Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T02:08:31.971Z Has data issue: false hasContentIssue false

7 - Cosmological Structure Formation

from Part II - Structures in the Universe and the Structure of Modern Cosmology

Published online by Cambridge University Press:  18 April 2017

Joel R. Primack
Affiliation:
University of California – Santa Cruz, USA
Khalil Chamcham
Affiliation:
University of Oxford
Joseph Silk
Affiliation:
University of Oxford
John D. Barrow
Affiliation:
University of Cambridge
Simon Saunders
Affiliation:
University of Oxford
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrams, N. E. and Primack, J. R. 2011. The New Universe and the Human Future: How a Shared Cosmology Could Transform the World. Yale University Press.
Alam, S. M. K., Bullock, J. S. and Weinberg, D. H. 2002. Dark Matter Properties and Halo Central Densities. ApJ. 572(June), 34–40.Google Scholar
Allgood, B., Flores, R. A., Primack, J. R. et al. 2006. The shape of dark matter haloes: dependence on mass, redshift, radius and formation. MNRAS. 367(Apr.), 1781–96.Google Scholar
Amorisco, N. C. and Evans, N.W. 2012. Dark matter cores and cusps: the case of multiple stellar populations in dwarf spheroidals. MNRAS. 419(Jan.), 184–96.Google Scholar
Barro, G.. Faber, S. M.. Pérez-González, P. G.. et al. 2013. CANDELS: The Progenitors of Compact Quiescent Galaxies at z ~ 2. ApJ. 765(Mar.), 104.Google Scholar
Barro, G.. Faber, S. M.. Pérez-González, P. G.. et al. 2014a. CANDELS+3D-HST: Compact SFGs at z ~ 2−3, the Progenitors of the First Quiescent Galaxies. ApJ. 791(Aug.), 52.Google Scholar
Barro, G.. Trump, J. R.. Koo, D. C.. et al. 2014b. Keck-I MOSFIRE Spectroscopy of Compact Star-forming Galaxies at z > 2: High Velocity Dispersions in Progenitors of Compact Quiescent Galaxies. ApJ. 795(Nov.), 145.Google Scholar
Bastidas Fry, A.. Governato, F.. Pontzen, A.. et al. 2015. All about baryons: revisiting SIDM predictions at small halo masses. MNRAS. 452(Sept.), 1468–79.Google Scholar
Behroozi, P. S.. Wechsler, R. H. and Conroy, C. 2013. On the Lack of Evolution in Galaxy Star Formation Efficiency. ApJL, 762(Jan.), L31.
Benson, A. J. 2010. Galaxy formation theory. Physics Reports. 495(Oct.), 33–86.Google Scholar
Benson, A. J.. Frenk, C. S.. Baugh, C. M.. Cole, S. and Lacey, C. G. 2003. The effects of photoionization on galaxy formation – III. Environmental dependence in the luminosity function. MNRAS. 343(Aug.), 679–91.Google Scholar
Besla, G.. Kallivayalil, N.. Hernquist, L.. et al. 2012. The role of dwarf galaxy interactions in shaping the Magellanic System and implications for Magellanic Irregulars. MNRAS. 421(Apr.), 2109–38.Google Scholar
Bird, S.. Vogelsberger, M.. Haehnelt, M.. et al. 2014. Damped Lyman α absorbers as a probe of stellar feedback. MNRAS. 445(Dec.), 2313–24.Google Scholar
Bird, S.. Haehnelt, M.. Neeleman, M.. et al. 2015. Reproducing the kinematics of damped Lyman α systems. MNRAS. 447(Feb.), 1834–46.Google Scholar
Blumenthal, G. R.. Faber, S.M.. Primack, J. R. and Rees, M. J. 1984. Formation of galaxies and large-scale structure with cold dark matter. Nature. 311(Oct.), 517–25.Google Scholar
Blumenthal, G. R.. Faber, S. M.. Flores, R. and Primack, J. R. 1986. Contraction of dark matter galactic halos due to baryonic infall. ApJ. 301(Feb.), 27–34.Google Scholar
Boylan-Kolchin, M.. Springel, V.. White, S. D. M.. Jenkins, A. and Lemson, G. 2009. Resolving cosmic structure formation with the Millennium-II Simulation. MNRAS. 398(Sept.), 1150–64.Google Scholar
Boylan-Kolchin, M.. Bullock, J. S. and Kaplinghat, M. 2011. Too big to fail? The puzzling darkness of massive Milky Way subhaloes. MNRAS. 415(July), L40–4.Google Scholar
