Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T23:55:14.125Z Has data issue: false hasContentIssue false

Section 3 - Tubulointerstitial Diseases

Published online by Cambridge University Press:  10 August 2023

Helen Liapis
Affiliation:
Ludwig Maximilian University, Nephrology Center, Munich, Adjunct Professor and Washington University St Louis, Department of Pathology and Immunology, Retired Professor
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Zeisberg, M., Kalluri, R.. Physiology of the renal interstitium. Clin J Am Soc Nephrol. 2015;10:1831–40.CrossRefGoogle ScholarPubMed
Kuppe, C., Ibrahim, M. M., Kranz, J., Zhang, X., Ziegler, S., Perales-Patón, J., et al. Decoding myofibroblast origins in human kidney fibrosis. Nature. 2021;589(7841):281–6.Google Scholar
Falke, L. L., Gholizadeh, S., Goldschmeding, R., Kok, R. J., Nguyen, T. Q.. Diverse origins of the myofibroblast—implications for kidney fibrosis. Nat Rev Nephrol. 2015;11(4):233–44.Google Scholar
Srivastava, A., Palsson, R., Kaze, A. D., Chen, M. E., Palacios, P., Sabbisetti, V., et al. The prognostic value of histopathologic lesions in native kidney biopsy specimens: Results from the Boston Kidney Biopsy Cohort Study. J Am Soc Nephrol. 2018;29:2213–24.CrossRefGoogle ScholarPubMed
Joyce, E., Glasner, P., Ranganathan, S., Swiatecka-Urban, A.. Tubulointerstitial nephritis: Diagnosis, treatment, and monitoring. Pediatr Nephrol. 2017;32:577–87.Google Scholar
Baker, R. J., Pusey, C. D.. The changing profile of acute tubulointerstitial nephritis. Nephrol Dial Transplant. 2004;19:811.Google Scholar
Clarkson, M. R., Giblin, L., O’Connell, F. P., O’Kelly, P., Walshe, J. J., Conlon, P., et al. Acute interstitial nephritis: Clinical features and response to corticosteroid therapy. Nephrol Dial Transplant. 2004;19:2778–83.Google Scholar
Mirkovic, K., Doorenbos, C. R., Dam, W. A., Lambers Heerspink, H. J., Slagman, M. C., Nauta, F. L., et al. Urinary vitamin D binding protein: A potential novel marker of renal interstitial inflammation and fibrosis. PLoS ONE. 2013;8:e55887.Google Scholar
Robles, N. R., Lopez-Gomez, J., Garcia-Pino, G., Ferreira, F., Alvarado, R., Sanchez-Casado, E., et al. Use of alpha1-microglobulin for diagnosing chronic interstitial nephropathy. Clin Exp Med. 2014;14:315–20.Google Scholar
Muriithi, A. K., Nasr, S. H., Leung, N.. Utility of urine eosinophils in the diagnosis of acute interstitial nephritis. Clin J Am Soc Nephrol. 2013;8:1857–62.Google Scholar
Perazella, M. A. Clinical approach to diagnosing acute and chronic tubulointerstitial disease. Adv Chronic Kidney Dis. 2017;24(2):5763.Google Scholar
Eddy, A. A.. Drug-induced tubulointerstitial nephritis: Hypersensitivity and necroinflammatory pathways. Pediatr Nephrol. 2020;35(4):547–54.Google Scholar
Raghavan, R., Eknoyan, G.. Acute interstitial nephritis – A reappraisal and update. Clin Nephrol. 2014;82:149–62.CrossRefGoogle ScholarPubMed
Ulinski, T., Sellier-Leclerc, A. L., Tudorache, E., Bensman, A., Aoun, B.. Acute tubulointerstitial nephritis. Pediatr Nephrol. 2012;27:1051–7.CrossRefGoogle ScholarPubMed
Roy, S., Awogbemi, T., Holt, R. C. L.. Acute tubulointerstitial nephritis in children – A retrospective case series in a UK tertiary paediatric centre. BMC Nephrol. 2020;21(1):17.CrossRefGoogle Scholar
Kamath, N., Iyengar, A.. Infections and the kidney: A tale from the tropics. Pediatr Nephrol. 2018;33:1317–26.Google Scholar
