Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-21T16:24:12.523Z Has data issue: false hasContentIssue false

59 - Wilms' tumor

from Part VI - Oncology

Published online by Cambridge University Press:  08 January 2010

Michael L. Ritchey
Affiliation:
Department of Surgery and Pediatrics, Division of Urology, University of Texas – Houston Medical School, USA
Nadeem N. Dhanani
Affiliation:
Department of Urology, University of Texas – Houston Medical School, USA
Patrick G. Duffy
Affiliation:
Department of Paediatric Urology, Great Ormond Street Hospital, London, UK
Gill A. Levitt
Affiliation:
Department of Paediatric Urology, Great Ormond Street Hospital, London, UK
Anthony J. Michalski
Affiliation:
Department of Paediatric Urology, Great Ormond Street Hospital, London, UK
Mark D. Stringer
Affiliation:
University of Otago, New Zealand
Keith T. Oldham
Affiliation:
Children's Hospital of Wisconsin
Pierre D. E. Mouriquand
Affiliation:
Debrousse Hospital, Lyon
Get access

Summary

Wilms' tumor therapy

Prior to the modern era of cancer treatment, the only opportunity for cure of Wilms' tumor was complete surgical excision. Wilms' tumor was one of the first pediatric malignancies found to be responsive to systemic chemotherapy. Since the initial report by Farber, there has been a dramatic improvement in survival of children with this tumor. Many of these advances have occurred as a result of collaborative efforts of large pediatric cooperative cancer groups, such as the National Wilms Tumor Study Group (NWTSG) and the International Society of Pediatric Oncology (SIOP), which have been able to enroll large numbers of patients treated in a standardized manner since 1969. Now that more than 90% of children with Wilms' tumor can expect cure, these groups are focusing their attention to reducing the intensity of therapy in order to minimize treatment-related toxicity that may adversely affect long-term survival and quality of life. Damage to normal organs and tissues occurs and the effects may not become apparent for many years after treatment.

Tracking the late effects of Wilms' tumor treatment has been an integral part of the NWTSG for many years. Long-term toxicities of treatment are studied in a systematic way among uniform populations of children treated with similar therapies. This has helped to define the long-term adverse effects of treatment in patients alive 5 years or longer after the diagnosis of Wilms' tumor.

Type
Chapter
Information
Pediatric Surgery and Urology
Long-Term Outcomes
, pp. 759 - 781
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Farber, S., D'Angio, G., Evans, A., & Mitus, A., Clinical studies of actinomycin D with special reference to Wilms' tumor in children. Ann. N. Y. Acad. Sci. 1960; 89:421–425.CrossRefGoogle ScholarPubMed
D'Angio, G. J., Breslow, N., Beckwith, J. B.et al. Treatment of Wilms' tumor: Results of the Third National Wilms' Tumor Study. Cancer 1989; 64:349–360.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Tournade, M. F., Com-Nougue, C., Voute, P. A., et al. Results of the sixth International Society of Pediatric Oncology Wilms' tumor trial and study: a risk-adapted therapeutic approach in Wilms' tumor. J. Clin. Oncol. 1993; 11:1014–1023.CrossRefGoogle ScholarPubMed
D'Angio, G. J., Evans, A., Breslow, N.et al. The treatment of Wilms' tumor: Results of the Second National Wilms' Tumor Study. Cancer, 1981, 47:2302–2311.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Green, D., Breslow, N., Beckwith, J.et al. A comparison between single dose and divided dose administration of dactinomycin and doxorubicin. A report from the National Wilms Tumor Study Group. Med. Pediatr. Oncol. 1996; 27:218.Google Scholar
Green, D. M., Breslow, N. E., Beckwith, J. B. B.et al. Effect of duration of treatment on treatment outcomes and cost of treatment for Wilms' tumor: A report from the National Wilms Tumor Study Group. J. Clin. Oncol. 1998; 16:3744–3751.CrossRefGoogle Scholar
Green, D. M., Breslow, N. E., Beckwith, J. B.et al. Comparison between single-dose and divided-dose administration of dactinomycin and doxorubicin for patients with Wilms' tumor: a report from the National Wilms' Tumor Study Group. J. Clin. Oncol. 1998; 16: 237–245.CrossRefGoogle ScholarPubMed
Grundy, P. E., Telzerow, P. E., Breslow, N.et al. Loss of heterozygosity for chromosomes 16q and 1p in Wilms' tumor predicts an adverse outcome. Cancer Res. 1994; 54:2331–2333.Google ScholarPubMed
Green, D. M., Beckwith, J. B., Weeks, D. A.et al. The relationship between microsubstaging variables, tumor weight and age at diagnosis of children with stage I/favorable histology Wilms' tumor. A report from the National Wilms Tumor Study. Cancer 1994; 74:1817–1820.3.0.CO;2-X>CrossRefGoogle Scholar
Green, D., Breslow, N., Beckwith, J. B.et al. Treatment with nephrectomy only for small, stage I/favorable histology Wilms' tumor. A report from the National Wilms Tumor Study Group. J. Clin. Oncol. 2001;19:3719–3724.CrossRefGoogle Scholar
Ritchey, M. L., Kelalis, P. P., Breslow, N.et al. Surgical complications following nephrectomy for Wilms' tumor: A report of National Wilms' Tumor Study-3. Surg. Gynecol. Obstet. 1992; 175:507–514.Google Scholar
Ritchey, M. L., Pringle, K., Breslow, N.et al. Management and outcome of inoperable Wilms' tumor. A report of National Wilms' Tumor Study. Ann. Surg. 1994; 220:683–690.CrossRefGoogle Scholar
Ritchey, M. L., Shamberger, R., Haase, G., Horwitz, J., Bergmann, T., & Breslow, N.Surgical complications after nephrectomy for Wilms' tumor: Report from the the National Wilms Tumor Study Group (NWTSG). J. Am. Coll. Surg. 2001; 192:63–68.CrossRefGoogle Scholar