Boylan-Kolchin, M.. Bullock, J. S. and Kaplinghat, M. 2012. The Milky Way's bright satellites as an apparent failure of A CDM. MNRAS. 422(May), 1203–18.Google Scholar
Breddels, M. A. and Helmi, A. 2013. Model comparison of the dark matter profiles of Fornax, Sculptor, Carina and Sextans. Astronomy & Astrophysics. 558(Oct.), A35.Google Scholar
Breddels, M. A. and HelmiA. 2014. Complexity on Dwarf Galaxy Scales: A Bimodal Distribution Function in Sculptor. ApJL. 791(Aug.), L3.Google Scholar
Brennan, R.. Pandya, V.. Somerville, R. S.. et al. 2015. Quenching and morphological transformation in semi-analytic models and CANDELS. MNRAS. 451(Aug.), 2933–56.Google Scholar
Brooks, A. 2014. Re-examining astrophysical constraints on the dark matter model. Annalen der Physik. 526(Aug.), 294–308.Google Scholar
Brooks, A. M. and Zolotov, A. 2014. Why Baryons Matter: The Kinematics of Dwarf Spheroidal Satellites. ApJ. 786(May), 87.Google Scholar
Bullock, J. S.. Kravtsov, A. V. and Weinberg, D. H. 2000. Reionization and the Abundance of Galactic Satellites. ApJ. 539(Aug.), 517–21.Google Scholar
Bullock, J. S.. Kolatt, T. S.. Sigad, Y.. et al. 2001. Profiles of dark haloes: evolution, scatter and environment. MNRAS. 321(Mar.), 559–75.Google Scholar
Bullock, J. S.. Stewart, K. R.. Kaplinghat, M.. Tollerud, E. J. and Wolf, J. 2010. Stealth Galaxies in the Halo of the Milky Way. ApJ. 717(July), 1043–53.Google Scholar
Busha, M. T.. Wechsler, R. H.. Behroozi, P. S.. et al. 2011a. Statistics of Satellite Galaxies around Milky-Way-like Hosts. ApJ. 743(Dec.), 117.Google Scholar
Busha, M. T.. Marshall, P. J..Wechsler, R. H.. Klypin, A. and Primack, J. 2011b. The Mass Distribution and Assembly of the Milky Way from the Properties of the Magellanic Clouds. ApJ. 743(Dec.), 40.Google Scholar
Carlberg, R. G. 2012. Dark Matter Sub-halo Counts via Star Stream Crossings. ApJ. 748(Mar.), 20.Google Scholar
Carlberg, R. G. and Grillmair, C. J. 2013. Gaps in the GD-1 Star Stream. ApJ. 768(May), 171.Google Scholar
Carlberg, R. G.. Grillmair, C. J. and Hetherington, N. 2012. The Pal 5 Star Stream Gaps. ApJ. 760(Nov.), 75.Google Scholar
Ceverino, D. and Klypin, A. 2009. The Role of Stellar Feedback in the Formation of Galaxies. ApJ. 695(Apr.), 292–309.Google Scholar
Ceverino, D.. Dekel, A.. Mandelker, N.. et al. 2012. Rotational support of giant clumps in high-z disc galaxies. MNRAS. 420(Mar.), 3490–520.Google Scholar
Ceverino, D.. Klypin, A.. Klimek, E. S.. et al. 2014. Radiative feedback and the low efficiency of galaxy formation in low-mass haloes at high redshift. MNRAS. 442(Aug.), 1545–59.Google Scholar
Ceverino, D.. Dekel, A.. Tweed, D. and Primack, J. 2015a. Early formation of massive, compact, spheroidal galaxies with classical profiles by violent disc instability or mergers. MNRAS. 447(Mar.), 3291–10.Google Scholar
Ceverino, D.. Primack, J. and Dekel, A. 2015b. Formation of elongated galaxies with low masses at high redshift. MNRAS. 453(Oct.), 408–13.Google Scholar
Chen, J.. Koushiappas, S. M. and Zentner, A. R. 2011. The Effects of Halo-to-halo Variation on Substructure Lensing. ApJ. 741(Nov.), 117.Google Scholar
Conroy, C.. Wechsler, R. H. and Kravtsov, A. V. 2006. Modeling Luminosity-dependent Galaxy Clustering through Cosmic Time. ApJ. 647(Aug.), 201–14.Google Scholar
Cowie, L. L.. Songaila, A.. Hu, E. M. and Cohen, J. G. 1996. New Insight on Galaxy Formation and Evolution From Keck Spectroscopy of the Hawaii Deep Fields. AJ. 112(Sept.), 839.Google Scholar
Dalal, N. and Kochanek, C. S. 2002. Direct Detection of Cold Dark Matter Substructure. ApJ. 572(June), 25–33.Google Scholar
Danovich, M.. Dekel, A.. Hahn, O.. Ceverino, D. and Primack, J. 2015. Four phases of angular-momentum buildup in high-z galaxies: from cosmic-web streams through an extended ring to disc and bulge. MNRAS. 449(May), 2087–111.Google Scholar