Bijol, V., Mendez, G. P., Nose, V., Rennke, H. G.. Granulomatous interstitial nephritis: A clinicopathologic study of 46 cases from a single institution. Int J Surg Pathol. 2006;14:5763.Google Scholar
Gonzalez, E., Gutierrez, E., Galeano, C., Chevia, C., de Sequera, P., Bernis, C., et al. Early steroid treatment improves the recovery of renal function in patients with drug-induced acute interstitial nephritis. Kidney Int. 2008;73:940–6.Google Scholar
Fernandez-Juarez, G., Perez, J. V., Caravaca-Fontan, F., Quintana, L., Shabaka, A., Rodriguez, E., et al. Duration of treatment with corticosteroids and recovery of kidney function in acute interstitial nephritis. Clin J Am Soc Nephrol. 2018;13:1851–8.Google Scholar
Montini, G., Tullus, K., Hewitt, I.. Febrile urinary tract infections in children. N Engl J Med. 2011;365:239–50.Google Scholar
Morello, W., La Scola, C., Alberici, I., Montini, G.. Acute pyelonephritis in children. Pediatr Nephrol. 2016;31:1253–65.CrossRefGoogle ScholarPubMed
Hewitt, I. K., Zucchetta, P., Rigon, L., Maschio, F., Molinari, P. P., Tomasi, L., et al. Early treatment of acute pyelonephritis in children fails to reduce renal scarring: Data from the Italian Renal Infection Study Trials. Pediatrics. 2008;122:486–90.Google Scholar
Johnson, J. R., Russo, T. A.. Acute pyelonephritis in adults. N Engl J Med. 2018;378:4859.Google Scholar
Robinson, J. L., Finlay, J. C., Lang, M. E., Bortolussi, R., Canadian Paediatric Society, Infectious Diseases and. Immunization Committee, Community Paediatrics Committee. Urinary tract infections in infants and children: Diagnosis and management. Paediatr Child Health. 2014;19:315–25.Google Scholar
Sastre, J. B., Aparicio, A. R., Cotallo, G. D., Colomer, B. F., Hernandez, M. C., Grupo de Hospitales Castrillo. Urinary tract infection in the newborn: Clinical and radio imaging studies. Pediatr Nephrol. 2007;22:1735–41.Google ScholarPubMed
Nicolaou, N., Renkema, K. Y., Bongers, E. M., Giles, R. H., Knoers, N. V.. Genetic, environmental, and epigenetic factors involved in CAKUT. Nat Rev Nephrol. 2015;11:720–31.CrossRefGoogle ScholarPubMed
Li, B., Haridas, B., Jackson, A. R., Cortado, H., Mayne, N., Kohnken, R., et al. Inflammation drives renal scarring in experimental pyelonephritis. Am J Physiol Renal Physiol. 2017;312:F43F53.Google Scholar
Hewitt, I. K., Pennesi, M., Morello, W., Ronfani, L., Montini, G.. Antibiotic prophylaxis for urinary tract infection-related renal scarring: A systematic review. Pediatrics. 2017;139: e20163145.Google Scholar
Douira, W., Louati, H., Jarraya, H., Ben Hassine, L., Tinsa, F., Sahli, S., et al. Pyelonephritis xanthogranulomatous in childhood: Case report and literature review. Tunis Med. 2009;87:538–41.Google ScholarPubMed
Pleniceanu, O., Twig, G., Tzur, D., Sherman, G., Afek, A., Erlich, T., et al. Acute pyelonephritis in children and the risk of end-stage kidney disease. J Nephrol. 2021;34:1757–65.CrossRefGoogle ScholarPubMed
Azar, R., Verove, C., Boldron, A.. Delayed onset of uveitis in TINU syndrome. J Nephrol. 2000;13:381–3.Google ScholarPubMed
Clive, D. M., Vanguri, V. K.. The syndrome of tubulointerstitial nephritis with uveitis (TINU). Am J Kidney Dis. 2018;72:118–28.CrossRefGoogle ScholarPubMed
Perasaari, J., Saarela, V., Nikkila, J., Ala-Houhala, M., Arikoski, P., Kataja, J., et al. HLA associations with tubulointerstitial nephritis with or without uveitis in Finnish pediatric population: A nation-wide study. Tissue Antigens. 2013;81:435–41.Google Scholar