Godzinski, J., Tournade, M. F., deKraker, J.et al. Surgical complications after postchemotherapy nephrectomy in SIOP-9 Wilms' tumor patients. Med. Pediatr. Oncol. 1994; 23:172.Google Scholar
Li, F. P., Yan, J. C., Sallan, S.et al. Second neoplasms after Wilms' tumor in childhood. J. Natl Cancer Inst. 1983; 71:1205–1209.Google ScholarPubMed
Breslow, N. E., Takashima, J. R., Whitton, J. A.et al. Second malignant Meoplasms following treatment for Wilms' tumor: A report from the National Wilms' Tumor Study Group. J. Clin. Oncol. 1995; 13:1851–1859.CrossRefGoogle Scholar
Kovalic, J. J., Thomas, P. R. M., Beckwith, J. B.et al. Hepatocellular carcinoma as second malignant neoplasms in successfully treated Wilms' tumor patients. Cancer 1991; 67:342–344.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Tucker, M. A., Meadows, A. T., Boice, J. D. Jr.Leukemia after therapy with alkylating agents for childhood cancer. J. Natl Cancer Inst. 1987; 78:459–464.CrossRefGoogle ScholarPubMed
Green, D. M., Zevon, M. A., Reese, P. A.et al. Second malignant tumors following treatment during childhood and adolescence for cancer. Med. Pediatr. Oncol. 1994, 22:1–10.CrossRefGoogle ScholarPubMed
Meadows, A. T., Baum, E., Fossati-Bellani, F.et al. Second malignant neoplasms in children: an update from the late effects study group. J. Clin. Oncol. 1985, 3:532–538.CrossRefGoogle ScholarPubMed
Coppes, M. J., Arnold, M., Beckwith, J. B., Ritchey, M. L., Green, D. M., & Breslow, N. E.Factors affecting the risk of contralateral Wilms' tumor development. A report from the National Wilms Tumor Study Group. Cancer 1999; 85:1616–1625.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Beckwith, J. B.Precursor lesions of Wilms' tumor: clinical and biological implications. Med. Pediatr. Oncol. 1993; 21:158–168.CrossRefGoogle ScholarPubMed
Kinsella, T. J., Trivette, G., Rowland, J.et al. Long-term follow-up of testicular function following radiation for early-stage Hodgkin's disease. J. Clin. Oncol. 1989, 7:718–724.CrossRefGoogle ScholarPubMed
Shalet, S. M., Beardwell, C. G., Jacobs, H. S.et al. Testicular function following irradiation of the human prepubertal testis. Clin. Endocrinol. 1978; 9:483.CrossRefGoogle ScholarPubMed
Sklar, C. A., Robinson, L. L., Nesbit, M. E.et al. Effects of radiation on testicular function in long-term survivors of childhood acute lymphoblastic leukemia: a report from the Children Cancer Study Group. J. Clin. Oncol. 1990; 8:1981–1987.CrossRefGoogle ScholarPubMed
Clifton, D. K. & Bremner, W. J.The effect of testicular X-irradiation on spermatogenesis in man. A comparison with the mouse. J. Androl. 1983; 6:387–392.CrossRefGoogle Scholar
Rowley, M. J., Leach, D. R.Warner, G. A., & Heller, C. G.Effects of graded ionizing radiation on the human testis. Radiat. Res. 1974; 59:665–678.CrossRefGoogle ScholarPubMed
Sklar, C.Reproductive physiology and treatment-related loss of sex hormone production. Med. Pediatr. Oncol. 1999; 33:2.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Heikens, J., Behrendt, H., Adriaanse, R., & Berghout, A.Irreversible gonadal damage in male survivors of pediatric Hodgkin's disease. Cancer 1996; 78(9):2020–2024.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Thomson, A. B., Campbell, A. J., Irvine, D. C., Anderson, R. A., Kelnar, C. J., & Wallace, W. H.Semen quality and spermatozoal DNA integrity in survivors of childhood cancer: a case-control study. Lancet 2002; 360(9330):361–367.CrossRefGoogle ScholarPubMed
Lentz, R. D., Berstein, J., Steffens, M. W.et al. Postpubertal evaluation of gonadal function following cyclophosphamide therapy before and during puberty. J. Pediar. 1977; 91:385–394.CrossRefGoogle ScholarPubMed
Mustieles, C., Munoz, A., Alonso, M.et al. Male gonadal function after chemotherapy in survivors of childhood malignancies. Med. Pediatr. Oncol. 1995; 24:347–351.CrossRefGoogle Scholar
Aubier, F., Flamant, F., Brauner, R.et al. Male gonadal function after chemotherapy for solid tumors in childhood. 1989; 7:304–309.Google ScholarPubMed
Rautonen, J., Koskimies, A. I., & Siimes, M. A.Vincristine is associated with the risk of azoospermia in adult male survivors of childhood malignancies. Eur. J. Cancer 1992; 28A:1837–1841.CrossRefGoogle ScholarPubMed
Stillman, R. J., Schinfeld, J. S., Schiff, I.et al. Ovarian failure in long term survivors of childhood malignancy. Am. J. Obstet. Gynecol. 1987; 139:62–66.CrossRefGoogle Scholar
Shalet, S. M., Beardwell, C. G., Morris-Jones, P. H.et al. Ovarian failure following abdominal irradiation in childhood. Br. J. Cancer 1976; 33:655.CrossRefGoogle ScholarPubMed
Critchley, H. O., Thompson, A. B., & Wallace, W. H. Ovarian and uterine function and reproductive potential. In Wallace, H. and Green, D., eds. Late Effects of Childhood Cancer. Oxford: Oxford University Press, 2004: 226–228.Google Scholar
Nicosia, S. V., Matus-Ridley, M., & Meadows, A. T.Gonadal effects of cancer therapy in girls. Cancer 1985; 55:2364–2372.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Li, F. P., Gimbrere, K., Gelber, R. D.et al. Outcome of pregnancy in survivors of Wilms tumorm. J. Am. Med. Assoc. 1987; 257:216–219.CrossRefGoogle Scholar
Green, D. M., Peabody, E. M., Nam, B.et al. Pregnancy outcome after treatment for Wilms' tumor: a report from the National Wilms Tumor Study Group. J. Clin. Oncol. 2002; 20(10):2506–2513.CrossRefGoogle ScholarPubMed
Boice, J. D. Jr., Tawn, E. J., Winther, J. F.et al. Genetic effects of radiotherapy for childhood cancer. Health Phys. 2003; 85(1):65–80.CrossRefGoogle ScholarPubMed
Green, D. M., Whitton, J. A., Stovall, M.et al. Pregnancy outcome of partners of male survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. J. Clin. Oncol. 2003; 21(4):716–721.CrossRefGoogle ScholarPubMed
