Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-25T05:06:35.251Z Has data issue: false hasContentIssue false

12 - Dusty Rings

from III - Ring Systems by Type and Topic

Published online by Cambridge University Press:  26 February 2018

M. M. Hedman
Affiliation:
University of Idaho Moscow, Idaho, USA
F. Postberg
Affiliation:
University of Heidelberg Heidelberg, GERMANY
D. P. Hamilton
Affiliation:
University of Maryland College Park, Maryland, USA
S. Renner
Affiliation:
University of Lille Lille, FRANCE
H.-W. Hsu
Affiliation:
University of Colorado Boulder, Colorado, USA
Matthew S. Tiscareno
Affiliation:
SETI Institute, California
Carl D. Murray
Affiliation:
Queen Mary University of London
Get access

Summary

All of the giant planets in the outer Solar System possess rings composed primarily of particles less than 100 microns across. Such small particles are conventionally referred to as “dust grains” regardless of their composition, and so these rings are considered “dusty rings” (as opposed to the more famous main rings of Saturn and Uranus, whose particles are more than a millimeter across). Dusty rings are often very tenuous and so can be much more difficult to observe than Saturn's broad, bright, and dense main rings. Nevertheless, dusty rings are extremely interesting because they have very rich dynamics and are extremely sensitive probes of their environment.

The high surface-area-to-volume ratio of dust-sized grains makes them much more responsive to non-gravitational forces like solar radiation pressure, plasma drag, and torques from the planet's electromagnetic field. Furthermore, sub-millimeter particles can be lost from the ring system on relatively short timescales due to erosion via charged-particle and micrometeoroid bombardment or through ejection by the non-gravitational forces listed above. This means that small particles need to be constantly supplied to these rings from larger bodies, and indeed all of the known dusty rings are associated with larger objects that are the likely sources of dusty debris. The most dramatic example of this is Saturn's E ring, which is clearly supplied by material erupting from beneath the surface of the geologically active moon Enceladus. However, this is a special case, and most dusty rings are instead associated with denser rings (which are composed primarily of millimeter-to-metersized particles) or small moons. These objects can serve as dust sources because they are constantly being bombarded by micrometeoroids, and these impacts release fine debris that can escape the weak gravitational fields of these small bodies and go into orbit around the planet. Note that the amount of dust released by this process depends on the size, mass, and regolith properties of the source object, and calculations of the dust production rate based on simple estimates of impact ejecta velocity distributions suggest that source moons that are several kilometers across are the most efficient at producing dusty rings (Burns et al., 1999).

Type
Chapter
Information
Planetary Ring Systems
Properties, Structure, and Evolution
, pp. 308 - 337
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altobelli, N., Postberg, R., Fiege, K., et al. 2016. Flux and composition of interstellar dust at Saturn from Cassini's Cosmic Dust Analyser. Science, 352, 312—318.CrossRefGoogle Scholar
Andriopoulou, M., Roussos, E., Krupp, N., et al. 2012. A noon-to-midnight electric field and nightside dynamics in Saturn's inner magnetosphere, using microsignature observations. Icarus, 220, 503-513.CrossRefGoogle Scholar
Andriopoulou, M., Roussos, E., Krupp, N., et al. 2014. Spatial and temporal dependence of the convective electric field in Saturn's inner magnetosphere. Icarus, 229, 57—70.CrossRefGoogle Scholar
Arridge, C. S., Andre, N., Khurana, K. K., et al. 2011. Periodic motion of Saturn's nightside plasma sheet. Journal of Geophysical Research (Space Physics), 116, Al 1205.Google Scholar
Brooks, S. M., Esposito, L. W., Showalter, M. R., and Throop, H. B. 2004. The size distribution of Jupiter's main ring from Galileo imaging and spectroscopy. Icarus, 170, 35—57.CrossRefGoogle Scholar