Dekel, A. and Silk, J. 1986. The origin of dwarf galaxies, cold dark matter, and biased galaxy formation. ApJ. 303(Apr.), 39–55.Google Scholar
Dekel, A. and Woo, J. 2003. Feedback and the fundamental line of low-luminosity lowsurface- brightness/dwarf galaxies. MNRAS. 344(Oct.), 1131–44.Google Scholar
Diemand, J.. Kuhlen, M. and Madau, P. 2007. Formation and Evolution of Galaxy Dark Matter Halos and Their Substructure. ApJ. 667(Oct.), 859–77.Google Scholar
Diemand, J.. Kuhlen, M.. Madau, P.. et al. 2008. Clumps and streams in the local dark matter distribution. Nature. 454(Aug.), 735–8.Google Scholar
Elbert, O. D.. Bullock, J. S.. Garrison-Kimmel, S., et al. 2015. Core formation in dwarf haloes with self-interacting dark matter: no fine-tuning necessary. MNRAS. 453(Oct.), 29–37.Google Scholar
Faucher-Giguère, C.-A.. Hopkins, P. F.. Kereš, D.. et al. 2015. Neutral hydrogen in galaxy haloes at the peak of the cosmic star formation history. MNRAS. 449(May), 987–1003.Google Scholar
Feldmann, R. and Spolyar, D. 2015. Detecting dark matter substructures around the Milky Way with Gaia. MNRAS. 446(Jan.), 1000–12.Google Scholar
Flores, R. A. and Primack, J. R. 1994. Observational and theoretical constraints on singular dark matter halos. ApJL. 427(May), L1–4.Google Scholar
Fukugita, M. and Peebles, P. J. E. 2004. The Cosmic Energy Inventory. ApJ. 616(Dec.), 643–68.Google Scholar
Gnedin, O. Y.. Ceverino, D.. Gnedin, N. Y.. et al. 2011. Halo Contraction Effect in Hydrodynamic Simulations of Galaxy Formation. ArXiv e-prints, Aug.
Governato, F.. Brook, C.. Mayer, L.. et al. 2010. Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows. Nature. 463(Jan.), 203–6.Google Scholar
Governato, F.. Zolotov, A.. Pontzen, A.. et al. 2012. Cuspy no more: how outflows affect the central dark matter and baryon distribution in cold dark matter galaxies. MNRAS. 422(May), 1231–40.Google Scholar
Governato, F.. Weisz, D.. Pontzen, A.. et al. 2015. Faint dwarfs as a test of DM models: WDM versus CDM. MNRAS. 448(Mar.), 792–803.Google Scholar
Guedes, J.. Callegari, S.. Madau, P. and Mayer, L. 2011. Forming Realistic Late-type Spirals in a CDM Universe: The Eris Simulation. ApJ. 742(Dec.), 76.Google Scholar
Guo, Y.. Giavalisco, M.. Ferguson, H. C.. Cassata, P. and Koekemoer, A. M. 2012. Multiwavelength View of Kiloparsec-scale Clumps in Star-forming Galaxies at z ˜ 2. ApJ. 757(Oct.), 120.Google Scholar
Guo, Y.. Ferguson, H. C.. Bell, E. F.. et al. 2015. Clumpy Galaxies in CANDELS. I. The Definition of UV Clumps and the Fraction of Clumpy Galaxies at 0.5 z 3. ApJ. 800(Feb.), 39.Google Scholar
Harvey, D.. Massey, R.. Kitching, T.. Taylor, A. and Tittley, E. 2015. The nongravitational interactions of dark matter in colliding galaxy clusters. Science. 347(Mar.), 1462–65.Google Scholar
Hayward, C. C.. Kereš, D.. Jonsson, P.. et al. 2011. What Does a Submillimeter Galaxy Selection Actually Select? The Dependence of Submillimeter Flux Density on Star Formation Rate and Dust Mass. ApJ. 743(Dec.), 159.Google Scholar
Hayward, C. C.. Behroozi, P. S.. Somerville, R. S.. et al. 2013. Spatially unassociated galaxies contribute significantly to the blended submillimetre galaxy population: predictions for follow-up observations of ALMA sources. MNRAS. 434(Sept.), 2572–81.Google Scholar
Hearin, A. P. and Watson, D. F. 2013. The dark side of galaxy colour. MNRAS. 435(Oct.), 1313–24.Google Scholar
Hearin, A. P.. Watson, D. F.. Becker, M. R.. et al. 2014. The dark side of galaxy colour: evidence from new SDSS measurements of galaxy clustering and lensing. MNRAS. 444(Oct.), 729–43.Google Scholar