Okafor, L. O., Hewins, P., Murray, P. I., Denniston, A. K.. Tubulointerstitial nephritis and uveitis (TINU) syndrome: A systematic review of its epidemiology, demographics and risk factors. Orphanet J Rare Dis. 2017;12:128.Google Scholar
Cigni, A., Soro, G., Faedda, R., Caucci, F., Amadori, F., Manca, A., et al. A case of adult-onset tubulointerstitial nephritis and uveitis (“TINU syndrome”) associated with sacroileitis and Epstein-Barr virus infection with good spontaneous outcome. Am J Kidney Dis. 2003;42:E410.Google Scholar
Kobayashi, Y., Honda, M., Yoshikawa, N., Ito, H.. Acute tubulointerstitial nephritis in 21 Japanese children. Clin Nephrol. 2000;54:191–7.Google Scholar
Matsumoto, K., Fukunari, K., Ikeda, Y., Miyazono, M., Kishi, T., Matsumoto, R., et al. A report of an adult case of tubulointerstitial nephritis and uveitis (TINU) syndrome, with a review of 102 Japanese cases. Am J Case Rep. 2015;16:119–23.Google Scholar
Yanagihara, T., Kitamura, H., Aki, K., Kuroda, N., Fukunaga, Y.. Serial renal biopsies in three girls with tubulointerstitial nephritis and uveitis syndrome. Pediatr Nephrol. 2009;24:1159–64.CrossRefGoogle ScholarPubMed
Jahnukainen, T., Ala-Houhala, M., Karikoski, R., Kataja, J., Saarela, V., Nuutinen, M.. Clinical outcome and occurrence of uveitis in children with idiopathic tubulointerstitial nephritis. Pediatr Nephrol. 2011;26:291–9.CrossRefGoogle ScholarPubMed
Thumfart, J., Muller, D., Rudolph, B., Zimmering, M., Querfeld, U., Haffner, D.. Isolated sarcoid granulomatous interstitial nephritis responding to infliximab therapy. Am J Kidney Dis. 2005;45:411–14.Google Scholar
Berliner, A. R., Haas, M., Choi, M. J.. Sarcoidosis: The nephrologist’s perspective. Am J Kidney Dis. 2006;48:856–70.Google Scholar
Joss, N., Morris, S., Young, B., Geddes, C.. Granulomatous interstitial nephritis. Clin J Am Soc Nephrol. 2007;2:222–30.CrossRefGoogle ScholarPubMed
Stehle, T., Joly, D., Vanhille, P., Boffa, J. J., Remy, P., Mesnard, L., et al. Clinicopathological study of glomerular diseases associated with sarcoidosis: A multicenter study. Orphanet J Rare Dis. 2013;8:65.Google Scholar
Wang, C., Liu, H., Zhang, T., Xu, H., Shen, J., Feng, J., et al. Acute kidney injury as a rare manifestation of pediatric sarcoidosis: A case report and systematic literature review. Clin Chim Acta. 2019;489:6874.Google Scholar
Gobel, U., Kettritz, R., Schneider, W., Luft, F.. The protean face of renal sarcoidosis. J Am Soc Nephrol. 2001;12:616–23.Google Scholar
Vorselaars, A. D., van Moorsel, C. H., Deneer, V. H., Grutters, J. C.. Current therapy in sarcoidosis, the role of existing drugs and future medicine. Inflamm Allergy Drug Targets. 2013;12:369–77.Google Scholar
Vorselaars, A. D., Verwoerd, A., van Moorsel, C. H., Keijsers, R. G., Rijkers, G. T., Grutters, J. C.. Prediction of relapse after discontinuation of infliximab therapy in severe sarcoidosis. Eur Respir J. 2014;43:602–9.CrossRefGoogle ScholarPubMed
Valeyre, D., Prasse, A., Nunes, H., Uzunhan, Y., Brillet, P. Y., Muller-Quernheim, J.. Sarcoidosis. Lancet. 2014;383:1155–67.Google Scholar
Goules, A., Geetha, D., Arend, L. J., Baer, A. N.. Renal involvement in primary Sjogren’s syndrome: Natural history and treatment outcome. Clin Exp Rheumatol. 2019;37 Suppl 118:123–32.Google ScholarPubMed
Bogdanovic, R., Basta-Jovanovic, G., Putnik, J., Stajic, N., Paripovic, A.. Renal involvement in primary Sjogren syndrome of childhood: Case report and literature review. Mod Rheumatol. 2013;23:182–9.Google Scholar