Burns, J. A., Lamy, P. L., and Soter, S. 1979. Radiation forces on small particles in the solar system. Icarus, 40, 1-48.CrossRefGoogle Scholar
Burns, J. A., Showalter, M. R., and Morfill, G. E. 1984. The ethereal rings of Jupiter and Saturn. Pages 200--21'4 of: Greenberg, R. and Brahic, A. (eds.) Planetary Rings, University of Arizona Press.Google Scholar
Burns, J. A., Schaffer, L. E., Greenberg, R. J., and Showalter, M. R. 1985. Lorentz resonances and the structure of the Jovian ring. Nature, 316, 115-119.CrossRefGoogle Scholar
Burns, J. A., Showalter, M. R., Hamilton, D. P., et al. 1999. The formation of Jupiter's faint rings. Science, 284, 1146.CrossRefGoogle ScholarPubMed
Callegari, N., and Yokohama, T. 2010. Long-term dynamics of Methone, Anthe and Pallene. Astronomical Union, IAU Symposium, 263, 161-166.Google Scholar
Collette, A., Sternovsky, Z., and Horanyi, M. 2014. Production of neutral gas by micrometeoroid impacts. Icarus, 221, 89-93.Google Scholar
Collette, A., Meyer, G., Malaspina, D., and Sternovsky, Z. 2015. Laboratory investigation of antenna signals from dust impacts on spacecraft. Journal of Geophysical Research (Space Physics), 120, 5298-5305.Google Scholar
Colwell, J. E. 1996. Size distributions of circumplanetary dust. Advances in Space Research, 17, 161-170.CrossRefGoogle Scholar
Cooper, N. J., Murray, C. D., Evans, M. W., et al. 2008. Astrometry and dynamics of Anthe (S/2007 S 4), a new satellite of Saturn. Icarus, 195, 765-777.CrossRefGoogle Scholar
D'Aversa, E., Bellucci, G., Nicholson, P. D., et al. 2010. The spectrum of a Saturn ring spoke from Cassini/VIMS. GRL, 37, L01203.CrossRefGoogle Scholar
de Pater, I., Martin, S. C., and Showalter, M. R. 2004. Keck near-infrared observations of Saturn's E and G rings during Earth's ring plane crossing in August 1995. Icarus, 172, 446-54.CrossRefGoogle Scholar
de Pater, I., Gibbard, S. G., Chiang, E., et al. 2005. The dynamic nep-tunian ring arcs: evidence for a gradual disappearance of Liberte and resonant jump of Courage. Icarus, 174, 263—272.CrossRefGoogle Scholar
de Pater, I., Gibbard, S. G., and Hammel, H. B. 2006a. Evolution of the dusty rings of Uranus. Icarus, 180, 186-200.Google Scholar
de Pater, I., Hammel, H. B., Gibbard, S. G., and Showalter, M. R. 2006b. New dust belts of Uranus: One ring, two ring, red ring, blue ring. Science, 312, 92—94.CrossRefGoogle Scholar
Dikarev, V. V. 1999. Dynamics of particles in Saturn's E ring: effects of charge variations and the plasma drag force. A&A, 346, 1011-1019.Google Scholar
Dohnanyi, J. S. 1969. Collisional model of asteroids and their debris. JGR, 74, 2531-2554.CrossRefGoogle Scholar
Dougherty, M. K., Khurana, K. K., Neubauer, F. M., et al. 2006. Identification of a dynamic atmosphere at Enceladus with the Cassini magnetometer. Science, 311, 1406-1409.CrossRefGoogle ScholarPubMed
Doyle, L. R., and Grun, E. 1990. Radiative transfer modeling con-straints on the size of the spoke particles in Saturn's rings. Icarus, 85, 168-190.CrossRefGoogle Scholar
Dumas, C., Terrile, R. J., Smith, B. A., Schneider, G., and Becklin, E. E. 1999. Stability of Neptune's ring arcs in question. Nature, 400, 733-735.CrossRefGoogle Scholar
Eichhorn, G. 1976. Analysis of the hypervelocity impact process from impact flash measurements. PSS, 24, 771-781.Google Scholar
Eichhorn, G. 1978. Primary velocity dependence of impact ejecta parameters. PSS, 26, 469-71.Google Scholar
El Moutamid, M., Sicardy, B., and Renner, S. 2014. Coupling between corotation and Lindblad resonances in the presence of secular precession rates. Celestial Dynamics and Dynamical Astronomy, 118, 235-252.Google Scholar
Elrod, M. K., Tseng, W. -L., Wilson, R. J., and Johnson, R. E. 2012. Seasonal variations in Saturn's plasma between the main rings and Enceladus. Journal of Geophysical Research (Space Physics), 111, 3207.Google Scholar
Ferrari, C., and Brahic, A. 1997. Arcs and clumps in the Encke division of Saturn's rings. PSS, 45, 1051-1067.Google Scholar
Fillius, R. W., Mcllwain, C. E., and Mogro-Campero, A. 1975. Radiation belts of Jupiter —A second look. Science, 188(May), 465-67.
