Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-29T14:10:54.072Z Has data issue: false hasContentIssue false

12 - Composition and evolution of the continental crust

Published online by Cambridge University Press:  22 October 2009

S. Ross Taylor
Affiliation:
Australian National University, Canberra
Scott McLennan
Affiliation:
State University of New York, Stony Brook
Get access

Summary

It is difficult to calculate what the composition of the crust of the Earth is in any reliable way

(Harold Urey)

The composition of the upper part of the continental crust is well established, but it is so enriched in incompatible elements and the heat-producing elements K, U and Th in particular, that it cannot be representative of the entire crust. Unfortunately the inaccessible and largely unknown nature of the lower continental crust makes it more difficult to determine the overall crustal composition so that elements of model-dependency enter the discussion. Because the crust is a significant reservoir for many elements, understanding its overall chemical composition is of fundamental importance to geochemistry as these data place constraints on the basic processes of crustal growth, differentiation and evolution of the mantle.

Because of these restrictions, indirect evidence from the geophysical disciplines (e.g. heat flow, seismology) has to be employed mostly to obtain the bulk composition of the continental crust. So in contrast to upper crustal abundances where there is a consensus, the chemical composition of the bulk crust is much more controversial, with recent models covering a broad range from basalt through to dacite (Fig. 12.1).

However, compositions at both extremes encounter a variety of problems that are difficult to reconcile with known crustal characteristics. In our opinion, the combination of constraints imposed by the upper crustal composition, heat flow and geochemistry yields reliable compositions for the bulk crust.

Type
Chapter
Information
Planetary Crusts
Their Composition, Origin and Evolution
, pp. 301 - 324
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

McLennan, S. M.et al. (2006) Composition, differentiation and evolution of continental crust: Constraints from sedimentary rocks and heat flow, in Evolution and Differentiation of the Continental Crust (eds. Brown, M. and Rushmer, T.), Cambridge University Press, pp. 92–134Google Scholar
Rollinson, H. (2006) Crustal generation in the Archean, in Evolution and Differentiation of the Continental Crust (eds. Brown, M. and Rushmer, T.), Cambridge University Press, pp. 173–230
Davidson, J. P. and Arculus, R. J. (2006) The significance of Phanerozoic arc magmatism in generating continental crust, in Evolution and Differentiation of the Continental Crust (eds. Brown, M. and Rushmer, T.), Cambridge University Press, pp. 135–72Google Scholar
Nyblade, A. A. and Pollack, H. N. (1993) A global analysis of heat flow from Precambrian terrains. Journal of Geophysical Research 98, 12,207–18CrossRefGoogle Scholar
Jaupart, C. and Mareschal, J. -C. (2003) Constraints from crustal heat production from heat flow data, in Treatise on Geochemistry (eds. Holland, H. D. and Turekian, K. K.), Elsevier, sect. 3.2, pp. 65–84
Nyblade, A. A. and Pollack, H. N. (1993) A global analysis of heat flow from Precambrian terrains. Journal of Geophysical Research 98, 12,207–18CrossRefGoogle Scholar
Bickle, M. J. (1978) Heat loss from the Earth. Earth and Planetary Science Letters 40, 301–15CrossRefGoogle Scholar
