Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-17T00:46:29.225Z Has data issue: false hasContentIssue false

12 - Diagnosing heterochronic perturbations in the craniofacial evolution of Homo (Neandertals and modern humans) and Pan (P. troglodytes and P. paniscus)

Published online by Cambridge University Press:  12 August 2009

F. L. Williams
Affiliation:
Georgia State University
L. R. Godfrey
Affiliation:
University of Massachusetts
M. R. Sutherland
Affiliation:
University of Massachusetts
J. L. Thompson
Affiliation:
University of Nevada, Las Vegas
G. E. Krovitz
Affiliation:
Pennsylvania State University
A. J. Nelson
Affiliation:
University of Western Ontario
Get access

Summary

Introduction

A number of researchers have suggested that neoteny played an important role in the craniofacial evolution of the genus Homo and its close relatives (Abbie, 1947; Bolk, 1926; Brothwell, 1975; de Beer, 1958; Gould, 1977, 2000; Montagu, 1989; Privratsky, 1981; Verhulst, 1999). The same has also been suggested, at least in part, for the evolution of Pan paniscus (the “pygmy chimpanzee” or bonobo) (Rice, 1997; Shea, 1983, 1989, 2000, 2002; see also Coolidge, 1933). Comparisons of fossil as well as extant taxa have been brought to bear on the problem. Rozzi (2000) suggested that changes in molar morphology, from Australopithecus afarensis to the robust australopithecines, may be attributed to neoteny. Antón & Leigh (1998) held that neoteny helps to explain the evolution of craniofacial form from Homo erectus to Homo sapiens. Czarnetzki et al. (2001) invoked neoteny to explain the development of adult Neandertal traits. Finally, Alba et al. (2001) and Alba (2002) characterized the reduced canine size and facial prognathism in both bonobos and Oreopithecus as “paedomorphic,” and Shea (1984, 2000) characterized the “paedomorphic” facial skeletons of bonobos as “neotenic,” relative to a hypothetical Pan troglodytes-like ancestor.