Foryta, D. W., and Sicardy, B. 1996. The dynamics of the Neptunian Adams ring's arcs. Icarus, 123, 129—167.CrossRefGoogle Scholar
French, R. S., Showalter, M. R., Sfair, R., et al. 2012. The brightening of Saturn's F ring. Icarus, 219, 181-193.CrossRefGoogle Scholar
Fymat, A. L., and Mease, K. D. 1981. Mie forward scattering -Improved semiempirical approximation with application to particle size distribution inversion. Applied Optics, 20, 194—198.CrossRefGoogle ScholarPubMed
Goertz, C. K., and MorfiU, G. 1983. A model for the formation of spokes in Saturn's rings. Icarus, 53, 219-229.CrossRefGoogle Scholar
Goldreich, P., Tremaine, S., and Borderies, N. 1986. Towards a theory for Neptune's arc rings. Astronomical Journal, 92, 490-94.CrossRefGoogle Scholar
Griin, E., MorfiU, G. E., and Mendis, D. A. 1984. Dust-magnetosphere interactions. Pages 275—332 of: Planetary Rings. University of Arizona Press.Google Scholar
Griin, E., Fechtig, H., Hanner, M. S., et al. 1992. The Galileo dust detector. Spa. Sci. Rev., 60, 317-340.Google Scholar
Griin, E., Baguhl, M., Hamilton, D. P., et al. 1995. Reduction of Galileo and Ulysses dust data. PSS, 43, 941-951.Google Scholar
Griin, E., Baguhl, M., Hamilton, D. P., et al. 1996. Constraints from Galileo observations on the origin of jovian dust streams. Nature, 381, 395-398.Google Scholar
Gurnett, D. A., and Kurth, W. S. 1995. Plasma waves and related phenomena in the magnetosphere of Neptune. Pages 389—423 of: Cruikshank, D. P., Matthews, M. S., and Schumann, A. M. (eds.), Neptune and Triton. University of Arizona Press.Google Scholar
Gurnett, D. A., Kurth, W. S., Scarf, K. L., Burns, J. A., and Cuzzi, J. N. 1987. Micron-sized particle impacts detected near Uranus by the Voyager 2 plasma wave instrument. JGR, 92, 14 959—14 968.CrossRefGoogle Scholar
Gurnett, D. A., Kurth, W. S., Granroth, L. J., AUendorf, S. C., and Poynter, R. L. 1991. Micron-sized particles detected near Neptune by the Voyager 2 plasma wave instrument. JGR, 96, 19.CrossRefGoogle Scholar
Hamilton, D. P. 1993. Motion of dust in a planetary magnetosphere -Orbit-averaged equations for oblateness, electromagnetic, and radiation forces with application to Saturn's E ring. Icarus, 101, 244-264.CrossRefGoogle Scholar
Hamilton, D. P. 1994. A comparison of Lorentz, planetary gravitational, and satellite gravitational resonances. Icarus, 109(June), 221-240.
Hamilton, D. P. 1996. The asymmetric time-variable rings of Mars. Icarus, 119, 153-172.CrossRefGoogle Scholar
Hamilton, D. P., and Burns, J. A. 1993. Ejection of dust from Jupiter's gossamer ring. Nature, 364, 695-699.CrossRefGoogle Scholar
Hamilton, D. P., and Burns, J. A. 1994. Origin of Saturn's E ring: Self-sustained, naturally. Science, 264, 550-553.CrossRefGoogle Scholar
Hamilton, D. P., and Kriiger, H. 2008. The sculpting of Jupiter's gossamer rings by its shadow. Nature, 453, 72—75.CrossRefGoogle ScholarPubMed
Hamilton, D. P., Skrutskie, M. E., Verbiscer, A. J., and Masci, F. J. 2015. Small particles dominate Saturn's Phoebe ring to surprisingly large distances. Nature, 522, 185—187.CrossRefGoogle ScholarPubMed
Hanninen, J., and Porco, C. 1997. Collisional simulations of Neptune's ring arcs. Icarus, 126, 1-27.CrossRefGoogle Scholar
Hansen, C. J., Esposito, L., Stewart, A. I. E., et al. 2006. Enceladus' water vapor plume. Science, 311, 1422—1425.CrossRefGoogle ScholarPubMed