Hezaveh, Y.. Dalal, N.. Holder, G.. et al. 2013. Dark Matter Substructure Detection Using Spatially Resolved Spectroscopy of Lensed Dusty Galaxies. ApJ. 767(Apr.), 9.Google Scholar
Hezaveh, Y.. Dalal, N.. Holder, G.. et al. 2014. Measuring the power spectrum of dark matter substructure using strong gravitational lensing. JCAP. 11(Nov.), 048.Google Scholar
Hlozek, R.. Dunkley, J.. Addison, G.. et al. 2012. The Atacama Cosmology Telescope: A Measurement of the Primordial Power Spectrum.ApJ. 749(Apr.), 90.Google Scholar
Hopkins, P. F. 2015. A new class of accurate, mesh-free hydrodynamic simulation methods. MNRAS. 450(June), 53–110.Google Scholar
Hopkins, P. F.. Quataert, E. and Murray, N. 2012. Stellar feedback in galaxies and the origin of galaxy-scale winds. MNRAS. 421(Apr.), 3522–37.Google Scholar
Hopkins, P. F.. Kereš, D.. Oñorbe, J.. et al. 2014. Galaxies on FIRE (Feedback In Realistic Environments): stellar feedback explains cosmologically inefficient star formation. MNRAS. 445(Nov.), 581–603.Google Scholar
Horiuchi, S.. Humphrey, P. J.. Oñorbe, J.. et al. 2014. Sterile neutrino dark matter bounds from galaxies of the Local Group. Phys. Rev. D. 89(2), 025017.Google Scholar
Jardel, J. R. and Gebhardt, K. 2012. The Dark Matter Density Profile of the Fornax Dwarf. ApJ. 746(Feb.), 89.Google Scholar
Jardel, J. R. and Gebhardt, K. 2013. Variations in a Universal Dark Matter Profile for Dwarf Spheroidals. ApJL. 775(Sept.), L30.Google Scholar
Jonsson, P. 2006. SUNRISE: polychromatic dust radiative transfer in arbitrary geometries. MNRAS. 372(Oct.), 2–20.Google Scholar
Jonsson, P. and Primack, J. R. 2010. Accelerating dust temperature calculations with graphics-processing units. Nature. 15(Aug.), 509–14.Google Scholar
Jonsson, P.. Cox, T. J.. Primack, J. R. and Somerville, R. S. 2006. Simulations of Dust in Interacting Galaxies. I. Dust Attenuation. ApJ,. 637(Jan.), 255–68.Google Scholar
Jonsson, P.. Groves, B. A. and Cox, T. J. 2010. High-resolution panchromatic spectral models of galaxies including photoionization and dust. MNRAS. 403(Mar.), 17–44.Google Scholar
Keeton, C. R. and Moustakas, L. A. 2009. A New Channel for Detecting Dark Matter Substructure in Galaxies: Gravitational Lens Time Delays. ApJ. 699(July), 1720–31.
Kim, J.-H.. Abel, T.. Agertz, O.. et al. 2014. The AGORA High-resolution Galaxy Simulations Comparison Project. ApJS. 210(Jan.), 14.Google Scholar
Kirby, E. N..Martin, C. L. and Finlator, K. 2011. Metals Removed by Outflows from Milky Way Dwarf Spheroidal Galaxies. ApJL. 742(Dec.), L25.Google Scholar
Klypin, A.. Kravtsov, A. V.. Valenzuela, O. and Prada, F. 1999. Where Are the Missing Galactic Satellites? ApJ. 522(Sept.), 82–92.Google Scholar
Klypin, A. A.. Trujillo-Gomez, S. and Primack, J. 2011. Dark Matter Halos in the Standard Cosmological Model: Results from the Bolshoi Simulation. ApJ. 740(Oct.), 102.Google Scholar
Klypin, A.. Yepes, G.. Gottlober, S.. Prada, F. and Hess, S. 2016. MultiDark simulations: the story of dark matter halo concentrations and density profiles. MNRAS. 457, 4340.Google Scholar
Klypin, A.. Karachentsev, I.. Makarov, D. and Nasonova, O. 2015. Abundance of field galaxies. MNRAS. 454(Dec.), 1798–810.Google Scholar
Kormendy, J. and Fisher, D. B. 2008 (Oct.). Secular Evolution in Disk Galaxies: Pseudobulge Growth and the Formation of Spheroidal Galaxies. In J. G., Funes.and E. M., Corsini. eds., Formation and Evolution of Galaxy Disks. Astronomical Society of the Pacific Conference Series. vol. 396, p. 297.Google Scholar
Kravtsov, A. 2010. Dark Matter Substructure and Dwarf Galactic Satellites. Advances in Astronomy. 2010, 1–21.Google Scholar
Kravtsov, A. V.. Klypin, A. A. and Khokhlov, A. M. 1997. Adaptive Refinement Tree: A New High-Resolution N-Body Code for Cosmological Simulations. ApJS. 111(July), 73–94.Google Scholar