Tarvin, S. E., O’Neil, K. M.. Systemic lupus erythematosus, Sjogren syndrome, and mixed connective tissue disease in children and adolescents. Pediatr Clin North Am. 2018;65:711–37.Google Scholar
Kidder, D., Rutherford, E., Kipgen, D., Fleming, S., Geddes, C., Stewart, G. A.. Kidney biopsy findings in primary Sjogren syndrome. Nephrol Dial Transplant. 2015;30:1363–9.CrossRefGoogle ScholarPubMed
Mori, Y., Kishimoto, N., Yamahara, H., Kijima, Y., Nose, A., Uchiyama-Tanaka, Y., et al. Predominant tubulointerstitial nephritis in a patient with systemic lupus nephritis. Clin Exp Nephrol. 2005;9:7984.CrossRefGoogle Scholar
Zappitelli, M., Duffy, C. M., Bernard, C., Gupta, I. R.. Evaluation of activity, chronicity and tubulointerstitial indices for childhood lupus nephritis. Pediatr Nephrol. 2008;23:8391.Google Scholar
Eckardt, K. U., Alper, S. L., Antignac, C., Bleyer, A. J., Chauveau, D., Dahan, K., et al. Autosomal dominant tubulointerstitial kidney disease: Diagnosis, classification, and management—A KDIGO consensus report. Kidney Int. 2015;88:676–83.Google Scholar
Yang, J., Zhang, Y., Zhou, J.. UMOD gene mutations in Chinese patients with autosomal dominant tubulointerstitial kidney disease: A pediatric case report and literature review. BMC Pediatr. 2019;19:145.Google Scholar
Mihatsch, M. J., Gudat, F., Zollinger, H. U., Heierli, C., Tholen, H., Reutter, F. W.. Systemic karyomegaly associated with chronic interstitial nephritis. A new disease entity? Clin Nephrol. 1979;12:5462.Google ScholarPubMed
Isnard, P., Rabant, M., Labaye, J., Antignac, C., Knebelmann, B., Zaidan, M.. Karyomegalic interstitial nephritis: A case report and review of the literature. Medicine (Baltimore). 2016;95:e3349.Google Scholar
Monga, G., Banfi, G., Salvadore, M., Amatruda, O., Bozzola, C., Mazzucco, G.. Karyomegalic interstitial nephritis: Report of 3 new cases and review of the literature. Clin Nephrol. 2006;65:349–55.Google Scholar
Bhandari, S., Kalowski, S., Collett, P., Cooke, B. E., Kerr, P., Newland, R., et al. Karyomegalic nephropathy: An uncommon cause of progressive renal failure. Nephrol Dial Transplant. 2002;17:1914–20.Google Scholar
Zhou, W., Otto, E. A., Cluckey, A., Airik, R., Hurd, T. W., Chaki, M., et al. FAN1 mutations cause karyomegalic interstitial nephritis, linking chronic kidney failure to defective DNA damage repair. Nat Genet. 2012;44:910–15.Google Scholar
Thongthip, S., Bellani, M., Gregg, S. Q., Sridhar, S., Conti, B. A., Chen, Y., et al. Fan1 deficiency results in DNA interstrand cross-link repair defects, enhanced tissue karyomegaly, and organ dysfunction. Genes Dev. 2016;30:645–59.Google Scholar
Airik, R., Schueler, M., Airik, M., Cho, J., Porath, J. D., Mukherjee, E., et al. A FANCD2/FANCI-associated nuclease 1-knockout model develops karyomegalic interstitial nephritis. J Am Soc Nephrol. 2016;27:3552–9.Google Scholar
Ravindran, A., Cortese, C., Larsen, C. P., Wadei, H. M., Gandhi, M. J., Cosio, F. G., et al. Karyomegalic interstitial nephritis in a renal allograft. Am J Transplant. 2019;19:285–90.Google Scholar
Gubler, M. C.. Renal tubular dysgenesis. Pediatr Nephrol. 2014;29:51–9.Google Scholar
Gubler, M. C., Antignac, C.. Renin-angiotensin system in kidney development: Renal tubular dysgenesis. Kidney Int. 2010;77:400–6.Google Scholar
Gribouval, O., Moriniere, V., Pawtowski, A., Arrondel, C., Sallinen, S. L., Saloranta, C., et al. Spectrum of mutations in the renin-angiotensin system genes in autosomal recessive renal tubular dysgenesis. Hum Mutat. 2012;33:316–26.Google Scholar