Hedman, M. M., and Showalter, M. R. 2016. A new pattern in Saturn's D ring created in late 2011. Icarus, 279, 155-165.CrossRefGoogle Scholar
Hedman, M. M., and Stark, C. C. 2015. Saturn's G and D rings provide nearly complete measured scattering phase functions of nearby debris disks. ApJ, 811, 67.CrossRefGoogle Scholar
Hedmann, M. M., Burns, J. A., Showalter, M. R., et al. 2007a. Saturn's dynamic D ring. Icarus, 188, 89-107.Google Scholar
Hedman, M. M., Burns, J. A., Tiscareno, M. S., et al. 2007b. The source of Saturn's G ring. Science, 317, 653-656.CrossRefGoogle Scholar
Hedman, M. M., Murray, C. D., Cooper, N. J., et al. 2009a. Three tenuous rings/arcs for three tiny moons. Icarus, 199, 378—386.CrossRefGoogle Scholar
Hedman, M. M., Burns, J. A., Tiscareno, M. R. and Porco, C. C. 2009b. Organizing some very tenuous things: Resonant structures in Saturn's faint rings. Icarus, 202, 260-279.CrossRefGoogle Scholar
Hedman, M. M., Nicholson, P. D., Showalter, M. R., et al. 2009c. Spectral observations of the Enceladus Plume with Cassini-VIMS. The Astrophysical Journal, 693, 1749-1762.CrossRefGoogle Scholar
Hedman, M. M., Cooper, N. J., Murray, C. D., 2010a. Aegaeon (Saturn LIII), a G-ring object. Icarus, 207, 433-447.CrossRefGoogle Scholar
Hedman, M. M., Burt, J. A., Burns, J. A., and Tiscareno, M. S. 2010b. The shape and dynamics of a heliotropic dusty ringlet in the Cassini Division. Icarus, 210, 284-297.CrossRefGoogle Scholar
Hedman, M. M., Burns, J. A., Evans, M. W., Tiscareno, M. S., and Porco, C. C. 2011a. Saturn's curiously corrugated C ring. Science, 332, 708-711.CrossRefGoogle Scholar
Hedman, M. M., Nicholson, P. D., Showalter, M. R., et al. 2011b. The Christiansen Effect in Saturn's narrow dusty rings and the spectral identification of clumps in the F ring. Icarus, 215, 695-711.CrossRefGoogle Scholar
Hedman, M. M., Burns, J. A., Hamilton, D. P., and Showalter, M. R. 2012. The three-dimensional structure of Saturn's E ring. Icarus, 217, 322-338.CrossRefGoogle Scholar
Hedman, M. M., Burns, J. A., Hamilton, D. P., and Showalter, M. R. 2013. Of horseshoes and heliotropes: Dynamics of dust in the Encke Gap. Icarus, 223, 252—276.CrossRefGoogle Scholar
Hedman, M. M., Burt, J. A., Burns, J. A., and Showalter, M. R. 2014. Non-circular features in Saturn's D ring: D68. Icarus, 233, 147-162.CrossRefGoogle Scholar
Hedman, M. M., Burns, J. A., and Showalter, M. R. 2015. Corrugations and eccentric spirals in Saturn's D ring: New insights into what happened at Saturn in 1983. Icarus, 248, 137-161.CrossRefGoogle Scholar
Hill, T. W., Thomsen, M. E., Tokar, R. L., et al. 2012. Charged nanograins in the Enceladus plume. Journal of Geophysical Research (Space Physics), 117, A05209.Google Scholar
Hillier, J. K., Green, S. E., McBride, N., et al. 2007a. Interplanetary dust detected by the Cassini CDA Chemical Analyser. Icarus, 190, 643-654.CrossRefGoogle Scholar
Hillier, J. K., Green, S. E., McBride, N., et al. 2007b. The composition of Saturn's E ring. Mon. Not. Roy. Ast. Soc, 377, 1588-1596.CrossRefGoogle Scholar
Horanyi, M., and Burns, J. A. 1991. Charged dust dynamics —Orbital resonance due to planetary shadows. Journal of Geophysical Research, 96, 19.CrossRefGoogle Scholar
Horanyi, M., and Juhasz, A. 2000. Dynamics and distribution of Saturn's E ring particles. AAS/Division for Planetary Sciences Meeting, 32.