Walker, R. D., Reid, C. F., Richard, G. A.et al. Compensatory renal growth and function in postnephrectomized patients with Wilms' tumor. Urology 1982; 19:127–130.CrossRefGoogle Scholar
Levitt, G. A., Yeomans, E., Dicks, Mireaux C., Breatnach, F., Kingtson, J., & Pritchard, J.Renal size and function after cure of Wilms' tumor. Br. J. Cancer 1992; 66:877–882.CrossRefGoogle Scholar
Mitus, A., Tefft, M., & Feller, F. X.Long-term follow-up of renal function of 108 children who underwent nephrectomy for malignant disease. Pediatrics 1969; 44:912–921.Google ScholarPubMed
Miser, J., Krailo, M., & Hammond, G. D.The combination of ifosfamide (IFOS), etoposide (VP16) and MESNA (M): A very active regimen in the treatment of recurrent Wilms' tumor (WT) [abstract]. Proc. Am. Soc. Clin. Oncol. 1993; 12:417.Google Scholar
Provoost, A. P., Baudoin, P., DeKeijzer, M. H.et al. The role of nephron loss in the progression of renal failure: experimental evidence. Am. J. Kidney Dis. 1991; 17:27–32.Google ScholarPubMed
Novick, A. C., Gephardt, G., Guz, B., Steinmuller, D., & Rubbs, R.Long-term follow-up after partial removal of a solitary kidney. N. Engl. J. Med. 1991; 325:1058–1062.CrossRefGoogle ScholarPubMed
Ritchey, M. L., Green, D. M., Thomas, P.et al. Renal failure in Wilms' tumor patients: a report from the National Wilms Tumor Study Group. Med. Pediatr. Oncol. 1996; 26:75–80.3.0.CO;2-R>CrossRefGoogle Scholar
Bertolone, S. J., Patel, C. C., Harrison, H. L., & Williams, G.Long term renal function in pts. with Wilms' tumor. Proc. Am. Soc. Clin. Oncol. 1987; 6:265, abstract 1040.Google Scholar
Baudoin, P., Provoost, A. P., & Molenaar, J. C.Renal function up to 50 years after unilateral nephrectomy in childhood. Am. J. Kidney Dis. 1993; 21:603–611.CrossRefGoogle ScholarPubMed
Robitaille, P., Mongeau, J. G., Lortie, L., & Sinnassamy, P.Long-term follow-up of patients who underwent nephrectomy in childhood. Lancet 1985; 1:1297–1299.CrossRefGoogle ScholarPubMed
Graaf, S. S. N., Gent, H., Reitsma-Bierens, W. C. C.et al. Renal function after unilateral nephrectomy for Wilms tumour: the influence of radiation therapy. Eur. J. Cancer 1996; 32A:465–469.CrossRefGoogle ScholarPubMed
deToledo, J. S., Galindo, J. R., Melcon, G. C.et al. Renal function in long-term survivor of Wilms' tumor. Med. Pediatr. Oncol. 1995; 25:265.Google Scholar
Barrera, M., Roy, L. P. & Stevens, M.Long-term follow-up after unilateral nephrectomy and radiotherapy for Wilms' tumor. Pediatr. Nephrol. 1989; 3:430–432.CrossRefGoogle Scholar
Bhisitkul, D. M., Morgan, E. R., Vozar, M. A., & Langman, C. B.Renal functional reserve in long-term survivors of unilateral Wilms' tumor. J. Pediatr. 1990; 118:698–702.CrossRefGoogle Scholar
Scully, R. E., Mark, E. J., & McNeely, B. U.Case records of the Massachusetts General Hospital (Case 17–1985). N. Engl. J. Med. 1985; 312:111–1119.Google Scholar
Welch, T. R. & McAdams, A. J.Focal glomerulosclerosis as a late sequela of Wilms' tumor. J. Pediatr. 1986; 108:105–109.CrossRefGoogle Scholar
Bailey, S., Roberts, A., Brock, C.et al. Nephrotoxicity in survivors of Wilms' tumours in the North of England. Br. J. Cancer. 2002; 87(10):1092–1098.CrossRefGoogle ScholarPubMed
Ritchey, M. L. & Coppes, M.Management of synchronous bilateral Wilms tumors. Hematol. Oncol. Clin. N. Am. 1995; 9(6):1303–1315.CrossRefGoogle Scholar
Breslow, N. E., Takashima, J., Ritchey, M. L., Green, D. M., & Strong, L. C.Renal failure in the Denys–Drash and Wilms' tumor-aniridia syndromes. Cancer Res. 2000; 60:4030–4032.Google ScholarPubMed
Gottdiener, J. S., Maron, B. J., Schooley, R. T., Harley, J. B., Roberts, W. C., & Fauci, A. S.Late cardiac effects of therapeutic mediastinal irradiation. Assessment by echocardiography and radionuclide angiography. N. Engl. J. Med. 1983; 308:569–572.CrossRefGoogle ScholarPubMed
Stewart, J. R. & Fajardo, L. F.Radiation-induced heart disease: an update. Prog. Cardiovasc. Dis. 1984; 27:173–194.CrossRefGoogle ScholarPubMed
Fajardo, L. F. & Stewart, J. R. Radiation-induced heart disease. Human and experimental observations. In Bristow, M. R., ed. Drug Induced Heart Disease. Amsterdam: Elsevier, North-Holland Biomedical Press, 1980:241–260.Google Scholar
Evans, A. E., Norkool, P., Evans, I.et al. Late effects of treatment for Wilms' tumor. A Report from the National Wilms Tumor Study Group. Cancer 1991; 67:331.3.0.CO;2-7>CrossRefGoogle Scholar
Hoff, D., Layard, M. W., Basa, P.et al. Risk factors for doxorubicin-induced congestive heart failure. Ann. Int. Med. 1979; 91:710–717.CrossRefGoogle Scholar
Gilladoga, A. C., Manuel, C., Tan, C. T.et al. The cardiotoxicity of adriamycin and daunomycin in children. Cancer 1976; 37:1070–1078.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Steinherz, L., Steinherz, P., & Tan, C.Cardiac failure and dysarhythmias 6–19 years after anthracycline therapy: a series of 15 patients. Med. Pediatr. Oncol. 1995; 24:352–361.CrossRefGoogle ScholarPubMed
Pikkala, J., Saarimen, U. M., Lundstrom, U.et al. Myocardial function in children and adolescents after therapy with anthracyclines and chest irradiation. Eur. J. Can. 1996; 32A(1):97–103.CrossRefGoogle Scholar
Lipshultz, S., Lipsity, S. R., More, S., Goorin, A., & Colan, S. D.Female sex and higher drug dose as risk factors for late cardiotoxic effects of doxorubicin therapy for childhood cancer. N. Engl. J. Med. 1995; 332:1738–1743.CrossRefGoogle ScholarPubMed
Cuthbertson, D. D., Epstein, S. T., Lipshultz, S. E., Goorin, A. M., Epstein, M. L., & Krisher, J. P.Anthracycline cardiotoxicity in children with cancer. Circulation 1994; 90(Suppl): I-50 (abstract).Google Scholar