Rudnick, R. L.et al. (1998) Thermal structure, thickness and composition of continental lithosphere. Chem. Geol. 145, 395–411CrossRefGoogle Scholar
Nyblade, A. A. and Pollack, H. N. (1993) A global analysis of heat flow from Precambrian terrains. Journal of Geophysical Research 98, 12,207–18CrossRefGoogle Scholar
Jaupart, C. and Mareschal, J. -C. (2003) Constraints from crustal heat production from heat flow data, in Treatise on Geochemistry (eds. Holland, H. D. and Turekian, K. K.), Elsevier, sect. 3.2, pp. 65–84
Hofmeister, A. M. and Criss, R. E. (2005) Earth's heat flux revised and linked to chemistry. Tectonophysics 395, 159–77CrossRefGoogle Scholar
Herzen, R.et al. (2005) Comments on “Earth's heat flux revised and linked to chemistry”. Tectonophysics 409, 193–8CrossRefGoogle Scholar
Hofmeister, A. M. and Criss, R. E. (2005) Reply. Tectonophysics 409, 199–203CrossRef
McLennan, S. M.et al. (2006) Composition, differentiation and evolution of continental crust: Constraints from sedimentary rocks and heat flow, in Evolution and Differentiation of the Continental Crust (eds. Brown, M. and Rushmer, T.), Cambridge University Press, pp. 92–134Google Scholar
Nyblade, A. A. and Pollack, H. N. (1993) A global analysis of heat flow from Precambrian terrains. Journal of Geophysical Research 98, 12,207–18CrossRefGoogle Scholar
McLennan, S. M.et al. (2006) Composition, differentiation and evolution of continental crust: Constraints from sedimentary rocks and heat flow, in Evolution and Differentiation of the Continental Crust (eds. Brown, M. and Rushmer, T.), Cambridge University Press, pp. 92–134Google Scholar
Taylor, S. R. and McLennan, S. M. (1985) The Continental Crust: Its Composition and Evolution, BlackwellGoogle Scholar
Taylor, S. R. and McLennan, S. M. (1995) The geochemical evolution of the continental crust. Rev. Geophys. 33, 241–65CrossRefGoogle Scholar
McLennan, S. M. and Taylor, S. R. (1996) Heat flow and the chemical composition of the continental crust. J. Geol. 104, 377–96CrossRefGoogle Scholar
McLennan, S. M. (2001) Relationship between the trace element composition of sedimentary rocks and upper continental crust. Geochem. Geophys. Geosystems 2, doi: 10.1029/2000GC000109CrossRefGoogle Scholar
Taylor, S. R. and McLennan, S. M. (2002) Chemical composition and element distribution in the Earth's crust. Encyclopedia of Physical Science and Technology (ed. Meyers, R.), Academic Press, vol. 2, pp. 697–719Google Scholar
Taylor, S. R. (1967) The origin and growth of continents. Tectonophysics 4, 17–34CrossRefGoogle Scholar
Taylor, S. R. (1977) Island arc models and the composition of the continental crust. Amer. Geophys. Union Maurice Ewing Series I, 325–35CrossRefGoogle Scholar
Taylor, S. R. (1979) The composition and evolution of the continental crust: The rare earth element evidence, in The Earth: Its Origin, Structure and Evolution (ed. McElhinny, M. W.), Academic Press, ch. 11, pp. 353–76Google Scholar
Umbgrove, J. H. F. (1947) The Pulse of the Earth, 2nd edn., Nijhoff, ch. 3, pp. 144–216
Kelemen, P. B. (1995) Genesis of high Mg# andesites and the continental crust. Contrib. Mineral. Petrol. 120, 1–19CrossRefGoogle Scholar
Wyllie, P. J. (1977) Crustal anatexis: An experimental view. Tectonophysics 43, 41–71CrossRefGoogle Scholar
Clemens, J. D. (2006) Melting of the continental crust: Fluid regimes, melting reactions and source rock fertility, in Evolution and Differentiation of the Continental Crust (eds. Brown, M. and Rushmer, T.), Cambridge University Press, pp. 296–330Google Scholar
Arculus, R. J. (1981) Island arc magmatism in relation to the evolution of the crust and mantle. Tectonophysics 75, 113–33CrossRefGoogle Scholar