Kravtsov, A. V.. Berlind, A. A.. Wechsler, R. H.. et al. 2004. The Dark Side of the Halo Occupation Distribution. ApJ. 609(July), 35–49.Google Scholar
Kuhlen, M.. Vogelsberger, M. and Angulo, R. 2012. Numerical simulations of the dark universe: State of the art and the next decade. Physics of the Dark Universe. 1(Nov.), 50–93.Google Scholar
Kuzio de Naray, R. and Spekkens, K. 2011. Do Baryons Alter the Halos of Low Surface Brightness Galaxies? ApJL. 741(Nov.), L29.Google Scholar
Kuzio de Naray, R.. Martinez, G. D.. Bullock, J. S. and Kaplinghat, M. 2010. The Case Against Warm or Self-Interacting Dark Matter as Explanations for Cores in Low Surface Brightness Galaxies. ApJL. 710(Feb.), L161–6.Google Scholar
Lagos, C. d. P.. Crain, R. A.. Schaye, J.. et al. 2015. Molecular hydrogen abundances of galaxies in the EAGLE simulations. MNRAS. 452(Oct.), 3815–37.Google Scholar
Lahav, O.. Lilje, P. B.. Primack, J. R. and Rees, M. J. 1991. Dynamical effects of the cosmological constant. MNRAS. 251(July), 128–36.Google Scholar
Liu, L.. Gerke, B. F.. Wechsler, R. H.. Behroozi, P. S. and Busha, M. T. 2011. How Common are the Magellanic Clouds? ApJ. 733(May), 62.Google Scholar
Lovell, M. R.. Eke, V.. Frenk, C. S.. et al. 2012. The haloes of bright satellite galaxies in a warm dark matter universe. MNRAS. 420(Mar.), 2318–24.Google Scholar
Ma, X.. Hopkins, P. F.. Faucher-Giguere, C.-A.. et al. 2015. The Origin and Evolution of the Galaxy Mass-Metallicity Relation. MNRAS. 456, 2140–56.Google Scholar
Macciò, A. V.. Dutton, A. A.. van den Bosch, F. C.. et al. 2007. Concentration, spin and shape of dark matter haloes: scatter and the dependence on mass and environment. MNRAS. 378(June), 55–71.Google Scholar
Macciò, A. V.. Paduroiu, S.. Anderhalden, D.. et al. 2012a. Cores in warm dark matter haloes: a Catch 22 problem. MNRAS. 424(Aug.), 1105–12.Google Scholar
Macciò, A. V.. Stinson, G.. Brook, C. B.. Wadsley, J.. Couchman, H. M. P.. Shen, S.. Gibson, B. K.. and Quinn, T. 2012b. Halo Expansion in Cosmological Hydro Simulations: Toward a Baryonic Solution of the Cusp/Core Problem in Massive Spirals. ApJL. 744(Jan.), L9.Google Scholar
Macciò, A. V.. Paduroiu, S.. Anderhalden, D.. et al. 2013. Erratum: Cores in warm dark matter haloes: a Catch 22 problem. MNRAS. 428(Feb.), 3715–16.Google Scholar
Madau, P.. Shen, S. and Governato, F. 2014. Dark Matter Heating and Early Core Formation in Dwarf Galaxies. ApJL. 789(July), L17.Google Scholar
Maller, A. H. and Dekel, A. 2002. Towards a resolution of the galactic spin crisis: mergers, feedback and spin segregation. MNRAS. 335(Sept.), 487–98.Google Scholar
Mandelker, N.. Dekel, A.. Ceverino, D.. et al. 2014. The population of giant clumps in simulated high-z galaxies: in situ and ex situ migration and survival. MNRAS. 443(Oct.), 3675–702.Google Scholar
Massey, R.. Williams, L.. Smit, R.. et al. 2015. The behaviour of dark matter associated with four bright cluster galaxies in the 10 kpc core of Abell 3827. MNRAS. 449(June), 3393–406.Google Scholar
Metcalf, R. B. and Amara, A. 2012. Small-scale structures of dark matter and flux anomalies in quasar gravitational lenses. MNRAS. 419(Feb.), 3414–25.Google Scholar
Metcalf, R. B. and Madau, P. 2001. Compound Gravitational Lensing as a Probe of Dark Matter Substructure within Galaxy Halos. ApJ. 563(Dec.), 9–20.Google Scholar
Metcalf, R. B. and Silk, J. 2007. New Constraints on Macroscopic Compact Objects as Dark Matter Candidates from Gravitational Lensing of Type Ia Supernovae. Physical Review Letters. 98(7), 071302.Google Scholar
Metcalf, R. B. and Zhao, H. 2002. Flux Ratios as a Probe of Dark Substructures in Quadruple-Image Gravitational Lenses. ApJL. 567(Mar.), L5–8.Google Scholar