Lipshultz, S., Colan, S., Gelber, R., Pery-Atayade, A., Sallan, S., & Sanders, S.Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N. Eng. J. Med. 1991; 324(12): 808–814.CrossRefGoogle ScholarPubMed
Sorensen, K., Levitt, G., Sebay-Montefiore, D., Bull, C., & Sullivan, I.Cardiac function in Wilms' tumor survivors. J. Clin. Oncol. 1995; 13(7):1546–1556.CrossRefGoogle ScholarPubMed
Green, D. M., Grigoriev, Y. A., Nan, B.et al. Congestive heart failure after treatment for Wilms' tumor: a report from the National Wilms' Tumor Study group. J. Clin. Oncol. 2001; 19(7):1926–1934.CrossRefGoogle ScholarPubMed
Sorensen, K., Levitt, G. A., Bull, C., Dorup, I., & Sullivan, I. D.Late anthracycline cardiotoxicity after childhood cancer: a prospective longitudinal study. Cancer 2003; 97(8):1991–1998.CrossRefGoogle ScholarPubMed
Villani, F., Viviani, S., Bonfante, V.et al. Late pulmonary effects in favorable Stage I and IIA Hodgkin's disease treated with radiotherpy alone. Am. J. Clin. Oncol. 2000; 23:18.CrossRefGoogle Scholar
Gross, N. J.Pulmonary effects of radiation therapy. Ann. Int. Med. 1977; 86:81–92.CrossRefGoogle ScholarPubMed
Lipshitz, H. I.Radiation changes in the lung. Semin. Roentgen 1993; 28(4):303–320.CrossRefGoogle Scholar
McDonald, S., Rubin, P., Phillips, T. L., & Marks, L. B. Injury to the lung from cancer therapy: clinical syndromes, measurable endpoints, and potential scoring systems. Int. J. Radiat. Oncol. Biol. Phys. 1995; 31(5):1187–1203CrossRefGoogle ScholarPubMed
Green, D. M., Finklestein, J. Z., Tefft, J. R., & Norkool, P.Diffuse interstitial pneumonitis after pulmonary irradiation for metastatic Wilms Tumor. Cancer 1989; 63:450–453.3.0.CO;2-T>CrossRefGoogle Scholar
Phillips, T. L.Efects of chemotherapy and irradiation on normal tissues. Front. Radiat. Ther. Oncol. 1992; 26:45–54.CrossRefGoogle Scholar
Von der Maase, H. Experimental drug–radiation interactions in critical normal tissues. In Hill, B. T. & Bellamy, S. A., eds. Antitumor Drug–Radiation Interactions. Boca Raton FL: CRC Press, 1990:191–205.Google Scholar
Wohl, M. E., Griscom, N. T., Traggis, D. G., & Jaffe, N.Effects of therapeutic irradiation delivered in early childhood upon subsequent lung function. Pediatrics 1975; 55(9):507–515.Google ScholarPubMed
Littman, P., Meadows, A. T., Polgar, G., Borns, P., & Rubin, E.Pulmonary function in survivors of Wilms' tumor. Cancer 1976; 37: 2773–2776.3.0.CO;2-6>CrossRefGoogle Scholar
Benoist, M. R., Lemerle, J., Jean, R., Rufin, P., Scheinmann, P., & Paupe, J.Effects on pulmonary function of whole lung irradiation for Wilms' tumour in children. Thorax 1982; 37:175–180.CrossRefGoogle ScholarPubMed
Flentje, M., Weirich, A., Potter, R.et al. Hepatotoxicity in irradiated nephroblastoma patients during post operative treatment according to SIOP 9/GPOH. Radiother. Oncol. 1994; 31:222–228.CrossRefGoogle Scholar
Johnson, F. L. & Balis, F. M.Hepatopathy following irradiation and chemotherapy for Wilms' tumor. Am. J. Pediatr. Hematol. Oncol. 1982; 4:217–221.Google ScholarPubMed
Green, D. M., Norkool, P., Breslow, N., Finklestein, J., & D'Angio, G.Severe hepatic toxicity after treatment with vincristine and dactinomycin using single dose or divided dose schedules: a report from the National Wilms Tumor Study. J. Clin. Oncol. 1990; 8(9): 1525–1530.CrossRefGoogle ScholarPubMed
Bisogno, G., DeKraker, J., Weirich, A.et al. Veno-occlusive disease of the liver in children treated for Wilms' tumor. Med. Pediatr. Oncol. 1997; 29:245–251.3.0.CO;2-M>CrossRefGoogle Scholar
Thomas, P. R. M., Griffin, K. D., Fineberg, B. B.et al. Late effects of treatment for Wilms' tumor. Int. J. Radiat. Oncol. Biol. Phys. 1983; 9: 651.CrossRefGoogle ScholarPubMed
Rubin, P., Andrews, J. R., Swaim, R., & Gump, H.Radiation induced dysplasia of bone. Am. J. Roentgenol. 1959; 82:206–216.Google Scholar
Rate, W. R., Butler, M. S., Robertson, W. W. Jr, & D'Angio, G. J.Late orthopedic effects in children with Wilms' tumor treated with abdominal irradiation. Med. Pediatr. Oncol. 1991; 19:265–268.CrossRefGoogle ScholarPubMed
Probert, J. C., Barker, B. R., & Kaplan, H. S.Growth retardation in children after megavoltage irradiation of the spine. Cancer 1973; 32: 634–639.3.0.CO;2-A>CrossRefGoogle ScholarPubMed
Wallace, W. H. B., Shalet, S. M., Morris-Jones, P. H., Swindell, R., & Gattamanini, H. R.Effect of abdominal irradiation on growth in boys treated for a Wilms' tumor. Med. Pediatr. Oncol. 1990; 18:441–446.CrossRefGoogle ScholarPubMed
Hogeboom, C. J., Grosser, S. C., Guthrie, K. A., Thomas, P. R., D'Angio, G. J., & Breslow, N. E.Stature loss following treatment for Wilms' tumor. Med. Pediatr. Oncol. 2001; 36:295–304.3.0.CO;2-Y>CrossRefGoogle Scholar
Green, D. M. The musculoskeletal system. In Long Term Complications of Treatment for Cancer During Childhood and Adolescence. Baltimore: Johns Hopkins University Press, 1989, 70–79.Google Scholar
Scott, I. S.Wilms' tumor: its treatment and prognosis. Br. Med. J. 1956; 1:200–203.CrossRefGoogle ScholarPubMed
Green, D. M., Brewslow, N., Beckwith, J. B.et al. A comparison between single dose and divided dose administration of dactinomycin and doxorubicin: a report from the National Wilms' Tumor Study Group (abstract). Proc. Am. Soc. Clin. Oncol. 1996; 15:457.Google Scholar
Jessop, J.Annotations: extirpation of the kidney. Lancet 1877; :889.Google Scholar
Lelie, E. M., Mynores, L. S., Draper, G. J., & Gormach, P. D.Natural history and treatment of Wilms' tumors: an analysis of 355 cases occurring in England and Wales 1962–1966. Br. Med. J. 1970; 4:195–200.Google Scholar
Friedlander, A.Sarcoma of the kidney treated by the Roentgen X-ray. Am. J. Dis. Child. 1916; XII:328–330.Google Scholar
Williams, I. G.Tumours of Childhood: a Clinical Treatise. London: Heinemann, 1972:103–104.Google Scholar