The notion that modern humans and bonobos are neotenic has also come under severe criticism. Shea (1989) contested the neoteny hypothesis for human evolution (as did McKinney & McNamara, 1991 and McNamara, 2002) while upholding neoteny for bonobos. Godfrey & Sutherland (1995, 1996) challenged the evidence brought to bear on the arguments for and against neoteny in both humans and bonobos.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbie, A. A. (1947). Head form and human evolution. Journal of Anatomy, 81, 233–258Google Scholar
Alba, D. M. (2002). Shape and stage in heterochronic models. In Human Evolution through Developmental Change, eds. N. Minugh-Purvis and K. McNamara, pp. 28–50. Baltimore: Johns Hopkins University Press
Alba, D. M., Moya-Solá, S., & Kohler, M. (2001). Canine reduction in the Miocene hominoid Oreopithecus bambolii: Behavioural and evolutionary implications. Journal of Human Evolution, 40, 1–16CrossRefGoogle ScholarPubMed
Alberch, P. (1985). Problems with the interpretation of heterochronic processes. Systematic Zoology, 34, 46–58CrossRefGoogle Scholar
Alberch, P., Gould, S. J., Oster, G. F., & Wake, D. B. (1979). Size and shape in ontogeny and phylogeny. Paleobiology, 5, 296–317CrossRefGoogle Scholar
Antón, S., & and Leigh, S. (1998). Paedomorphosis and neoteny in human evolution. Journal of Human Evolution, 34, A2Google Scholar
Anemone, R. L., Mooney, M. P., & Siegel, M. I. (1996). Longitudinal study of dental development in chimpanzees of known chronological age: Implications for understanding the age at death of Plio-Pleistocene hominids. American Journal of Physical Anthropology, 99, 119–1333.0.CO;2-W>CrossRefGoogle ScholarPubMed
Bolk, L. (1926). On the problem of anthropogenesis. Proceedings of the Koninklijke Akademie van Wetenschappen te Amsterdam, 29, 465–475Google Scholar
Brothwell, D. R. (1975). Adaptive growth rate changes as a possible explanation for the distinctiveness of Neanderthalers. Journal of Archaeological Science, 2, 161–163CrossRefGoogle Scholar
Coolidge, H. J. (1933). Pan paniscus: Pigmy chimpanzee from south of the Congo River. American Journal of Physical Anthropology, 18, 1–59CrossRefGoogle Scholar
Czarnetzki, A., Gaudzinski, S., & Pusch, C. M. (2001). Hominid skull fragments from Late Pleistocene layers in Leine Valley (Sarstedt, District of Hildesheim, Germany). Journal of Human Evolution, 41, 133–140CrossRefGoogle Scholar
Dean, M. C., & Wood, B. A. (1981). Developing pongid dentition and its use for ageing individual crania in comparative cross-sectional growth studies. Folia Primatologica, 36, 111–127CrossRefGoogle ScholarPubMed
Dean, M. C., Leakey, M. G., Reid, D., Schrenk, F., Schwartz, G. T., Stringer, C., & Walker, A. (2001). Growth processes in teeth distinguish modern humans from Homo erectus and earlier hominids. Nature, 414, 628–631CrossRefGoogle Scholar
de Beer, G. R. (1958). Embryos and Ancestors. Oxford: Clarendon Press
de Bruin, R. (1993). A mathematical model applied to craniofacial growth. PhD dissertation, Rijksuniversiteit Groningen, Groningen, The Netherlands
German, R. Z., & Myers, L. L. (1989a). The role of time and size in ontogenetic allometry. I: Review. Growth, Development and Aging, 53, 101–106Google Scholar
German, R. Z., & Myers, L. L. (1989b). The role of time and size in ontogenetic allometry. II: An empirical study of human growth. Growth, Development and Aging, 53, 107–115Google Scholar
Godfrey, L. R., & Sutherland, M. R. (1995). What's growth got to do with it? Process and product in the evolution of ontogeny. Journal of Human Evolution, 29, 405–431CrossRefGoogle Scholar
Godfrey, L. R., & Sutherland, M. R. (1996). Paradox of peramorphic paedomorphosis: Heterochrony and human evolution. American Journal of Physical Anthropology, 99, 17–42CrossRefGoogle ScholarPubMed
Godfrey, L. R., King, S. J., & Sutherland, M. R. (1998). Heterochronic approaches to the study of locomotion. In Primate Locomotion, eds. E. Strasser, J. Fleagle, A. Rosenberger, & H. M. McHenry, pp. 277–307. New York: Plenum PressCrossRef
Gould, S. J. (1977). Ontogeny and Phylogeny. Cambridge: Belknap Press
Gould, S. J. (2000). Of coiled oysters and big brains: How to rescue the terminology of heterochrony now gone astray. Evolution and Development, 2, 241–248CrossRefGoogle ScholarPubMed
Hall, B. K. (2001). Foreword. In Beyond Heterochrony: The Evolution of Development, ed. M. L. Zelditch, pp. ⅶ–ⅸ. New York: John Wiley & SonsCrossRef
Hauspie, R. C. (1989). Mathematical models for the study of individual growth patterns. Revue d'Epidémiologie et Santé, 37, 461–476Google Scholar
Hauspie, R. C. (1998). The human growth curve. In Cambridge Encyclopedia of Human Growth and Development, eds. S. J. Ulijaszek, F. E. Johnston, & M. A. Preece, pp. 108–115. Cambridge: Cambridge University Press
Klingenberg, C. P. (1998). Heterochrony and allometry: The analysis of evolutionary change in ontogeny. Biological Reviews, 72, 79–123CrossRefGoogle Scholar
Krovitz, G. E. (2000). Three-dimensional comparisons of craniofacial morphology and growth patterns in Neandertals and modern humans. PhD dissertation, Johns Hopkins University, Baltimore
Kuykendall, K. L., & Conroy, G. C. (1996). Permanent tooth calcification in chimpanzees (Pan troglodytes): Patterns and polymorphisms. American Journal of Physical Anthropology, 99, 159–1743.0.CO;2-W>CrossRefGoogle ScholarPubMed
Leigh, S. R., & Terranova, C. J. (1998). Comparative perspectives on bimaturism, ontogeny, and dimorphism in lemurid primates. International Journal of Primatology, 19, 723–749CrossRefGoogle Scholar
Lieberman, D. E., McBratney, B. M. & Krovitz, G. E. (2002). The evolution and development of cranial form in Homo sapiens. Proceedings of the National Academy of Sciences of the USA, 99, 1134–1139CrossRefGoogle Scholar