Linn, R. L., Kiley, J., Minturn, L., Fritsch, M. K., Dejulio, T., Rostlund, E., et al. Recurrent massive perivillous fibrin deposition in the placenta associated with fetal renal tubular dysgenesis: Case report and literature review. Pediatr Dev Pathol. 2013;16:378–86.Google Scholar
Moldavsky, M.. Non-specific histopathological changes in kidney with renal tubular dysgenesis. Pathol Res Pract. 2010;206:1418.Google Scholar
Bartter, F. C., Pronove, P., Gill, J. R. Jr., Maccardle, R. C.. Hyperplasia of the juxtaglomerular complex with hyperaldosteronism and hypokalemic alkalosis. A new syndrome. Am J Med. 1962;33:811–28.Google Scholar
Besouw, M. T. P., Kleta, R., Bockenhauer, D.. Bartter and Gitelman syndromes: Questions of class. Pediatr Nephrol. 2020;35:1815–24.CrossRefGoogle ScholarPubMed
Downie, M. L., Lopez Garcia, S. C., Kleta, R., Bockenhauer, D.. Inherited tubulopathies of the kidney: Insights from genetics. Clin J Am Soc Nephrol. 2021;16:620630.CrossRefGoogle ScholarPubMed
Su, I. H., Frank, R., Gauthier, B. G., Valderrama, E., Simon, D. B., Lifton, R. P., Trachtman, H.. Bartter syndrome and focal segmental glomerulosclerosis: A possible link between the two diseases. Pediatr Nephrol 2000;14:970–2.Google Scholar
Walsh, P. R., Tse, Y., Ashton, E., Iancu, D., Jenkins, L., Bienias, M., et al. Clinical and diagnostic features of Bartter and Gitelman syndromes. Clin Kidney J. 2018;11:302–9.Google Scholar
Konrad, M., Nijenhuis, T., Ariceta, G., Bertholet-Thomas, A., Calo, L. A., Capasso, G., et al. Diagnosis and management of Bartter syndrome: Executive summary of the consensus and recommendations from the European Rare Kidney Disease Reference Network Working Group for Tubular Disorders. Kidney Int. 2021;99(2):324–35.Google Scholar

References

Buysschaert, B., Aydin, S., Morelle, J., Gillion, V., Jadoul, M., Demoulin, N.. Etiologies, clinical features, and outcome of oxalate nephropathy. Kidney International Reports 2020; 5: 1503–9.Google Scholar
Lumlertgul, N., Siribamrungwong, M., Jaber, B. L., Susantitaphong, P.. Secondary oxalate nephropathy: A systematic review. Kidney International Reports 2018; 3: 1363–72.CrossRefGoogle ScholarPubMed
Cochat, P., Rumsby, G.. Primary hyperoxaluria. New England Journal of Medicine 2013; 369: 649–58.Google Scholar
Lieske, J. C., Monico, C. G., Holmes, W. S., Bergstralh, E. J., Slezak, J. M., Rohlinger, A. L., et al. International registry for primary hyperoxaluria. American Journal of Nephrology 2005; 25: 290–6.Google Scholar
Hopp, K., Cogal, A. G., Bergstralh, E. J., Seide, B. M., Olson, J. B., Meek, A. M., et al. Phenotype-genotype correlations and estimated carrier frequencies of primary hyperoxaluria. Journal of the American Society of Nephrology 2015; 26: 2559–70.Google Scholar
Markowitz, G. S., Nasr, S. H., Klein, P., Anderson, H., Stack, J. I., Alterman, L., et al. Renal failure due to acute nephrocalcinosis following oral sodium phosphate bowel cleansing. Human Pathology 2004; 35: 675–84.Google Scholar
Schell-Feith, E. A., Kist-van Holthe, J. E., van Zwieten, P. H. T., Zonderland, H. M., Holscher, H. C., Swinkels, D. W., et al. Preterm neonates with nephrocalcinosis: Natural course and renal function. Pediatric Nephrology 2003; 18: 1102–8.Google Scholar
Sikora, P., Roth, B., Kribs, A., Michalk, D. V., Hesse, A., Hoppe, B.. Hypocitraturia is one of the major risk factors for nephrocalcinosis in very low birth weight (VLBW) infants. Kidney International 2003; 63: 2194–9.CrossRefGoogle ScholarPubMed