Horanyi, M., Burns, J. A., and Hamilton, D. P. 1992. The dynamics of Saturn's E ring particles. Icarus, 97, 248-259.CrossRefGoogle Scholar
Horanyi, M., Morfill, G., and Griin, E. 1993. Mechanism for the acceleration and ejection of dust grains from Jupiter's magnetosphere. Nature, 363, 144-146.CrossRefGoogle Scholar
Horanyi, M., Juhasz, A., and Morfill, G. E. 2008. Large-scale structure of Saturn's E-ring. GRL, 35, L04203.CrossRefGoogle Scholar
Hsu, H. -W., Kempf, S., Postberg, E., et al. 2011. Cassini dust stream particle measurements during the first three orbits at Saturn. Journal of Geophysical Research (Space Physics), 116, A08213.Google Scholar
Hsu, H. -W., Kriiger, H., and Postberg, F. 2012. Dynamics, composition, and origin of jovian and saturnian dust-stream particles. Page 77 of: Mann, I., Meyer-Vernet, N., and Czechowski, A. (eds.), Nanodust in the Solar System: Discoveries and Interpretations. Astrophysics and Space Science Library, vol. 385.Google Scholar
Hsu, H. -W., Postberg, E., Sekine, Y., et al. 2015. Ongoing hydrothermal activities within Enceladus. Nature, 519, 207—210.CrossRefGoogle ScholarPubMed
Hubbard, W. B., Brahic, A., Sicardy, B., et al. 1986. Occultation detection of a Neptunian ring-like arc. Nature, 319, 636-640.CrossRefGoogle Scholar
Humes, D. H., Alvarez, J. M., O'Neal, R. L., and Kinard, W. H. 1974. The interplanetary and near-Jupiter meteoroid environments. JGR, 79, 3677.CrossRefGoogle Scholar
Ingersoll, A. P., and Ewald, S. P. 2011. Total particulate mass in Enceladus plumes and mass of Saturn's E ring inferred from Cassini ISS images. Icarus, 216, 492—506.CrossRefGoogle Scholar
Jackson, J. D. 1998. Classical Electrodynamics, 3rd edition. New York, John Wiley & Sons.Google Scholar
Jones, G. H., Krupp, N., Kriiger, H., et al. 2006. Formation of Saturn's ring spokes by lightning-induced electron beams. GRL, 33, L21202.CrossRefGoogle Scholar
Jones, G. H., Roussos, E., Krupp, N., et al. 2008. The dust halo of Saturn's largest icy moon: Evidence of rings at Rhea? Science, 319, 1380-1384.CrossRefGoogle Scholar
Juhasz, A., and Horanyi, M. 2004. Seasonal variations in Saturn's E-ring. GRL, 31, 19703.CrossRefGoogle Scholar
Juhasz, A., Horanyi, M., and Morfill, G. E. 2007. Signatures of Enceladus in Saturn's E ring. GRL, 34, 9104.CrossRefGoogle Scholar
Jurac, S., Johnson, R. E., and Richardson, J. D. 2001. Saturn's E ring and production of the neutral torus. Icarus, 149, 384—396.CrossRefGoogle Scholar
Kempf, S., Srama, R., Postberg, E., et al. 2005a. Composition of saturnian stream particles. Science, 307, 1274—1276.CrossRefGoogle ScholarPubMed
Kempf, S., Srama, R., Horanyi, M., etal. 2005b. High-velocity streams of dust originating from Saturn. Nature, 433, 289-291.CrossRefGoogle ScholarPubMed
Kempf, S., Beckmann, U., Srama, R., et al. 2006. The electrostatic potential of E ring particles. PSS, 54, 999-1006.Google Scholar
Kempf, S., Beckmann, U., Moragas-Klostermeyer, G., et al. 2008. The E ring in the vicinity of Enceladus I: Spatial distribution and properties of the ring particles. Icarus, 193, 420-437.Google Scholar
Kempf, S., Beckmann, U., and Schmidt, J. 2010. How the Enceladus dust plume feeds Saturn's E ring. Icarus, 206, 446-157.CrossRefGoogle Scholar
Khawaja, N., Postberg, E., Reviol, R., and Srama, R. 2015. Characterization of signatures from organic compounds in CDA mass spectra of ice particles in Saturn's E-ring. Page 12799 of: EGU General Assembly Conference Abstracts. EGU General Assembly Conference Abstracts, vol. 17.Google Scholar
Kinard, W. H., O'Neal, R. L., Alvarez, J. M., and Humes, D. H. 1974. Interplanetary and near-Jupiter meteoroid environments: Preliminary results from the meteoroid detection experiment. Science, 183, 321-322.CrossRefGoogle ScholarPubMed
Kriiger, H., Griin, E., Graps, A., et al. 2001. One year of Galileo dust data from the Jovian system: 1996. PSS, 49, 1285-1301.Google Scholar
Kriiger, H., Bindschadler, D., Dermott, S. E., et al. 2006. Galileo dust data from the jovian system: 1997 1999. PSS, 54, 879-910.Google Scholar
Kriiger, H., Hamilton, D. P., Moissl, R., and Griin, E. 2009. Galileo in-situ dust measurements in Jupiter's gossamer rings. Icarus, 203, 198-213.Google Scholar
Kurth, W. S., Averkamp, T. E., Gurnett, D. A., and Wang, Z. 2006. Cassini RPWS observations of dust in Saturn's E Ring. PSS, 54, 988-998.Google Scholar
Lissauer, J. J. 1985. Shepherding model for Neptune's arc ring. Nature, 318, 544.CrossRefGoogle Scholar