Bond, J. V.Prognosis and treatment of Wilms' tumor at Great Ormond Street Hospital for Sick Children. Cancer 1975; 36:102–107.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Farber, S., Toch, R., Sear, E. M. et al. Advances of chemotherapy in man. In Greenstein, J. P., Haddow, (eds), Advances in Cancer Research. New York: Academic Press, 1956: A1–A71.Google Scholar
Sutow, W. & Thurman, W. G.Vincristine (Leurocristine) sulphate in the treatment of children with metastatic Wilms' tumor. Paediatrics 1963; 32:880–887.Google Scholar
Duffy, P. G. Surgical management of Wilms' tumor. In Rob and Smith's Operative Surgery: Paediatric Surgery, 5th edn. London: Chapman & Hall, 1995:590–596.Google Scholar
Kumar, R., Breatriach, F., & Fitzgerald, R.Is contralateral exploration in Wilms' tumor necessary? Result from UKCCSG Bilateral Wilms' Tumor Study (abstract). 27th SIOP Meeting 1996; 218:1–30.Google Scholar
Weirich, A., Rieden, T., Troger, J.et al. Diagnostic value of imaging procedures in nephroblastoma before preoperative chemotherapy: initial results. Clin. Paediatr. 1991; 203(4):251–256.Google ScholarPubMed
Pritchard, J., Imeson, J., Barnes, J.et al. Results of the United Kingdom Children's Cancer Study Group first Wilms' tumor study. J. Clin. Oncol. 1995; 13:124–133.CrossRefGoogle Scholar
Angio, D' G. J.SIOP and the management of Wilms' tumor. J. Clin. Oncol. 1983; 1:595–596.CrossRefGoogle ScholarPubMed
Lemele, J., Voute, P. A., Toumade, M. F.et al. Pre-operative versus post-operative radiotherapy, single versus multiple courses of Actinomycin in the treatment of Wilms' tumors. Preliminary results of a controlled clinical trial by the International Society of Paediatric Oncology [SIOP]. Cancer 1976; 38:647–654.3.0.CO;2-C>CrossRefGoogle Scholar
Lemele, J., Voute, P. A., Toumade, M. F.et al. Effectiveness of pre-operative chemothearpy in Wilms' tumor: results of an International Society of Paediatric Oncology (SIOP) study. J. Clin. Oncol. 1983; 1:604–610.CrossRefGoogle Scholar
Coppes, M. J., Tournade, M. F., Lemerle, J.et al. Pre-operative care of infants with nephroblastoma: the International Society of Paediatric Oncology Experience. Cancer 1992; 69:2721–2725.3.0.CO;2-G>CrossRefGoogle Scholar
Dykes, E. H., Marwaha, R. K., Dicks-Mireaux, C.et al. Risks and benefits of percutanous biopsy and primary chemotherapy in advanced Wilms' tumor. J. Pediatr. Surg. 1991; 26:610–612.CrossRefGoogle Scholar
Vujanic, G. M., Kelsey, A., Mitchell, C.et al. The role of biopsy in the diagnosis of renal tumors of childhood: results of the UKCCSG Wilms tumor study 3. Med. Pediatr. Oncol. 2003; 40(1):18–22.
Mitchell, C., Shannon, R., Vujanic, G. M.et al. The treatment of Wilms' tumor: results of the United Kingdom Children's Cancer Study Group Wilms' Tumor Study. Br. J. Cancer 88(suppl. 1):4.1, S16.
Coppes, M. J., Kraker, J., D ykes, H. J. M.et al. Bilateral Wilms' tumor: long-term survival and some epidemiological features. J. Clin. Oncol. 1989; 7:310–315.CrossRefGoogle ScholarPubMed
Bishop, H. C. & Hope, J. W.Bilateral Wilms' tumor. J Pediat Surg 1966; 1:476–487.CrossRefGoogle Scholar
Montgomery, B. T., Kelalis, P. P., Blute, M. L.et al. Extended follow up of bilateral Wilms' tumor: results of the national Wilms' tumor study. J. Urol. 1991; 146:514–518.CrossRefGoogle Scholar
Kumar, R., Breatnach, F., & Fitzgerald, R.Bilateral Wilms' tumor: results of the United Kingdom Children's Cancer Group (UKCCSG) (abstract). 27th SIOP Meeting 1996; 219:1–32.Google Scholar
Mclorie, G. A., McKenna, P. H., & Greenberg, M.Reduction in tumor burden allowing partial nephrectomy following pre-operative chemotherapy in biopsy proven Wilms' tumor. J. Urol. 1991; 146:589–613.CrossRefGoogle Scholar
Shimamura, T. & Movision, A. B.Experimental chronic renal insufficiency. Methods Achieve. Exp. Pathol. 1966; 1:455.Google Scholar
Hobletter, T. H., Olson, J. L., Rennke, H. G.et al. Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. Am. J. Physiol. 1981; 241:F85.Google Scholar
Steckler, R. E., Riehle, R. A. Jr.Darrocott, Vaughan. J. R.Hyperfiltration-induced renal injury in normal man: myth or reality. J. Urol. 1990; 144:1323–1327.CrossRefGoogle ScholarPubMed
Wikstad, I., Petterson, B. A., & Elinder, S.A comparative study of size and function of the remnant kidney in patients nephrectomised in childhood for Wilms' tumor and hydronephrosis. Acta. Pediatr. Scand. 1986; 75:408–414.CrossRefGoogle Scholar
Wikstad, I., Celsi, G., Larrson, L.et al. Kidney function in adults born with unilateral agenesis or nephrectomised in childhood. Paediatr. Nephrol. 1988; 2:177–182.CrossRefGoogle ScholarPubMed
Makipernaa, A., Kosikimies, O., Jaaskelainen, J.et al. Renal growth and function 11–28 years after treatment of Wilms' tumor. Eur. J. Paediatr. 1991; 150:444–447.CrossRefGoogle Scholar
Bairera, M., Roy, L. P., & Stevens, M.Long-term follow up after unilateral nephrectomy and radiotherapy for Wilms' tumor. Pediatr. Nephrol. 1989; 3:430–432.CrossRefGoogle Scholar
Jadresic, L., Lake, J., Gordon, I.et al. Clinicopathologic review of twelve children with nephropathy, Wilms' tumor and genital abnormalities (Drash sundrome). J. Pediatr. 1990; 117:717–725.CrossRefGoogle Scholar
Rudin, C., Trompeter, R. S., & Pritchard, J.The role of renal transplantation in the management of bilateral Wilms' tumor (BWT) and of Denys–Drash syndrome (DDS). Nephrol. Daily. Transpl. 1998; 13:1506–1510.CrossRefGoogle Scholar
Habib, R.Nephrotic syndrome in the 1st year of life. Pediatr. Nephrol. 1993; 7:347–353.CrossRefGoogle ScholarPubMed
Legha, S. S.Vincristine neurotoxicity: pathophysiology and management. Med. Toxicol. 1986; 1:421–427.CrossRefGoogle ScholarPubMed