Gimpel, C., Krause, A., Franck, P., Krueger, M., von Schnakenburg, C.. Exposure to furosemide as the strongest risk factor for nephrocalcinosis in preterm infants. Pediatrics International 2010; 52: 51–6.Google Scholar
Harambat, J., Bollée, G., Daudon, M., Ceballos-Picot, I., Bensman, A.; APRT Study Group. Adenine phosphoribosyltransferase deficiency in children. Pediatric Nephrology 2012; 27: 571–9.Google Scholar
Runolfsdottir, H. L., Palsson, R., Agustsdottir, I. M., Indridason, O. S., Edvardsson, V. O.. Long-term renal outcomes of APRT deficiency presenting in childhood. Pediatric Nephrology 2019; 34: 435–42.Google Scholar
Gaut, J. P., Liapis, H., Acute kidney injury pathology and pathophysiology: A retrospective review. Clinical Kidney Journal 2020; 1–11.Google Scholar
Najafian, B., Fogo, A. B., Lusco, M. A., Alpers, C. E.. AJKD Atlas of Renal Pathology: Myoglobin cast nephropathy. American Journal of Kidney Diseases 2017; 69: e7e8.Google Scholar
Liapis, H., Boils, C., Hennigar, R., Silva, F.. Myoglobin casts in renal biopsies: Immunohistochemistry and morphologic spectrum. Human Pathology 2016; 54: 2530.Google Scholar
Chen, C. Y., Lin, Y. R., Zhao, L. L., Yang, W. C., Chang, Y. J., Wu, K. H., et al. Clinical spectrum of rhabdomyolysis presented to pediatric emergency department. BMC Pediatrics 2013; 13: 134.Google Scholar
Dvanajscak, Z., Cossey, L. N., Larsen, C. P., A practical approach to the pathology of renal intratubular casts. Seminars in Diagnostic Pathology 2020; 37: 127–34.Google Scholar
Park, Y., Song, J. Y., Kim, S. Y., Kim, S. H.. Clinical characteristics of rhabdomyolysis in children: Single center experience. Childhood Kidney Diseases 2018; 22: 52–7.Google Scholar
Dvanajscak, Z., Walker, P. D., Cossey, L. N., Messias, N. C., Boils, C. L., Kuperman, M. B., et al. Hemolysis-associated hemoglobin cast nephropathy results from a range of clinicopathologic disorders. Kidney International 2019; 96: 1400–7.Google Scholar
González, I., Rais, R., Gaut, J. P., Dehner, L. P.. Evans syndrome complicated by intratubular hemoglobin cast nephropathy. Case Reports in Pediatrics 2017; 2017: 13.Google Scholar
Brodsky, S. V., Satoskar, A., Chen, J., Nadasdy, G., Eagen, J. W., Hamirani, M., et al. Acute kidney injury during warfarin therapy associated with obstructive tubular red blood cell casts: A report of 9 cases. American Journal of Kidney Diseases 2009; 54: 1121–6.CrossRefGoogle Scholar
Mukherjee, T., Khan, I. D., Guha, R., Ganguly, T.. Cholemic nephrosis (bile cast nephropathy) with severe liver dysfunction. Medical Journal Armed Forces India 2019; 75: 216–18.CrossRefGoogle ScholarPubMed
Lusco, M. A., Fogo, A. B., Najafian, B., Alpers, C. E.. AJKD Atlas of Renal Pathology: Bile nephrosis. American Journal of Kidney Diseases 2017; 69: e9.Google Scholar
Van Slambrouck, C. M., Salem, F., Meehan, S. M., Chang, A.. Bile cast nephropathy is a common pathologic finding for kidney injury associated with severe liver dysfunction. Kidney International 2013; 84: 192–7.Google Scholar
Sood, V., Lal, B. B., Lata, S., Rastogi, A., Alam, S.. Cholemic or bile cast nephropathy in a child with liver failure. Journal of Clinical and Experimental Hepatology 2017; 7: 373–5.CrossRefGoogle ScholarPubMed
Bokor, J., Danics, K., Keller, E., Szollosi, Z.. Time-dependent changes in kidney histopathology in ethylene glycol poisoning. Medicine, Science and the Law 2018; 58: 257–60.Google Scholar