Gill, J. B. (1981) Orogenic Andesites and Plate Tectonics, Springer-VerlagCrossRefGoogle Scholar
Pearcy, L. G.et al. (1990) Mass balance calculations for two sections of island arc crust and implications for the origin of continents. Earth and Planetary Science Letters 96, 427–42CrossRefGoogle Scholar
Rudnick, R. L. (1995) Making continental crust. Nature 378, 571–8CrossRefGoogle Scholar
Kay, R. W. and Kay, S. M. (1991) Creation and destruction of continental crust. Geol. Rundsch. 80, 259–78CrossRefGoogle Scholar
Rudnick, R. L. (1995) Making continental crust. Nature 378, 571–8CrossRefGoogle Scholar
Jull, M. and Kelemen, P. B. (2001) On the conditions for lower crustal convective instability. Journal of Geophysical Research 106 (B4), 6423–46CrossRefGoogle Scholar
Gao, S.et al. (2004) Recycling lower continental crust in the North China craton. Nature 432, 892–7CrossRefGoogle ScholarPubMed
Gao, S.et al. (1998) How mafic is the lower continental crust?Earth and Planetary Science Letters 161, 101–17CrossRefGoogle Scholar
Jackson, M. G.et al. (2007) The return of subducted continental crust in Samoan lavas. Nature 448, 684–7CrossRefGoogle ScholarPubMed
Arculus, R. J. (2003) Use and abuse of the terms calc-alkaline and calc-alkalic. J. Petrology 44, 929–35CrossRefGoogle Scholar
Arculus, R. J. (2004) Evolution of arc magmas and their volatiles. American Geophysical Union Geophys. Monograph 150, 95–108Google Scholar
Davidson, J. P. and Arculus, R. J. (2006) The significance of Phanerozoic arc magmatism in generating continental crust, in Evolution and Differentiation of the Continental Crust (eds. Brown, M. and Rushmer, T.), Cambridge University Press, pp. 135–72
Hildreth, W. and Moorbath, S. (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contrib. Mineral. Petrol. 98, 455–89CrossRefGoogle Scholar
Suyehiro, K.et al. (1996) Continental crust, crustal underplating and low-Q upper mantle beneath an oceanic island arc. Science 271, 390–2CrossRefGoogle Scholar
Taira, A.et al. (1998) Nature and growth rate of the northern Isu-Bonin (Ogasawara) arc crust and their implications for continental crust formation. The Island Arc 7, 395–407CrossRefGoogle Scholar
Takahashi, N.et al. (1998) Implications from the seismic crustal structure of the northern Izu-Bonin arc. The Island Arc, 7, 383–94CrossRefGoogle Scholar
Fliedner, M. M. and Klemperer, S. L. (1999) Structure of an island-arc: Wide-angle seismic studies in the eastern Aleutian Islands, Alaska. Journal of Geophysical Research 104, 10,667–94CrossRefGoogle Scholar
Ducea, M. N. (2002) Constraints on the bulk composition and root foundering rates of continental arcs: A California perspective. Journal of Geophysical Research 107, doi: 10.1029/2001JB000643CrossRefGoogle Scholar
Crawford, W. C.et al. (2004) Tonga Ridge and Lau Basin crustal structure from seismic refraction data. Journal of Geophysical Research 108, doi: 10.1029/2001JB001435Google Scholar
Holbrook, W. S.et al. (1999) Structure and composition of the Aleutian island arc and implications for continental crustal growth. Geology 27, 31–42.3.CO;2>CrossRefGoogle Scholar
Behn, M. D. and Kelemen, P. D. (2006) Stability of arc lower crust: Insights from the Talkeetna arc section, south central Alaska and the seismic structure of modern arcs. Journal of Geophysical Research 111, doi: 10.1029/2006JB00432CrossRefGoogle Scholar
Behn, M. D.et al. (2007) Trench-parallel anisotropy produced by foundering of arc lower crust. Science 317, 108–11CrossRefGoogle ScholarPubMed