McGhee, C. A., French, R. G., Dones, L., etal. 2005. HSTobservations of spokes in Saturn's Bring. Icarus, 173, 508—521.CrossRefGoogle Scholar
McNutt, R. L., Selesnick, R. S., and Richardson, J. D. 1987. Low-energy plasma observations in the magnetosphere of Uranus. JGR, 92, 4399-410.CrossRefGoogle Scholar
Menietti, J. D., Gurnett, D. A., and Groene, J. B. 2005. Radio emission observed by Galileo in the inner Jovian magnetosphere during orbit A-34. Planetary and Space Science, 53, 1234-1242.CrossRefGoogle Scholar
Meyer-Vernet, N., Aubier, M. G., and Pedersen, B. M. 1986. Voyager 2 at Uranus -Grain impacts in the ring plane. GRL, 13, 617-620.CrossRefGoogle Scholar
Mitchell, C. J., Porco, C. C., Dones, H. L., and Spitale, J. N. 2013. The behavior of spokes in Saturn's Bring. Icarus, 225, 446—474.CrossRefGoogle Scholar
Morfill, G. E., and Gruen, E. 1979. The motion of charged dust particles in interplanetary space. I -The zodiacal dust cloud. II -Interstellar grains. Planetary and Space Sciences, 27, 1269-1292.Google Scholar
Morfill, G. E., Havnes, O., and Goertz, C. K. 1993. Origin and maintenance of the oxygen torus in Saturn's magnetosphere. JGR, 98, 11285.CrossRefGoogle Scholar
Namouni, E., and Porco, C. 2002. The confinement of Neptune's ring arcs by the moon Galatea. Nature, 417, 45–7.CrossRefGoogle ScholarPubMed
Nicholson, P. D., Mosqueira, I., and Matthews, K. 1995. Stellar occultation observations of Neptune's rings: 1984-1988. Icarus, 113, 295-330.CrossRefGoogle Scholar
Nicholson, P. D., Showalter, M. R., and Dones, L. 1996. Observations of Saturn's ring-plane crossing in August and November. Science, 272, 509-516.CrossRefGoogle Scholar
Owen, W. M., Vaughan, R. M., and Synnott, S. P. 1991. Orbits of the six new satellites of Neptune. Astronomical Journal, 101, 1511-1515.CrossRefGoogle Scholar
Persoon, A. M., Gurnett, D. A., Leisner, J. S., et al. 2013. The plasma density distribution in the inner region of Saturn's magnetosphere. Journal of Geophysical Research (Space Physics), 118, 2970-2974.Google Scholar
Porco, C. A., and Danielson, G. E. 1982. The periodic variation of spokes in Saturn's rings. AJ, 87, 826—833.CrossRefGoogle Scholar
Porco, C. C. 1991. An explanation for Neptune's ring arcs. Science, 253, 995-1001.CrossRefGoogle ScholarPubMed
Porco, C. C., Nicholson, P. D., Cuzzi, J. N., Lissauer, J. J., and Esposito, L. W.1995. Neptune's ring system. In Cruikshank, D. P., Matthews, M. S., and Schumann, A. M. (eds.), Neptune and Triton. University of Arizona Press.
Porco, C. C., Baker, E., Barbara, J., et al. 2005. Cassini imaging science: Initial results on Saturn's rings and small satellites. Science, 307, 1226-1236.Google ScholarPubMed
Porco, C. C., Helfenstein, P., Thomas, P. C., et al. 2006. Cassini observes the active south pole of Enceladus. Science, 311, 1393-1401.CrossRefGoogle ScholarPubMed
Postberg, E., Kempf, S., Srama, R., et al. 2006. Composition of jovian dust stream particles. Icarus, 183, 122-134.CrossRefGoogle Scholar
Postberg, E., Kempf, S., Hillier, J. K., et al. 2008. The E-ring in the vicinity of Enceladus II: Signatures of Enceladus in the elemental composition of E-ring particles. Icarus, 193, 438-454.Google Scholar
Postberg, R., Kempf, S., Schmidt, J., et al. 2009. Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature, 459, 1098-1101.CrossRefGoogle ScholarPubMed
Postberg, P., Schmidt, J., Hillier, J., Kempf, S., and Srama, R. 2011. A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature, 474, 620-622.CrossRefGoogle ScholarPubMed
Postberg, R., Khwaja, N., Kempf, S., et al. 2017. Complex organic macromolecular compounds in ice grains from Enceladus. LPSC abstracts. 48, 1401.Google Scholar
Renner, S., and Sicardy, B. 2004. Stationary configurations for co-orbital satellites with small arbitrary masses. Celestial Mechanics and Dynamical Astronomy, 88, 397—414.CrossRefGoogle Scholar
Renner, S., Sicardy, B., Souami, D., Carry, B., and Dumas, C. 2014. Neptune's ring arcs: VLT/NACO near-infrared observations and a model to explain their stability. Astronomy and Astrophysics, 563, A133.CrossRefGoogle Scholar
Roussos, E., Jones, G. H., Krupp, N., et al. 2008. Energetic electron signatures of Saturn's smaller moons: Evidence of an arc of material at Methone. Icarus, 193, 455-64.CrossRefGoogle Scholar
Salo, H., and Hanninen, J. 1998. Neptune's partial rings: Action of Galatea on self-gravitating arc particles. Science, 282, 1102-1104.
