Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-05T09:24:26.512Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  07 December 2009

Erik A. Rasmussen
Affiliation:
University of Copenhagen
John Turner
Affiliation:
British Antarctic Survey, Cambridge
Get access
Type
Chapter
Information
Polar Lows
Mesoscale Weather Systems in the Polar Regions
, pp. 580 - 604
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aakjær, P. D. (1992). Polar lows affecting Denmark. Tellus 44A, 155–172CrossRefGoogle Scholar
Aarhus, B. and Raustein, E. (1998). Simulation of a polar low development over the Greenland Sea/Norwegian Sea. In Proceedings The Rossby 100 Symposium, 8–12 June 1998, Stockholm, Sweden, pp. 17–19
Adams, N. (1997). Model prediction performance over the Southern Ocean and coastal region around East Antarctica. Aust. Met. Mag. 46, 287–296Google Scholar
Adolphs, U. and Wendler, G. (1995). A pilot study on the interactions between katabatic winds and polynyas at the Adélie Coast, eastern Antarctica. Antarct. Sci. 7, 307–314CrossRefGoogle Scholar
Albright, M. D., Reed, R. J. and Ovens, D. W. (1995). Origin and structure of a numerically simulated polar low over Hudson Bay. Tellus 47A, 834–848CrossRefGoogle Scholar
Allan, T. D. and Guymer, T. H. (1984). SEASAT measurements of wind and waves on selected passes over JASIN. Int. J. Rem. Sens. 5, 379–408CrossRefGoogle Scholar
Allison, I., Tivendale, C. M., Akerman, G. J., Tann, J. M. and Wills, R. H. (1982). Seasonal variations in the surface energy exchange over Antarctic sea ice and coastal waters. Ann. Glaciol. 3, 12–16CrossRefGoogle Scholar
Allison, I., Wendler, G. and Radok, U. (1993). Climatology of the East Antarctic ice sheet (100° E to 140° E) derived from automatic weather stations. J. Geophys. Res. – Atmos. 98, 8815–23CrossRefGoogle Scholar
Alvarez, J. A. (1958). An anomalous July over the southern parts of South America. Notos 7, 3–5Google Scholar
Anderson, R. K., Ashman, J. P., Bittner, F., Farr, G. R., Ferguson, E. W., Oliver, V. J. and Smith, A. H. (1969). Application of meteorological satellite data in analysis and forecasting. ESSA, Washington, DC
Anderssen, E. C. (1965). A study of atmospheric long waves in the Southern Hemisphere. Notos 14, 57–65Google Scholar
Andreas, E. L. (1985). Heat and moisture advection over Antarctic sea ice. Mon. Wea. Rev. 113, 736–7462.0.CO;2>CrossRefGoogle Scholar
Andreas, E. L. and Markshtas, A. P. (1985). Energy exchange over Antarctic sea-ice in the spring. J. Geophys. Res. 90, 7199–212CrossRefGoogle Scholar
Anthes, R. A. (1971). A numerical model of the slowly varying tropical cyclone in isentropic coordinates. Mon. Wea. Rev. 99, 617–6352.3.CO;2>CrossRefGoogle Scholar
Anthes, R. A. (1982). Tropical Cyclones. Their Evolution, Structure and Effects, 19th edition. American Meteorological Society, Boston, 208 ppCrossRef
Anthes, R. A. and Warner, T. T. (1978). Development of hydrodynamic models suitable for air pollution and other mesometeorological studies. Mon. Wea. Rev. 106, 1045–782.0.CO;2>CrossRefGoogle Scholar
Anthes, R. A., Hsie, E.-Y. and Warner, T. T. (1987). Description of the Penn/NCAR Mesoscale Model Version 4 (MM4). Tech. Note No. 282. NCAR, Boulder, CO
Arakawa, A. (2000). Future development of general circulation models. In General Circulation Model Development, ed. D. A. Randall, pp. 721–80. Academic Press, LondonCrossRef
Asai, T. and Miura, Y. (1981). An analytical study of meso-scale vortex-like disturbances observed around Wakes Bay area. J. Met. Soc. Jap. 59, 832–843CrossRefGoogle Scholar