Williams, Q. and Revenaugh, J. (2005) Ancient subduction, mantle eclogite and the 300 km seismic discontinuity. Geology 33, 1–4CrossRefGoogle Scholar
Arculus, R. J. (1999) Origins of the continental crust. J. Proc. Royal Soc. NSW 132, 83–110Google Scholar
Davidson, J. P. and Arculus, R. J. (2006) The significance of Phanerozoic arc magmatism in generating continental crust, in Evolution and Differentiation of the Continental Crust (eds. Brown, M. and Rushmer, T.), Cambridge University Press, pp. 135–72Google Scholar
Suyehiro, K.et al. (1996) Continental crust, crustal underplating and low-Q upper mantle beneath an oceanic island arc. Science 272, 390–2CrossRefGoogle Scholar
Crawford, W. C.et al. (2003) Tonga Ridge and Lau Basin crustal structure from seismic refraction data. Journal of Geophysical Research 108, doi: 10.1029/2001JB001435CrossRefGoogle Scholar
Furukawa, Y. and Shinjoe, H. (1997) Distribution of radiogenic heat generation in the arc's crust of the Hokkaido Island, Japan. Geophysical Research Letters 24, 1279–82CrossRefGoogle Scholar
Reymer, A. and Schubert, G. (1984) Phanerozoic addition rates to continental crust and crustal growth. Tectonics 3, 63–77CrossRefGoogle Scholar
Huene, R. and Scholl, D. W. (1991) Observations at convergent margins concerning sediment subduction, subduction erosion and the growth of continental crust. Rev. Geophys. 29, 279–316CrossRefGoogle Scholar
Fyfe, W. S. (1976) Hydrosphere and continental crust: Growing or shrinking?Geosci. Canada 3, 82–3Google Scholar
Arculus, R. J. (2004) Evolution of arc magmas and their volatiles. American Geophysical Union Geophys. Monograph 150, 95–108Google Scholar
McLennan, S. M. (1988) Recycling of continental crust. Pure Appl. Geophys. 128, 683–724CrossRefGoogle Scholar
Plank, T. and Langmuir, C. H. (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 145, 325–94CrossRefGoogle Scholar
Davidson, J. P. and Arculus, R. J. (2006) The significance of Phanerozoic arc magmatism in generating continental crust, in Evolution and Differentiation of the Continental Crust (eds. Brown, M. and Rushmer, T.), Cambridge University Press, pp. 135–72
Wyllie, P. J. (1977) Crustal anatexis: An experimental view. Tectonophysics 43, 41–71CrossRefGoogle Scholar
Clemens, J. D. (2006) Melting of the continental crust: Fluid regimes, melting reactions and source rock fertility, in Evolution and Differentiation of the Continental Crust (eds. Brown, M. and Rushmer, T.), Cambridge University Press, pp. 296–330Google Scholar
Brown, G. C. and Fyfe, W. S. (1970) The production of granitic melts during ultrametamorphism. Contrib. Mineral. Petrol. 28, 310–18CrossRefGoogle Scholar
Chappell, B. W. (1984) Source rocks of I- and S-type granites in the Lachlan Fold Belt, southeastern Australia. Phil. Trans. Royal Soc. A310, 693–707CrossRefGoogle Scholar
Shaw, S. E. and Flood, R. H. (1981) The New England batholith, eastern Australia: Geochemical variations in space and time. Journal of Geophysical Research 86, 10,530–44CrossRefGoogle Scholar
Flood, R. H. and Shaw, S. E. (1977) Two “S-type” granite suites with low initial 87Sr/86Sr ratios from the New England batholith, Australia. Contrib. Mineral. Petrol. 61, 163–73CrossRefGoogle Scholar
Taylor, S. R. and McLennan, S. M. (1985) The Continental Crust: Its Composition and Evolution, Blackwell, pp. 218–24Google Scholar
Chappell, B. W.et al. (2004) Trans. Royal Soc. Edinburgh 95, 124–38
Clemens, J. D. (2006) Melting of the continental crust: Fluid regimes, melting reactions and source rock fertility, in Evolution and Differentiation of the Continental Crust (eds. Brown, M. and Rushmer, T.), Cambridge University Press, pp. 296–330Google Scholar