Moody, C. E.. Guo, Y.. Mandelker, N.. et al. 2014. Star formation and clumps in cosmological galaxy simulations with radiation pressure feedback. MNRAS. 444(Oct.), 1389–99.Google Scholar
Moore, B. 1994. Evidence against dissipation-less dark matter from observations of galaxy haloes. Nature. 370(Aug.), 629–31.Google Scholar
Moore, B.. Ghigna, S.. Governato, F.. et al. 1999. Dark Matter Substructure within Galactic Halos. ApJL. 524(Oct.), L19–22.Google Scholar
Moustakas, L. A. and Metcalf, R. B. 2003. Detecting dark matter substructure spectroscopically in strong gravitational lenses. MNRAS. 339(Mar.), 607–15.Google Scholar
Navarro, J. F. and Steinmetz, M. 2000. The Core Density of Dark Matter Halos: A Critical Challenge to the CDM Paradigm? ApJ. 528(Jan.), 607–11.Google Scholar
Navarro, J. F.. Frenk, C. S. and White, S. D. M. 1996. The Structure of Cold Dark Matter Halos. ApJ. 462(May), 563.Google Scholar
Ngan, W. H. W. and Carlberg, R. G. 2014. Using Gaps in N-body Tidal Streams to Probe Missing Satellites. ApJ. 788(June), 181.Google Scholar
Nierenberg, A. M.. Treu, T..Wright, S. A.. Fassnacht, C. D. and Auger, M.W. 2014. Detection of substructure with adaptive optics integral field spectroscopy of the gravitational lens B1422+231. MNRAS. 442(Aug.), 2434–45.Google Scholar
Nipoti, C. and Binney, J. 2015. Early flattening of dark matter cusps in dwarf spheroidal galaxies. MNRAS. 446(Jan.), 1820–8.Google Scholar
Oman, K. A.. Navarro, J. F.. Fattahi, A.. et al. 2015. The unexpected diversity of dwarf galaxy rotation curves. MNRAS. 452(Oct.), 3650–65.Google Scholar
Oñorbe, J.. Boylan-Kolchin, M.. Bullock, J. S.. et al. 2015. Forged in FIRE: cusps, cores, and baryons in low-mass dwarf galaxies. MNRAS. 454, 2092–106.Google Scholar
Papastergis, E.. Martin, A. M.. Giovanelli, R. and Haynes, M. P. 2011. The Velocity Width Function of Galaxies from the 40% ALFALFA Survey: Shedding Light on the Cold Dark Matter Overabundance Problem. ApJ. 739(Sept.), 38.Google Scholar
Planck Collaboration Ade, P. A. R.. Aghanim, N.. et al. 2015a. Planck 2015 results. XIII. Cosmological parameters. A–A. 594A, 14.Google Scholar
Planck Collaboration Ade, P. A. R.. Aghanim, N.. Arnaud, M.. et al. 2015b. Planck 2015 results. XVII. Constraints on primordial non-Gaussianity. A–A. 594A, 17.
Polisensky, E. and Ricotti, M. 2011. Constraints on the dark matter particle mass from the number of Milky Way satellites. Phys. Rev. D. 83(4), 043506.Google Scholar
Pontzen, A. and Governato, F. 2012. How supernova feedback turns dark matter cusps into cores. MNRAS, Mar., 2641.
Pontzen, A. and Governato, F. 2014. Cold dark matter heats up. Nature. 506(Feb.), 171–8.Google Scholar
Pooley, D.. Rappaport, S.. Blackburne, J. A.. Schechter, P. L. and Wambsganss, J. 2012. X-Ray and Optical Flux Ratio Anomalies in Quadruply Lensed Quasars. II. Mapping the Dark Matter Content in Elliptical Galaxies. ApJ. 744(Jan.), 111.Google Scholar
Porter, L. A.. Somerville, R. S.. Primack, J. R. et al. 2014a. Modelling the ages and metallicities of early-type galaxies in Fundamental Plane space. MNRAS. 445(Dec.), 3092–104.Google Scholar
Porter, L. A.. Somerville, R. S.. Primack, J. R.. and Johansson, P. H. 2014b. Understanding the structural scaling relations of early-type galaxies. MNRAS. 444(Oct.), 942–960.Google Scholar
Prada, F.. Klypin, A. A.. Cuesta, A. J.. Betancort-Rijo, J. E. and Primack, J. 2012. Halo concentrations in the standard cold dark matter cosmology. MNRAS. 423(July), 3018–30.Google Scholar
Primack, J. R. 1984. Dark Matter, Galaxies and Large Scale Structure in the Universe. Proc. Int. Sch. Phys. Fermi. 92, 140.Google Scholar
Primack, J. R. and Abrams, N. E. 2006. The View from the Center of the Universe:Discovering Our Extraordinary Place in the Cosmos. New York: Riverhead.