Graf, W. D., Chance, P. F., Lensch, M. W.et al. Severe vincristine neuropathy in Charcot–Marie–Tooth disease type 1A. Cancer 1996; 77:1356.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Raine, J., Bowman, A., Wallendszus, K., & Pritchard, J.Hepatopathy thrombocytopenia syndrome; a complication of dactinomycin therapy for Wilms' tumor. Report from the United Kingdom Children's Cancer Study Group. J. Clin. Oncol. 1991; 9:2302–2311.CrossRefGoogle Scholar
Ludwig, R., Weirich, A., Abel, A.et al. Hepatotoxicity in patients treated according to the nephroblastoma trial and study SIOP-9/GPOH. Med. Pediatr. Oncol. 1999; 33(5):462–469.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Angio, D' G. J., Evans, A., Breslow, N.et al. The treatment of Wilms' tumor: results of the Second National Wilms' Tumor Study. Cancer 1981; 47:2302–2311.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Hoff., D. D., Rozenewieg, M., Layard, M.et al. Daunomycin induced cardiotoxicity in children and adults. Am. J. Med. 1977; 62:200–208.CrossRefGoogle Scholar
Goorin, A. M., Chauvenet, A. R., & Perez-Atayde, A. R.Initial congestive heart failure six to ten years after doxorubicin chemotherapy for childhood cancer. J. Pediatr. 1996; 116:144–147.CrossRefGoogle Scholar
Steinherz, L. J., Steinherz, G., & Tan, C. J.Cardiac toxicity 4 to 20 years after completing anthracycline therapy. J. Am. Med. Assoc. 1991; 266:1672–1677.CrossRefGoogle ScholarPubMed
Sorensen, K., Levitt, G., Sebag-Montefiore, D., Bull, C., & Sullivan, I.Cardiac function in Wilms' tumor survivors. J. Clin. Oncol. 1995; 13:1546–1556.CrossRefGoogle ScholarPubMed
Lipshultz, S. E., Colan, S. D., & Gelber, R. D.Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukaemia in children. N. Engl. J. Med. 1991; 324:808–815.CrossRefGoogle Scholar
Lipshultz, S. E., Lipsitz, S. R., Mone, S. M.et al. Female sex and higher drug dose as risk factors for late cardiotoxic effects of doxorubicin therapy for children's cancer. N. Engl. J. Med. 1995; 332:1738–1743.CrossRefGoogle Scholar
Sorensen, K., Levitt, G. A., Bull, C., Dorup, I., & Sullivan, I. D.Late anthracycline cardiotoxicity after childhood cancer: a prospective longitudinal study. Cancer 2003; 97:1991–1998.CrossRefGoogle ScholarPubMed
Pein, F., Sakiroglu, O., Dahan, M.et al. Cardiac abnormalities 15 years and more after adriamycin therapy in 229 childhood survivors of a solid tumor at the Institute Gustave Roussy. Br. J. Cancer. 2004; 91:37–44.CrossRefGoogle Scholar
Marx, M., Langer, T., Graf, N., Hausdorf, G., Stöhr, W., & Beck, J. D.A multicentre analysis of anthracycline-induced cardiotoxicity in children following treatment according to the nephroblastoma studies SIOP 9/GPOH and SIOP 93–01/GPOH. Med. Pediatr. Oncol. 2002, 39:18–24,CrossRefGoogle ScholarPubMed
Levitt, G. A., Bunch, K., Rogers, C. A., & Whitehead, B.Cardiac transplantation in childhood cancer survivors in Great Britain. Eur. J. Cancer. 1996; 32A:826–830.CrossRefGoogle ScholarPubMed
Steinhertz, L., Graham, T., Hurwitz, R., Sondheimer, H. M., Schwartz, R. G.Guidelines for monitoring of children during anthracycline therapy. Report of the cardiology committee of the Children's Cancer Study Group. Paediatrics 1992; 89:942–949.Google Scholar
Lipshultz, S. E., Sanders, S. P., Colan, S. C., Gorin, A. N., & Sallan, S. S.Monitoring for anthracycline cardiotoxicity. Paediatrics 1992; 89:942–949.Google Scholar
Davis, L. E. & Brown, C. E. L.Peripartum heart failure in a patient previously treated with doxorubicin. Obst. Gyn. 1988; 71:506–508.Google Scholar
Pritchard, J., Imeson, J., Barnes, J.et al. Results of the United Kingdom Children's Cancer Study Group first Wilms' Tumor Study. J. Clin. Oncol. 1995; 13:124–33.CrossRefGoogle Scholar
Neequaye, J. E., Bryne, J., & Levine, P. H.Menarche and reproduction after treatment for African Burkitt's lymphoma. Br. Med. J. 1991; 303:1033.CrossRefGoogle ScholarPubMed
Kenney, L. B., Lanfer, M. R., Grant, F. D., Grier, H., & Diller, L.High risk of infertility and long term gonadal damage in males treated with high dose cyclophosphamide for sarcoma during childhood. Cancer 2001; 91:613–621.3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Aubier, F., Oberlin, O., Vathalre, de., F.et al. Influence of chemothearpy on male fertility. Med. Pediat. Oncol. 1994; 23:177.Google Scholar
Tournade, M. F., Lemerle, J., Brunat-Mentigny, M.et al. Ifosfamide is an active drug in Wilms' tumor: a phase II study conducted by the French Society of Pediatric Oncology. J. Clin. Oncol. 1998; 6:793–796.CrossRefGoogle Scholar
Skinner, R., Pearson, A., Wyllie, R., Coulthard, M., & Craft, A. I.Ifosfamide nephrotoxicity in children: risk factors and the long term outcome. Med. Pediatr. Oncol. 1994; 23:265.Google Scholar
Rossi, R., Godde, A., Kleinebrand, M.et al. Unilateral nephrectomy and cisplatin as risk factors of ifosfamide induced nephrotoxicity: analysis of 120 patients. J. Clin. Oncol. 1994; 12:159–165.CrossRefGoogle ScholarPubMed
Prasad, V. K., Lewis, I. J., Aparicio, S. A.et al. Progressive glomerular toxicity of ifosfamide in children. Med. Pediatr. Oncol. 1996; 27:149–155.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Zoubek, A., Kaitar, P., Flucher-Wolfram, B.et al. Response of untreated stage IV Wilms' tumor to single dose carboplatin assessed by ‘up front’ window therapy. Med. Pediatr. Oncol. 1995; 25:8–11.CrossRefGoogle Scholar
Pein, F., Pinkerton, R., Tournade, M. F.et al. Etoposide in relapsed or refractory Wilms' tumor: a phase II study by the French Society of Paediatric Oncology and United Kingdom Children's Cancer Study Group. J. Clin. Oncol. 1993; 11:1478–1481.CrossRefGoogle ScholarPubMed