Patino-Douce, A. E. and Beard, J. S. (1995) Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. J. Petrol. 37, 707–38CrossRefGoogle Scholar
Shaw, S. E. and Flood, R. H. (1981) The New England batholith, eastern Australia: Geochemical variations in space and time. Journal of Geophysical Research 86, 10,530–44CrossRefGoogle Scholar
Kemp, A. J. S.et al. (2007) Magmatic and crustal differentiation history of granitic rocks from Hf–O isotopes in zircon. Science 315, 980–3CrossRefGoogle ScholarPubMed
Abbott, D. H. and Isley, A. E. (2002) Extraterrestrial influences on mantle plume activity. Earth and Planetary Science Letters 205, 53–62CrossRefGoogle Scholar
Albarède, F. (1998) The growth of continental crust. Tectonophysics 296, 1–14CrossRefGoogle Scholar
Stein, M. and Hofmann, A. W. (1994) Mantle plumes and episodic crustal growth. Nature 372, 63–8CrossRefGoogle Scholar
Ben-Avraham, Z.et al. (1981) Continental accretion and orogeny: From oceanic plateaux to allochthonous terranes. Science 213, 47–54CrossRefGoogle Scholar
Rudnick, R. L. and Fountain, D. M. (1995) Nature and composition of the continental crust: A lower crustal perspective. Rev. Geophys. 33, 267–309CrossRefGoogle Scholar
Albarède, F. (1998) The growth of continental crust. Tectonophysics 296, 1–14CrossRefGoogle Scholar
Rudnick, R. L. (1992) Restites, Eu anomalies and the lower continental crust. Geochimica et Cosmochimica Acta 56, 963–70CrossRefGoogle Scholar
Hill, R. I. (1993) Mantle plumes and continental tectonics. Lithos 30, 193–206CrossRefGoogle Scholar
Wendlandt, E.et al. (1993) Nd and Sr isotope chronology of Colorado Plateau lithosphere: Implications for magmatic and tectonic underplating of the continental crust. Earth and Planetary Science Letters 116, 23–43CrossRefGoogle Scholar
Hill, R. I.et al. (1992) Mantle plumes and continental tectonics. Science 256, 186–93CrossRefGoogle ScholarPubMed
Pakiser, L. C. and Robinson, R. (1966) Composition and evolution of the continental crust as suggested by seismic observations. Tectonophysics 3, 547–57CrossRefGoogle Scholar
Rudnick, R. L. and Fountain, D. M. (1995) Nature and composition of the continental crust: A lower crustal perspective. Rev. Geophys. 33, 267–309CrossRefGoogle Scholar
Wedepohl, K. H. (1995) The composition of the continental crust. Geochimica et Cosmochimica Acta 59, 1217–32CrossRefGoogle Scholar
Condie, K. C. and Selverstone, J. (1999) The crust of the Colorado Plateau: New views of an old arc. J. Geol. 107, 387–97CrossRefGoogle Scholar
Rudnick, R. L. and Gao, S. (2003) Composition of the continental crust., in Treatise on Geochemistry (eds. Holland, H. D. and Turekian, K. K.), Elsevier, vol. 3, pp. 1–64Google Scholar
McLennan, S. M. and Taylor, S. R. (1996) Heat flow and the chemical composition of the continental crust. J. Geol. 104, 377–96CrossRefGoogle Scholar
Rudnick, R. L. and Fountain, D. M. (1995) Nature and composition of the continental crust: A lower crustal perspective. Rev. Geophys. 33, 267–309CrossRefGoogle Scholar
Wedepohl, K. H. (1995) The composition of the continental crust. Geochimica et Cosmochimica Acta 59, 1217–32CrossRefGoogle Scholar
Condie, K. C. and Selverstone, J. (1999) The crust of the Colorado Plateau: New views of an old arc. J. Geol. 107, 387–97CrossRefGoogle Scholar
Rudnick, R. L. and Gao, S. (2003) Composition of the continental crust, in Treatise on Geochemistry (eds. Holland, H. D. and Turekian, K. K.), Elsevier, vol. 3, pp. 1–64