Schmidt, J., Brilliantov, N., Spahn, P., and Kempf, S. 2008. Slow dust in Enceladus' plume from condensation and wall collisions in tiger stripe fractures. Nature, 451, 685-688.CrossRefGoogle ScholarPubMed
Sekine, Y., Shibuya, T., Postberg, E., et al. 2015. High-temperature water—rock interactions and hydrothermal environments in the chondrite-like core of Enceladus. Nature Communications, 6, 8604.CrossRefGoogle ScholarPubMed
Selesnick, R. S., and McNutt, Jr., R. L. 1987. Voyager 2 plasma ion observations in the magnetosphere of Uranus. JGR, 92, 15249-15262.CrossRefGoogle Scholar
ShowaltZer, M. R. 1995. Arcs and clumps in the Uranian X ring. Science, 267, 490-193. Showalter M, R. 1996. Saturn's D ring in the Voyager images. Icarus, 124, 677-689.Google Scholar
Showalter, M. R., and Lissauer, J. J. 2006. The second ring-moon system of Uranus: Discovery and dynamics. Science, 311, 973—977.CrossRefGoogle ScholarPubMed
Showalter, M. R., Cheng, A. E., Weaver, H. R., et al. 2007. Clump detection and limits on moons in Jupiter's ring system. Science, 318, 232-234.CrossRefGoogle Scholar
Showalter, M. R., de Pater, I., Verbanac, G., Hamilton, D. P., and Burns, J. A. 2008. Properties and dynamics of Jupiter's gossamer rings from Galileo, Voyager, Hubble and Keck images. Icarus, 195, 361-377.CrossRefGoogle Scholar
Showalter, M. R., Hedman, M. M., and Burns, J. A. 2011. The impact of comet Shoemaker-Levy 9 sends ripples through the rings of Jupiter. Science, 332, 711.CrossRefGoogle ScholarPubMed
Shu, F. H. 1984. Waves in planetary rings. Pages 513-561 of: Planetary Rings, University of Arizona Press.Google Scholar
Sicardy, B. 1991. Numerical exploration of planetary arc dynamics. Icarus, 89, 197-219.CrossRefGoogle Scholar
Sicardy, B., and Lissauer, J. J. 1992. Dynamical models of the arcs in Neptune's 63K ring (1989N1R). Advances in Space Research, 12, 81-95.CrossRefGoogle Scholar
Sicardy, B., Roddier, E., Roddier, C., et al. 1999. Images of Neptune's ring arcs obtained by a ground-based telescope. Nature, 400, 731-733.CrossRefGoogle Scholar
Smith, B. A., Soderblom, L. A., Banfield, D., et al. 1989. Voyager 2 at Neptune -Imaging science results. Science, 246, 1422-1449.CrossRefGoogle ScholarPubMed
Spahn, E., Schmidt, J., Albers, N., et al. 2006a. Cassini dust measurements at Enceladus and implications for the origin of the E ring. Science, 311, 1416-1418.CrossRefGoogle ScholarPubMed
Spahn, E., Schmidt, J., Albers, N., et al. 2006b. Cassini dust measurements at Enceladus and implications for the origin of the E ring. Science, 311, 1416-1418.CrossRefGoogle ScholarPubMed
Spitale, J. N., Jacobson, R. A., Porco, C. C., and Owen, Jr., W M. 2006. The orbits of Saturn's small satellites derived from combined historic and Cassini imaging observations. Astronomical Journal, 132, 692-710.CrossRefGoogle Scholar
Srama, R., Kempf, S., Moragas-Klostermeyer, G., et al. 2006. In situ dust measurements in the inner Saturnian system. PSS, 54, 967-987.Google Scholar
Srama, R., Kempf, S., Moragas-Klostermeyer, G., et al. 2011. The cosmic dust analyser onboard cassini: ten years of discoveries. CEAS Space Journal, 2, 3—16.