Pein, F., Tournade, M. F., Zucker, J. M.et al. Etoposide and carboplatin, a highly effective combination in relapsed or refractory Wilms' tumor: a phase II study by the French Society of Paediatric Oncology. J. Clin. Oncol. 1994; 12:931–936.CrossRefGoogle ScholarPubMed
Hawkins, M. M., Kinnier, Wilson L. M., Stovall, M. A.et al. Epidophyllotoxins, Alkylating agents, and radiation and risk of secondary leukaemia after childhood cancer. Br. Med. J. 1992; 304:951–958.CrossRefGoogle Scholar
Jereb, B., Burgers, M. V., Toumade, M. F.et al. Radiotherapy in the SIOP nephroblastoma studies: a review. Med. Pediatr. Oncol. 1994; 22:221–227.CrossRefGoogle ScholarPubMed
Angio, D' G. J., Breslow, N., Beckwith, J. B.et al. Treatment of Wilms' tumor. Cancer 1989; 64:349–360.Google ScholarPubMed
Shalet, S. M., Gibson, B., Swindell, R., & Pearson, D.Effect of spinal irradiation on growth. Arch. Dis. Child. 1987; 62:461–464.CrossRefGoogle ScholarPubMed
Makiprnaa, A., Keikkila, J. T., Merikanto, J., Marttinen, E., & Siimes, M. A.Spinal deformity induced by radiotherapy for solid tumors in childhood: a long term study. Eur. J. Pediat. 1993; 152:197–200.CrossRefGoogle Scholar
Jaffe, N., Ried, H. L., Cohen, M., McNeese, M. D., & Sullivan, M. P.Radiation induced osteochondroma in long term survivors of childhood cancer. Int. J. Rad. Oncol. Biol. Phys. 1983; 9:665–670.CrossRefGoogle ScholarPubMed
Tanner, J. M. & Whitehouse, R. H. Standards for sitting height and subishial leg length from birth to maturity: British Children 1978. Hertford: Castlemead Publications, 1978.Google Scholar
Wallace, W. H. B.Shalet, S. M., Moris-Jones, P. H., Swindell, R., & Gattamaneni, H. R.Effect of abdominal irrradiation on growth in boys treated for a Wilms' tumor. Med. Pediatr. Oncol. 1990; 18:441–446.CrossRefGoogle Scholar
Wallace, W. H. B. & Shalt, S. M.Chemotherapy with Actinomycin D influences the growth of the spine followign abdominal irradiation. Med. Pediat. Oncol. 1992; 20:177.CrossRefGoogle Scholar
Rosenfield, N. S., Haller, J. O., & Berdon, W. E.Failure of development of the growing breast after radiation therapy. Pediatr. Radiol. 1989; 19:124–127.CrossRefGoogle ScholarPubMed
Rostom, A. Y. & Cathail, O' S.Failure of lactation following radiothearpy for breast cancer. Lancet 1986; 1:163–164.CrossRefGoogle Scholar
McDonald, S., Rubin, P., Scwartz, C. L.et al. (eds). Pulmonary Effects of Antinoplastic Therapy: Survivors of Childhood Cancer. New York: Mosby-Yearbook, 1994; 177–195.Google Scholar
Attard, Monalto S. P., Kingston, J. E., Eden, O. B., & Plowman, P. N.Late follow up of lung function after whole lung irraidation for Wilms' tumor. Bri. J. Radiol. 1992; 65:1114–1118.CrossRefGoogle Scholar
Jenney, M. E. M. & Shaw, N. J.Late respiratory effects of treatment for childhood malignancy. Pediatr. Rev. Commun. 1994; 8:17–22.Google Scholar
Fajardo, L. J., Bricker, T. J., Green, D. M., & D'Angio, G. J. (eds). Pathology of Radiation Induced Heart Disease: Cardiac Toxicity after Treatment for Childhood Cancer. New York: Wiley-Liss, 1993; 7–15.Google Scholar
Counsell, R., Bain, G., Williams, M. V., & Dixon, A. K.Artificial radiation menopause; where are the ovaries?Lin. Oncol. 1996; 8:250–253.Google ScholarPubMed
Torano, A. E., Halperin, E. C., Leventhal, B. G.et al. (eds). The Ovary: Survivors of Childhood Cancer. Mosby-YearBook, 1994: 213–224.Google Scholar
Perrone, L., Sinisi, A. A., Sicuranza, R.et al. Prepubertal endocrine follow up in subjects with Wilms' tumor. Med. Pediatr. Oncol. 1988; 16:255–258.CrossRefGoogle ScholarPubMed
Shalet, S. M., Beardwell, C. G., Morris, Jones P. H., Pearson, D., & Orrell, D. H.Ovarian failure following abdominal irradiation in children. Br. J. Cancer 1976; 33:655–658.CrossRefGoogle Scholar
Wallace, W. H. B., Shalet, S. M., Crowne, E. C., Morris, Jones P. H., & Gattamaneni, H. R.Ovarian failure following abdominal irradiation in children: natural history and prognosis. Clin. Oncol. 1989; 96:378–380.Google Scholar
Hawkins, M. M. & Smith, R. A.Pregnancy outcomes in childhood cancer survivors: probable effect of abdominal irradiation. Int. J. Cancer 1989; 43:399–402.CrossRefGoogle Scholar
Hawkins, M. M. & Smith, R. A.Pregnancies after childhood cancer. Br. J. Obst. 1989; 96:378–380.Google Scholar
Liesner, R. J., Leiper, A. D., Hann, I. M., & Chessells, J. M.Late effects of intensive treatment for acute myeloid leukaemia and myelodysplasia in childhood. J. Clin. Oncol. 1994; 12:916–924.CrossRefGoogle ScholarPubMed
Hawkins, M. M.Is there evidence of a therapy related increase in germ cell mutation among childhood cancer survivors?J. Natl. Cancer Inst. 1991; 83:1643–1650.CrossRefGoogle ScholarPubMed
Shalet, S. M., Beardwell, C. G., Jacobs, H. S., & Pearson, D.Testicular function following irradiation of the human prepubertal testis. Clin. Endocrinol. 1978; 9:483–490.CrossRefGoogle ScholarPubMed
Flentje, M., Weirech, A., Potter, R., & Ludwig, R.Hepatotoxicity in irradiated nephroblastoma patients during postopertive treatment accoing to SIOP9/GPOH. Radiother. Oncol. 1994; 31:222–228. Comment in Radiother. Oncol. 1994; 31:191.CrossRefGoogle Scholar
Teinturier, C., Tournade, M. F., Cailla-Zucman, S.et al. Diabetes mellitus after abdominal radiation therapy (letter). Lancet 1995; 346:633–634. Comment in Lancet 1996; 347:539–540.CrossRefGoogle Scholar
Lipshitz, H. I. & Cohen, M. A.Radiation induced osteochondromas. Radiology 1982; 142:643–647.CrossRefGoogle Scholar
Tsuchiva, H., Morikawa, S., & Tomita, K.Osteosarcoma arising from a multiple exostosis lesion; case report. Japan. J. Clin. Oncol. 1990; 20:296–298.Google Scholar
Walker, D. A., Dillon, M., Levitt, G.et al. Mulitple exotosis (osteochondroma) and Wilms' tumor; a possible association. Med. Pediatr. Oncol. 1992; 20:360–361.CrossRefGoogle Scholar