McLennan, S. M. and Taylor, S. R. (1996) Heat flow and the chemical composition of the continental crust. J. Geol. 104, 377–96CrossRefGoogle Scholar
McLennan, S. M.et al. (2006) Composition, differentiation and evolution of continental crust: Constraints from sedimentary rocks and heat flow, in Evolution and Differentiation of the Continental Crust (eds. Brown, M. and Rushmer, T.), Cambridge University Press, pp. 92–134
Rapp, R. P. and Watson, E. B. (1995) Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust-mantle recycling. J. Petrology 36, 891–931CrossRefGoogle Scholar
Kay, R. W. and Kay, S. M. (1991) Creation and destruction of lower continental crust. Geol. Rundsch. 80, 259–78CrossRefGoogle Scholar
Albarède, F. (1998) The growth of continental crust. Tectonophysics 296, 1–14CrossRefGoogle Scholar
Arculus, R. J. (1999) Origins of the continental crust. J. Proc. Royal Soc. NSW 132, 83–110Google Scholar
Davidson, J. P. and Arculus, R. J. (2006) The significance of Phanerozoic arc magmatism in generating continental crust, in Evolution and Differentiation of the Continental Crust (eds. Brown, M. and Rushmer, T.), Cambridge University Press, pp. 135–72
Moorbath, S. (1978) Age and isotopic evidence for the evolution of the continental crust. Phil. Trans. Royal Soc. A288, 401–13CrossRefGoogle Scholar
Taylor, S. R. and McLennan, S. M. (1981) The composition and evolution of the continental crust: Rare earth element evidence from sedimentary rocks. Phil. Trans. Royal Soc. A288, 381–99CrossRefGoogle Scholar
Armstrong, R. L. (1981) Radiogenic isotopes: The case for crustal recycling on a near-steady-state no-continental-growth Earth. Phil. Trans. Royal Soc. A288, 443–72CrossRefGoogle Scholar
(1991) The persistent myth of crustal growth. Aust. J. Earth Sci. 38, 613–30CrossRef
Fyfe, W. S. (1978) The evolution of the Earth's crust: Modern plate tectonics to ancient hot spot tectonics. Chem. Geol. 23, 89–114CrossRefGoogle Scholar
Bowring, S. A. and Housh, T. (1995) The Earth's early evolution. Science 269, 1535–40CrossRefGoogle ScholarPubMed
Vervoort, J. D.et al. (1996) Constraints on early Earth differentiation from hafnium and neodymium isotopes. Nature 379, 624–7CrossRefGoogle Scholar
Valley, J.et al. (2005) 4.4 billion years of crustal maturation: Oxygen isotope ratios of magmatic zircon. Contrib. Mineral. Petrol. 150, 561–80CrossRefGoogle Scholar
Kasting, J. F. and Holm, N. G. (1992) What determines the volume of the oceans. Earth and Planetary Science Letters 109, 507–15CrossRefGoogle ScholarPubMed
Galer, S. J. (1991) Interrelationships between continental freeboard, tectonics and mantle temperature. Earth and Planetary Science Letters 105, 214–28CrossRefGoogle Scholar
McLennan, S. M. and Taylor, S. R. (1983) Continental freeboard, sedimentation rates and growth of continental crust. Nature 306, 169–72CrossRefGoogle Scholar
Wise, D. U. (1974) Continental margins, freeboard, and the volumes of continents and oceans through time, in The Geology of Continental Margins (eds. Burke, C. A. and Dragk, C. L.), Springer-Verlag, pp. 45–58CrossRefGoogle Scholar
Armstrong, R. L. (1981) Radiogenic isotopes: The case for crustal recycling on a near-steady-state no-continental-growth Earth. Phil. Trans. Royal Soc. A288, 443–72CrossRefGoogle Scholar
Armstrong, R. L. (1991) The persistent myth of crustal growth. Aust. J. Earth Sci. 38, 613–30CrossRefGoogle Scholar
McLennan, S. M. (1988) Recycling of the continental crust. Pure Appl. Geophys. 128, 683–724CrossRefGoogle Scholar
Jackson, M. G.et al. (2007) The return of subducted continental crust in Samoan lavas. Nature 448, 684–7CrossRefGoogle ScholarPubMed
