For very low-mass stars, it is possible that mass loss or binary mass transfer on the RGB removes sufficient mass from the envelope to stop nuclear evolution before the He flash.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Evolution to the white dwarf stage
  • Sun Kwok, University of Calgary
  • Book: The Origin and Evolution of Planetary Nebulae
  • Online publication: 04 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511529504.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Evolution to the white dwarf stage
  • Sun Kwok, University of Calgary
  • Book: The Origin and Evolution of Planetary Nebulae
  • Online publication: 04 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511529504.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Evolution to the white dwarf stage
  • Sun Kwok, University of Calgary
  • Book: The Origin and Evolution of Planetary Nebulae
  • Online publication: 04 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511529504.016
Available formats
×