Primack, J. R. and Blumenthal, G. R. 1984. Growth of Perturbations between Horizon Crossing and Matter Dominance: Implications for Galaxy Formation. Astrophys. Space Sci. Libr., 111, 435–40.Google Scholar
Rahmati, A.. Schaye, J.. Bower, R. G.. et al. 2015. The distribution of neutral hydrogen around high-redshift galaxies and quasars in the EAGLE simulation. MNRAS. 452, 2034–56.Google Scholar
Reddick, R. M.. Wechsler, R. H.. Tinker, J. L. and Behroozi, P. S. 2013. The Connection between Galaxies and Dark Matter Structures in the Local Universe. ApJ. 771(July), 30.Google Scholar
Reddick, R. M.. Tinker, J. L.. Wechsler, R. H. and Lu, Y. 2014. Cosmological Constraints from Galaxy Clustering and the Mass-to-number Ratio of Galaxy Clusters: Marginalizing over the Physics of Galaxy Formation. ApJ. 783(Mar.), 118.Google Scholar
Richardson, T. and Fairbairn, M. 2014. On the dark matter profile in Sculptor: breaking the β degeneracy with Virial shape parameters. MNRAS. 441(June), 1584–600.Google Scholar
Riebe, K.. Partl, A. M.. Enke, H.. et al. 2013. TheMultiDark Database: Release of the Bolshoi and MultiDark cosmological simulations. Astronomische Nachrichten. 334(Aug.), 691–708.Google Scholar
Sawala, T.. Scannapieco, C. and White, S. 2012. Local Group dwarf galaxies: nature and nurture. MNRAS. 420(Feb.), 1714–30.Google Scholar
Sawala, T.. Frenk, C. S.. Fattahi, A.. et al. 2014. Local Group galaxies emerge from the dark. ArXiv e-prints, Dec.
Schaye, J.. Crain, R. A.. Bower, R. G.. et al. 2015. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS. 446(Jan.), 521–54.Google Scholar
Skillman, S. W.. Warren, M. S.. Turk, M. J.. et al. 2014. Dark Sky Simulations: Early Data Release. ArXiv e-prints, July.
Snyder, G. F.. Torrey, P.. Lotz, J. M.. et al. 2015. Galaxy Morphology and Star Formation in the Illustris Simulation at z=0. MNRAS. 454, 1886–908.Google Scholar
Somerville, R. S. 2002. Can Photoionization Squelching Resolve the Substructure Crisis? ApJL. 572(June), L23–6.Google Scholar
Somerville, R. S. and Davé, R. 2015. Physical Models of Galaxy Formation in a Cosmological Framework. ARAA. 53, 51–113.Google Scholar
Somerville, R. S.. Gilmore, R. C.. Primack, J. R. and Domínguez, A. 2012. Galaxy properties from the ultraviolet to the far-infrared: cold dark matter models confront observations. MNRAS. 423(July), 1992–2015.Google Scholar
Spergel, D. N. and Steinhardt, P. J. 2000. Observational Evidence for Self-Interacting Cold Dark Matter. Physical Review Letters. 84(Apr.), 3760–63.Google Scholar
Springel, V.. White, S. D. M.. Jenkins, A.. et al. 2005. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature. 435(June), 629–36.Google Scholar
Springel, V.. Wang, J.. Vogelsberger, M.. et al. 2008. The Aquarius Project: the subhaloes of galactic haloes. MNRAS. 391(Dec.), 1685–711.Google Scholar
Strigari, L. E. and Wechsler, R. H. 2012. The Cosmic Abundance of Classical Milky Way Satellites. ApJ. 749(Apr.), 75.Google Scholar
Strigari, L. E.. Barnabè, M.. Marshall, P. J. and Blandford, R. D. 2012. Nomads of the Galaxy. MNRAS. 423(June), 1856–65.Google Scholar
Tasitsiomi, A.. Kravtsov, A. V..Wechsler, R. H. and Primack, J. R. 2004. Modeling Galaxy- Mass Correlations in Dissipationless Simulations. ApJ. 614(Oct.), 533–46.Google Scholar
Teyssier, R.. Pontzen, A.. Dubois, Y. and Read, J. I. 2013. Cusp-core transformations in dwarf galaxies: observational predictions. MNRAS. 429(Mar.), 3068–78.Google Scholar
The DES Collaboration, Bechtol K.. Drlica-Wagner, A.. et al. 2015. Eight New Milky Way Companions Discovered in First-Year Dark Energy Survey Data. ApJ. 807(July), 50–66.Google Scholar
Tisserand, P.. Le Guillou, L.. Afonso, C.. et al. 2007. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. Astronomy & Astrophysics. 469(July), 387–404.Google Scholar
Tollerud, E. J.. Boylan-Kolchin, M.. Barton, E. J.. Bullock, J. S. and Trinh, C. Q. 2011. Small-scale Structure in the Sloan Digital Sky Survey and CDM: Isolated ˜ * Galaxies with Bright Satellites. ApJ. 738(Sept.), 102.Google Scholar