McLennan, S. M. and Hemming, S. R. (1992) Samarium/neodymium elemental and isotopic systematics in sedimentary rocks. Geochimica et Cosmochimica Acta 56, 169–200CrossRefGoogle Scholar
Rogers, J. J. W. and Santosh, M. (2004) Continents and Supercontinents, Cambridge University PressGoogle Scholar
Anderson, D. L. (1994) Superplumes or supercontinents. Geology 22, 39–422.3.CO;2>CrossRefGoogle Scholar
Unrug, R. (1992) The supercontinent cycle and Gondwanaland assembly: Component cratons and the timing of suturing events. J. Geodynamics 16, 215–40CrossRefGoogle Scholar
McLennan, S. M. and Taylor, S. R. (1991) Sedimentary rocks and crustal evolution: Tectonic setting and secular trends. J. Geol. 99, 1–21CrossRefGoogle Scholar
Duncan, C. C. and Turcotte, D. L. (1994) On the breakup and coalescence of continents. Geology 22, 103–62.3.CO;2>CrossRefGoogle Scholar
Coffin, M. F. and Eldholm, O. (1994) Large igneous provinces: Crustal structure, dimensions and external consequences. Rev. Geophys. 32, 1–36CrossRefGoogle Scholar
Korenaga, J. (2004) Mantle mixing and continental breakup magmatism. Earth and Planetary Science Letters 218, 463–73CrossRefGoogle Scholar
Storey, B. C.et al. (1992) Magmatism and the Causes of Continental Breakup. Geological Society of London Special Publication 68Google Scholar
Wright, T. J.et al. (2006) Magma-maintained rift segmentation at continental rupture in the 2005 Afar dyking episode. Nature 442, 291–4CrossRefGoogle ScholarPubMed
Christensen, N. I. and Mooney, W. D. (1995) Seismic velocity structure and composition of the continental crust: A global view. Journal of Geophysical Research 100, 9761–88CrossRefGoogle Scholar
Condie, K. C. and Selverstone, J. (1999) The crust of the Colorado Plateau: New views of an old arc. J. Geol. 107, 387–97CrossRefGoogle Scholar
McLennan, S. M.et al. (2006) Composition, differentiation and evolution of continental crust: Constraints from sedimentary rocks and heat flow, in Evolution and Differentiation of the Continental Crust (eds. Brown, M. and Rushmer, T.), Cambridge University Press, pp. 92–134Google Scholar
McLennan, S. M. and Taylor, S. R. (1996) Heat flow and the chemical composition of the continental crust. J. Geol. 104, 377–96CrossRefGoogle Scholar
Rudnick, R. L. and Fountain, D. M. (1995) Nature and composition of the continental crust: A lower crustal perspective. Rev. Geophys. 33, 267–309CrossRefGoogle Scholar
Rudnick, R. L. and Gao, S. (2003) Composition of the continental crust, in Treatise on Geochemistry (eds. Holland, H. D. and Turekian, K. K.), Elsevier, vol. 3, pp. 1–64Google Scholar
Shaw, D. M.et al. (1986) Composition of the Canadian Precambrian shield and the continental crust of the Earth, in The Nature of the Continental Crust (eds. Dawsan, J. B.et al.), Geological Society of London Special Publication 24, pp. 275–82
Taylor, S. R. and McLennan, S. M. (1985) The Continental Crust: Its Composition and Evolution, BlackwellGoogle Scholar
Taylor, S. R. and McLennan, S. M. (1995) The geochemical evolution of the continental crust. Rev. Geophys. 33, 241–65CrossRefGoogle Scholar
Weaver, B. L. and Tarney, J. (1984) Empirical approach to estimate the composition of the continental crust. Nature 310, 575–7CrossRefGoogle Scholar
Wedepohl, K. H. (1991) Chemical composition and fractionation of the continental crust. Geol. Rundsch. 80, 207–23CrossRefGoogle Scholar
Wedepohl, K. H. (1995) The composition of the continental crust. Geochimica et Cosmochimica Acta 59, 1217–32CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×