Wuyts, W., Hul, W., Wauters, J.et al. Positional cloning of a gene involved in hereditary multiple exostosis. Hum. Molec. Genet. 1996; 5:1547–1557.CrossRefGoogle Scholar
Olsen, J. H., Garwicz, Z. S., Hertz, H.et al. Second malignant neoplasms after cancer in childhood or adolescence. Br. Med. J. 1993; 307:1030–1036.CrossRefGoogle ScholarPubMed
Hawkins, M. M., Draper, G. J., & Kingston, J. E.Incidence of second primary tumors among childhood cancer survivors. Br. J. Cancer 1987; 56:339–347.CrossRefGoogle ScholarPubMed
Angio, D' G. J., Evans, A. E., Breslow, N.et al. The treatment of Wilms' tumuor: results of the National Wilms' Tumor Study. Cancer 1976; 38:633–646.3.0.CO;2-S>CrossRefGoogle Scholar
Morris-Jones, P. H., Pearson, D., & Johnson, A. L.Management of nephroblastoma in childhood: clinical study of forms of maintenence chemotherpy. Medical Research Council's Working Party on Embryonal Tumors in Childhood. Arch. Dis. Child. 1978; 53:112–119.Google Scholar
Green, D. M., Beckwith, J. B.Weeks, D. A.et al. The relationship between microsubstaging variables, age at diagnosis, and tumor weight of children with stage I/favourable histology Wilms' tumor. Cancer 1994; 74:1817–1820.3.0.CO;2-X>CrossRefGoogle Scholar
Beckwith, J. B. & Palmer, N. F.Histopathology and prognosis in Wilms' tumor: results from the First National Wilms' Tumor Study. Cancer 1978; 41:1937–1948.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Green, D. M., Beckwith, J. B., Breslow, , N. E. et al. Treatment of children with stages II to IV anaplastic Wilms' tumor: a report from the National Wilms' Tumor Study Group. J. Clin. Oncol. 1994; 12:2126–2131.CrossRefGoogle ScholarPubMed
Green, D. M., Beckwith, J. B., Breslow, , N. E. et al. Treatment of children with clear cell sarcoma of the kidney: a report from the National Wilms' Tumor Tumor Study Group. J. Clin. Oncol. 1994; 12:2132–2137.CrossRefGoogle ScholarPubMed
Angio, D' G. L., Breslow, N. E., Beckwith, J. B.et al. Treatment of Wilms' tumor: results of the third National Wilms' Tumor Study. Cancer 1989; 64:349–360.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Morris Jones, P. H., Marsden, H. B., & Pearson, D. The conclusion of the second MRC nephroblastoma study (abstract). Presented at the British Paediatric Association meeting, York, UK, March 1983.
Kraker, J., Lemerle, J., Voute, P. A.et al. Wilms' tumor with pulmonary metastases at diagnosis: the significance of primary chemotherapy. J. Clin. Oncol. 1990; 8:1187–1190.CrossRefGoogle ScholarPubMed
Makipernaa, A.Long term quality of life and psychosocial coping after treatment of solid tumors in childhood. Acta. Paediatr. Scand. 1989; 78:728–735.CrossRefGoogle ScholarPubMed
Radford, M. & Evans, S. E.Current lifestyle of young adults treated for cancer in childhood. Arch. Dis. Child. 1995; 72:432–426.Google Scholar
Robertson, C. M., Hawkins, M. M., & Kingston, J. E.Late deaths and survival after childhood cancer: implications for cure. Br. Med. J. 1994; 309:162–166.CrossRefGoogle ScholarPubMed
Garaventa, A., Hartmann, O., Bernard J.-L., et al. Autologous bone marrow transplantation for paediatric Wilms' tumor: the experience of the European Bone Marrow Transplantation solid tumor registry. Med. Pediatr. Oncol. 1994; 22:11–14.CrossRefGoogle Scholar
Pachis, A., Pritchard, J., Gaze, M., Levitt, G., & Michalski, A.Radiotherapy omitted in the treatment of selected children under 3 years of age with stage III favorable histology Wilms tumor. Med. Pediatr. Oncol. 1998; 31:150–152.3.0.CO;2-A>CrossRefGoogle Scholar
Lipshultz, S. E., Giantris, A. L., Lipsitz, S. R.et al. Doxorubicin administration by continuous infusion is not cardioprotective: The Dana-Farber 91–01 Acute Lymphoblastic Leukemia Protocol. J. Clin. Oncol. 2002; 20(6): 1677–1682.CrossRefGoogle Scholar
Levitt, G. A., Dorup, I., Sorensen, K., & Sullivan, I.Does anthracycline administration by infusion in children affect late cardiotoxicityBr. J. Haematol. 2004; 124(4):463–468.CrossRefGoogle ScholarPubMed
Lipshultz, S. E.Dexrazoxane for protection against cardiotoxic effects of anthracyclines in children. J. Clin. Oncol. 1996; 14:328–331.CrossRefGoogle ScholarPubMed
Call, K. M., Glaser, T., Ito, C. Y.et al. Isolation and characterisation of a zinc finger polypeptide gene at the human chromosome 1 Wilms' tumor locus. Cell 1990; 60:509–520.CrossRefGoogle Scholar
Gessler, M., Poustka, A., Cavenee, W.et al. Homozygous deletion in Wilms' tumors of a zinc finger gene identified by chromosome jumping. Nature 1990; 343:774–778.CrossRefGoogle Scholar
Varanasi, R., Bardeesy, N., Ghahremani, M.et al. Fine structure analysis of WT1 gene in sporadic Wilms' tumors. Proc. Natl. Acad. Sci. USA 1194; 91:3554–3558.CrossRefGoogle Scholar
Reeve, A. E., Sih, S. A., Raiziz, A. M.et al. Loss of alleleic heterozygosity at a second locus on chromosome 11 in sporadic Wilms' tumor cells. Mol. Cell. Biol. 1989; 9:1799–1803.CrossRefGoogle Scholar
Ping, A. J., Reeve, A. E., Law, D. J.et al. Genetic linkage of Beckwith–Weidemann syndrome to 11p15. Am. J. Hum. Genet. 1989; 44:720–723.Google Scholar
Grundy, P. E., Tezerow, P. E., Breslow, N. E.et al. Loss of heterozygosity for chromosomes 16q and 1p in Wilms' tumors predicts an adverse outcome. Cancer 1994; 54:2331–2333.Google ScholarPubMed
Crist, W., Gehan, E. A., Ragab, A. H.et al. The Third Intergroup Rhabdomyosarcoma study. J. Clin. Oncol. 1995; 13:610–630.CrossRefGoogle ScholarPubMed
Brodeur, G. M., Azar, C., Brother, M.et al. Neuroblastoma: effect of genetic factors on prognosis and treatment. Cancer 1992; 70:1685–1696.3.0.CO;2-H>CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×