Sun, K. L., Seiss, M., Hedmann, M. M., and Spatin, F. 2017. Dust in the arcs of Methone and Anthe. Icarus, 284, 206-215.CrossRefGoogle Scholar
Tamayo, D., Burns, J. A., Hamilton, D. P., and Hedman, M. M. 2011. Finding the trigger to Iapetus' odd global albedo pattern: Dynamics of dust from Saturn's irregular satellites. Icarus, 215, 260-278.CrossRefGoogle Scholar
Tamayo, D., Markham, S. R., Hedman, M. M., Burns, J. A., and Hamilton, D. P. 2016. Radial profiles of the Phoebe ring: A vast debris disk around Saturn. Icarus, 275, 117—131.CrossRefGoogle Scholar
Throop, H. B., Porco, C. C., West, R. A., et al. 2004. The jovian rings: new results derived from Cassini, Galileo, Voyager, and Earth-based observations. Icarus, 172, 59-77.CrossRefGoogle Scholar
Tiscareno, M. S., Mitchell, C. J., Murray, C. D., et al. 2013. Observations of ejecta clouds produced by impacts onto Saturn's rings. Science, 340, 460-164.CrossRefGoogle ScholarPubMed
Vahidinia, S., Cuzzi, J. N., Hedman, M., et al. 2011. Saturn's F ring grains: Aggregates made of crystalline water ice. Icarus, 215, 682-694.CrossRefGoogle Scholar
van Allen, J. A. 1982. Findings on rings and inner satellites of Saturn of Pioneer 11. Icarus, 51, 509-527.CrossRefGoogle Scholar
van Allen, J. A. 1983. Absorption of energetic protons by Saturn's Ring G. JGR, 88, 6911-6918.CrossRefGoogle Scholar
van Allen, J. A. 1987. An upper limit on the sizes of shepherding satellites at Saturn's ring G. JGR, 92, 1153-1159.CrossRefGoogle Scholar
van de Hulst, H. C. 1957. Light Scattering by Small Particles. New York, John Wiley & Sons.Google Scholar
Verbiscer A, J., Skrutskie, M. E., and Hamilton, D. P. 2009. Saturn's largest ring. Nature, 461, 1098-1100.CrossRefGoogle ScholarPubMed
Waite, J. H., Combi, M. R., Ip, W. -H., et al. 2006. Cassini ion and neutral mass spectrometer: Enceladus plume composition and structure. Science, 311, 1419-1422.CrossRefGoogle ScholarPubMed
Wang, Z., Gurnett, D. A., Averkamp, T. E., Persoon, A. M., and Kurth, W. S. 2006. Characteristics of dust particles detected near Saturn's ring plane with the Cassini Radio and Plasma Wave instrument. PSS, 54, 957-966.Google Scholar
Wilson, R. J., Bagenal, E., Delamere, P. A., et al. 2013. Evidence from radial velocity measurements of a global electric field in Saturn's inner magnetosphere. Journal of Geophysical Research (Space Physics), 118, 2122-2132.Google Scholar
Ye, S. -Y., Gurnett, D. A., Kurth, W. S., et al. 2014. Properties of dust particles near Saturn inferred from voltage pulses induced by dust impacts on Cassini spacecraft. Journal of Geophysical Research (Space Physics), 119, 6294-6312.Google Scholar
Ye, S. -Y., Gurnett, D. A., and Kurth, W. S. 2016. In-situ measurements of Saturn's dusty rings based on dust impact signals detected by Cassini RPWS. Icarus, 279, 51-61.CrossRefGoogle Scholar
Yeoh, S. K., Chapman, T. A., Goldstein, D. B., Varghese, P. L., and Trafton, L. M. 2015. On understanding the physics of the Enceladus south polar plume via numerical simulation. Icarus, 253, 205–222.CrossRefGoogle Scholar
Zeehandelaar, D. B., and Hamilton, D. P. 2007. A local source for the Pioneer 10 and 11 circumjovian dust detections. Dust in Planetary Systems, 643, 103–106.Google Scholar
Zolotov, M. Y. 2007. An oceanic composition on early and today's Enceladus. GRL, 34, 23203.CrossRefGoogle Scholar
Zook, H. A., and Su, S. -Y. 1982. Dust particles in the Jovian system. Pages 893–894 of: Lunar and Planetary Science Conference. Lunar and Planetary Science Conference, vol. 13.Google Scholar
Zook, H. A., Grün, E., Baguhl, M., et al. 1996. Solar wind magnetic field bending of Jovian dust trajectories. Science, 274, 1501–1503.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×