McKinney, M. L. (1998). The juvenilized ape myth: Our “overdeveloped' brain. BioScience, 48, 109–123CrossRefGoogle Scholar
McKinney, M. L., & McNamara, K. J. (1991). Heterochrony: The Evolution of Ontogeny. New York: Plenum Press
McNamara, K. J. (2002). Sequential hypermorphosis: Stretching ontogeny to the limit. In Human Evolution through Developmental Change, eds. N. Minugh-Purvis & K. McNamara, pp. 102–121. Baltimore: Johns Hopkins University Press
Minugh-Purvis, N. (1988). Patterns of craniofacial growth and development in Upper Pleistocene hominids. PhD dissertation, University of Pennsylvania, Philadelphia
Minugh-Purvis, N. (2002). Heterochronic change in the neurocranium and the emergence of modern humans. In Human Evolution through Developmental Change, eds. N. Minugh-Purvis & K. McNamara, pp. 479–498. Baltimore: Johns Hopkins University Press
Minugh-Purvis, N. & McNamara, K. J. (eds.) (2002). Human Evolution through Developmental Change. Baltimore: Johns Hopkins University Press
Montagu, M. F. A. (1989). Growing Young, 2nd edn. Granby: Bergin & Garvey
Pilbeam, D. R. (2002). Perspectives on the Miocene Hominoidea. In The Primate Fossil Record, ed. W. C. Hartwig, pp. 303–310. Cambridge: Cambridge University Press
Ponce de León, M. S., & Zollikofer, C. P. E. (2001). Neanderthal cranial ontogeny and its implications for late hominid diversity. Nature, 412, 534–538CrossRefGoogle ScholarPubMed
Privratsky, V. (1981). Neoteny and its role in the process of hominization. Anthropologie, 19, 219–230Google Scholar
Rice, S. H. (1997). The analysis of ontogenetic trajectories: When a change in size or shape is not heterochrony. Proceedings of the National Academy of Sciences of the USA, 94, 907–912CrossRefGoogle Scholar
Rozzi, F. V. R. (2000). Heterochronic process in hominid evolution: The dental development in “robust' australopithecines. Comptes Rendus de l'Académie des Sciences de Paris, 331, 571–577Google Scholar
Schultz, A. H. (1933). Chimpanzee fetuses. American Journal of Physical Anthropology, 18, 61–80CrossRefGoogle Scholar
Shea, B. T. (1983). Paedomorphosis and neoteny in the pygmy chimpanzee. Science, 222, 521–522CrossRefGoogle ScholarPubMed
Shea, B. T. (1984). An allometric perspective on the morphological and evolutionary relationships between pygmy (Pan paniscus) and common (Pan troglodytes) chimpanzees. In The Pygmy Chimpanzee: Evolutionary Behavior and Biology, ed. R. Susman, pp. 89–130. New York: Plenum PressCrossRef
Shea, B. T. (1989). Heterochrony in human evolution: The case for neoteny reconsidered. Yearbook of Physical Anthropology, 32, 69–101CrossRefGoogle Scholar
Shea, B. T. (2000). Current issues in the investigation of evolution by heterochrony, with emphasis on the debate over human neoteny. In Biology, Brains and Behavior, eds. S. T. Parker, J. Langer, & M. L. McKinney, pp. 181–214. Sante Fe: School of American Research Press
Shea, B. T. (2002). Are some heterochronic transformations likelier than others? In Human Evolution through Developmental Change, eds. N. Minugh-Purvis & K. McNamara, pp. 79–101. Baltimore: Johns Hopkins University Press
Smith, B. H. (1991). Dental development and the evolution of life history in Hominidae. American Journal of Physical Anthropology, 86, 157–174CrossRefGoogle Scholar
Smith, B. H., Crummett, T. L., & Brandt, K. L. (1994). Ages of eruption of primate teeth: A compendium for aging individuals and comparing life histories. Yearbook of Physical Anthropology, 37, 177–232CrossRefGoogle Scholar
Stringer, C. B., Dean, M. C., & Martin, R. (1990). A comparative study of cranial and facial development in a recent British population and Neandertals. In Primate Life History and Evolution, ed. C. J. DeRousseau, pp. 115–152. New York: Wiley-Liss
Tillier, A-m. (1989). The evolution of modern humans: Evidence from young Mousterian individuals. In The Human Revolution: Behavioural and Biological Perspectives on the Origins of Modern Humans, eds. P. Mellers & C. B. Stringer, pp. 286–297. Princeton: Princeton University Press
Ubelaker, D. H. (1978). Human Skeletal Remains: Excavation, Analysis and Interpretation. Chicago: Aldine
Verhulst, J. (1999). Bolkian and bokian retardation in Homo sapiens. Acta Biotheoretica, 47, 7–28CrossRefGoogle ScholarPubMed
Weaver, D. S. (1986). Forensic aspects of fetal and neonatal specimens. In Forensic Osteology: Advances in the Identification of Human Remains, ed. K. J. Riechs, pp. 90–100. Springfield: Charles C. Thomas
Williams, F. L. (2001). Heterochronic perturbations in the craniofacial evolution of Homo (Neandertals and modern humans) and Pan (Pan troglodytes and P. paniscus). PhD dissertation, University of Massachusetts, Amherst
Williams, F. L., Godfrey, L. R., & Sutherland, M. R. (2001). Diagnosing heterochronic perturbations in the craniofacial evolution of Homo and Pan. American Journal of Physical Anthropology, Suppl. 32, 165Google Scholar
Williams, F. L., Godfrey, L. R., & Sutherland, M. R. (2002). Heterochrony and the evolution of Neandertal and modern human craniofacial form. In Human Evolution through Developmental Change, eds. N. Minugh-Purvis & K. McNamara, pp. 405–441. Baltimore: Johns Hopkins University Press
Winkler, L. A., Schwartz, J. H., & Swindler, D. R. (1996). Development of the orangutan permanent dentition: Assessing patterns and variation in tooth development. American Journal of Physical Anthropology, 99, 205–2203.0.CO;2-R>CrossRefGoogle ScholarPubMed
Wolpoff, M. H. (1979). The Krapina dental remains. American Journal of Physical Anthropology, 50, 67–114CrossRefGoogle Scholar
Zelditch, M. L. (2001). Beyond Heterochrony: The Evolution of Development. New York: John Wiley & Sons

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×