Trujillo-Gomez, S.. Klypin, A.. Primack, J. and Romanowsky, A. J. 2011. Galaxies in CDM with Halo Abundance Matching: Luminosity-Velocity Relation, Baryonic Mass-Velocity Relation, Velocity Function, and Clustering. ApJ. 742(Nov.), 16.Google Scholar
Trujillo-Gomez, S.. Klypin, A.. Colín, P.. et al. 2015. Low-mass galaxy assembly in simulations: regulation of early star formation by radiation from massive stars. MNRAS. 446(Jan.), 1140–62.Google Scholar
van der Wel, A.. Chang, Y.-Y.. Bell, E. F.. et al. 2014. Geometry of Star-forming Galaxies from SDSS, 3D-HST, and CANDELS. ApJL. 792(Sept.), L6.Google Scholar
Vegetti, S., Koopmans, L. V. E., Bolton, A., Treu, T. and Gavazzi, R. 2010. Detection of a dark substructure through gravitational imaging. MNRAS. 408(Nov.), 1969–81.Google Scholar
Vegetti, S.. Lagattuta, D. J.. McKean, J. P.. et al. 2012. Gravitational detection of a lowmass dark satellite galaxy at cosmological distance. Nature. 481(Jan.), 341–3.Google Scholar
Vegetti, S.. Koopmans, L. V. E.. Auger, M. W.. et al. 2014. Inference of the cold dark matter substructure mass function at z = 0.2 using strong gravitational lenses. MNRAS. 442(Aug.), 2017–35.Google Scholar
Viel, M.. Becker, G. D.. Bolton, J. S. and Haehnelt, M. G. 2013. Warm dark matter as a solution to the small scale crisis: New constraints from high redshift Lyman-α forest data. Phys. Rev. D. 88(4), 043502.Google Scholar
Vogelsberger, M.. Zavala, J. and Loeb, A. 2012. Subhaloes in self-interacting galactic dark matter haloes. MNRAS. 423(July), 3740–52.Google Scholar
Vogelsberger, M.. Genel, S.. Springel, V.. et al. 2014a. Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe. MNRAS. 444(Oct.), 1518–1547.Google Scholar
Vogelsberger, M.. Genel, S.. Springel, V.. et al. 2014b. Properties of galaxies reproduced by a hydrodynamic simulation. Nature. 509(May), 177–82.Google Scholar
Wadepuhl, M. and Springel, V. 2011. Satellite galaxies in hydrodynamical simulations of Milky Way-sized galaxies. MNRAS. 410(Jan.), 1975–92.Google Scholar
Walker, M. G. and Peñarrubia, J. 2011. A Method for Measuring (Slopes of) the Mass Profiles of Dwarf Spheroidal Galaxies. ApJ. 742(Nov.), 20.Google Scholar
Watson, D. F.. Berlind, A. A. and Zentner, A. R. 2011. A Cosmic Coincidence: The Powerlaw Galaxy Correlation Function. ApJ. 738(Sept.), 22.Google Scholar
Wellons, S.. Torrey, P.. Ma, C.-P.. et al. 2015. The formation of massive, compact galaxies at z = 2 in the Illustris simulation. MNRAS. 449(May), 361–72.Google Scholar
Woo, J.. Courteau, S. and Dekel, A. 2008. Scaling relations and the fundamental line of the local group dwarf galaxies. MNRAS. 390(Nov.), 1453–1469.Google Scholar
Wuyts, S.. Förster Schreiber, N. M.. Nelson, E. J.. et al. 2013. A Candels-3D-HST synergy: Resolved Star Formation Patterns at 0.7z1.5. ApJ. 779(Dec.), 135.Google Scholar
Xu, D.. Mao, S.. Cooper, A. P.. et al. 2012. On the effects of line-of-sight structures on lensing flux-ratio anomalies in a CDM universe. MNRAS, Feb., 2426.
Xu, D.. Sluse, D.. Gao, L.. et al. 2015. How well can cold dark matter substructures account for the observed radio flux-ratio anomalies? MNRAS. 447(Mar.), 3189–206.Google Scholar
Yoon, J. H.. Johnston, K. V. and Hogg, D. W. 2011. Clumpy Streams from Clumpy Halos: Detecting Missing Satellites with Cold Stellar Structures. ApJ. 731(Apr.), 58.Google Scholar
Zentner, A. R. and Bullock, J. S. 2003. Halo Substructure and the Power Spectrum. ApJ. 598(Nov.), 49–72.Google Scholar
Zolotov, A.. Dekel, A.. Mandelker, N.. et al. 2015. Compaction and Quenching of High-z Galaxies in Cosmological Simulations: Blue and Red Nuggets. MNRAS. 450, 2327–53.Google Scholar
Zwaan, M. A..Meyer, M. J. and Staveley-Smith, L. 2010. The velocity function of gas-rich galaxies. MNRAS. 403(Apr.), 1969–77.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×