Snijders, M. L. H., Hesselink, D. A., Clahsen-van Groningen, M. C., Roodnat, J. I.. Oxalate deposition in renal allograft biopsies within 3 months after transplantation is associated with allograft dysfunction. PLOS ONE 2019; 14: e0214940.Google Scholar
Wiech, T., Hopfer, H., Gaspert, A., Banyai-Falger, S., Hausberg, M., Schroder, J., et al. Histopathological patterns of nephrocalcinosis: A phosphate type can be distinguished from a calcium type. Nephrology Dialysis Transplantation 2012; 27: 1122–31.Google Scholar
Nasr, S. H., Sethi, S., Cornell, L. D., Milliner, D. S., Boelkins, M., Broviac, J., et al. Crystalline nephropathy due to 2,8-dihydroxyadeninuria: An under-recognized cause of irreversible renal failure. Nephrology Dialysis Transplantation 2010;25(6):1909–15.CrossRefGoogle ScholarPubMed
Uribe-Uribe, N., Herrera, G.. Ultrastructure of tubular casts. Ultrastructural Pathology 2006; 30: 159–66.Google Scholar
Harambat, J., Fargue, S., Acquaviva, C., Gagnadoux, M.-F., Janssen, F., Liutkus, A., et al. Genotype–phenotype correlation in primary hyperoxaluria type 1: The p.Gly170Arg AGXT mutation is associated with a better outcome. Kidney International 2010: 77: 443–9.Google Scholar
Harambat, J., van Stralen, K. J., Espinosa, L., Groothoff, J. W., Hulton, S.-A., Cerkauskiene, R., et al. Characteristics and outcomes of children with primary oxalosis requiring renal replacement therapy. Clinical Journal of the American Society of Nephrology 2012; 7: 458–65.CrossRefGoogle ScholarPubMed
Porter, E.. Neonatal nephrocalcinosis: Long term follow up. Archives of Disease in Childhood – Fetal and Neonatal Edition 2006; 91: F333F336.Google Scholar
Kist-van Holthe, J. E., van Zwieten, P. H. T., Schell-Feith, E. A., Zonderland, H. M., Holscher, H. C., Wolterbeek, R., et al. Is nephrocalcinosis in preterm neonates harmful for long-term blood pressure and renal function? Pediatrics 2007; 119: 468–75.CrossRefGoogle ScholarPubMed
Runolfsdottir, H. L., Palsson, R., Agustsdottir, I. M. S., Indridason, O. S., Li, J., Dao, M., et al. Kidney transplant outcomes in patients with adenine phosphoribosyltransferase deficiency. Transplantation. 2020; 104: 2120–8.CrossRefGoogle ScholarPubMed
Brodsky, S. V., Nadasdy, T., Rovin, B. H., Satoskar, A. A., Nadasdy, G. M., Wu, H. M., et al. Warfarin-related nephropathy occurs in patients with and without chronic kidney disease and is associated with an increased mortality rate. Kidney International 2011; 80: 181–9.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Tubulointerstitial Diseases
  • Edited by Helen Liapis, Ludwig Maximilian University, Nephrology Center, Munich, Adjunct Professor and Washington University St Louis, Department of Pathology and Immunology, Retired Professor
  • Book: Pediatric Nephropathology & Childhood Kidney Tumors
  • Online publication: 10 August 2023
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Tubulointerstitial Diseases
  • Edited by Helen Liapis, Ludwig Maximilian University, Nephrology Center, Munich, Adjunct Professor and Washington University St Louis, Department of Pathology and Immunology, Retired Professor
  • Book: Pediatric Nephropathology & Childhood Kidney Tumors
  • Online publication: 10 August 2023
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Tubulointerstitial Diseases
  • Edited by Helen Liapis, Ludwig Maximilian University, Nephrology Center, Munich, Adjunct Professor and Washington University St Louis, Department of Pathology and Immunology, Retired Professor
  • Book: Pediatric Nephropathology & Childhood Kidney Tumors
  • Online publication: 10 August 2023
Available formats
×