Audunsdóttir, A. (1999). On the formation of deep water during cold air outbreaks. MSc thesis, Dept of Geophysics, University of Copenhagen
Auer, A. H. (1986). An observational study of polar air depressions in the Australian region. In Preprint volume Second International Conference on Southern Hemispheric Meteorology, 1–5 December 1986, pp. 46–9. American Meteorological Society, Boston
Austin, J. M. (1951). Mechanism of pressure change. In Compendium of Meteorology, ed. T. F. Malone, pp. 630–638. American Meteorological Society, BostonCrossRef
Bader, M. J., Forbes, G. S., Grant, J. R., Lilley, R. B. and Waters A. J. (1995). Images in Weather Forecasting: A Practical Guide for Interpreting Satellite and Radar Imagery. Cambridge University Press, Cambridge
Bannon, P. R. (1995). Hydrostatic adjustment: Lamb's problem. J. Atmos. Sci. 52, 1743–522.0.CO;2>CrossRefGoogle Scholar
Bannon, P. R. (1996). Nonlinear hydrostatic adjustment. J. Atmos. Sci. 53, 3606–172.0.CO;2>CrossRefGoogle Scholar
Barlow, L. L., White, J. W. C., Barry, R. G., Roger, J. C. and Grootes, P. M. (1993). The North Atlantic Oscillation signature in deuterium and deuterium excess signals in the Greenland Ice Sheet Project 2 ice core, 1840–1970. Geophys. Res. Lett. 20, 2901–4CrossRefGoogle Scholar
Barnston, A. G. and Livezey, R. E. (1987). Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev. 115, 1083–1262.0.CO;2>CrossRefGoogle Scholar
Barry, R. G. (1970). A framework for climatological research with particular reference to scale concepts. Trans. Inst. Brit. Geogr. 49, 61–70CrossRefGoogle Scholar
Barry, R. G. (1983). Arctic Ocean ice and climate: perspectives on a century of polar research. Ann. Assoc. Amer. Geogr. 73, 485–501CrossRefGoogle Scholar
Barry, R. G. and Chorley, R. J. (1992). Atmosphere, Weather and Climate. Routledge, London
Bell, G. D. and Bosart, L. F. (1989). A 15-year climatology of Northern Hemisphere 500 mb closed cyclone and anticyclone centers. Mon. Wea. Rev. 117, 2142–632.0.CO;2>CrossRefGoogle Scholar
Bergeron, T. (1954). Reviews of tropical hurricanes. Quart. J. Roy. Met. Soc. 80, 131–164CrossRefGoogle Scholar
Betts, A. K. (1982). Saturation point analysis of moist convective overturning. J. Atmos. Sci. 39, 1484–5052.0.CO;2>CrossRefGoogle Scholar
Betts, A. K. (1986). A new convective adjustment scheme. I. Observational and theoretical basis. Quart. J. Roy. Met. Soc. 112, 677–691Google Scholar
Billing, H., Haupt, I. and Tonn, W. (1983). Evolution of a hurricane-like cyclone in the Mediterranean Sea. Beitr. Phys. Atmos. 56, 508–510Google Scholar
Bjerknes, J. (1966). A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus 18, 820–9CrossRefGoogle Scholar
Bjerknes, J. and Solberg, H. (1922). Life cycle of cyclones and the polar front theory of atmospheric circulations. Geophys. Publ. 9, 30–45Google Scholar
Black, R. I. (1982). Beaufort Storm of July, 1982 (unpublished manuscript). Satellite and Beaufort Office, Edmonton, Canada, 18 pp
Bleck, R. (1990). Detection of upper/lower vortex interaction associated with extratropical cyclogenesis. Mon. Wea. Rev. 118, 573–5852.0.CO;2>CrossRefGoogle Scholar
Blier, W. (1996). A numerical modeling investigation of a case of polar airstream cyclogenesis over the Gulf of Alaska. Mon. Wea. Rev. 124, 2703–252.0.CO;2>CrossRefGoogle Scholar
Bluestein, H. B. (1993). Synoptic-dynamic meteorology in midlatitudes (2 vols.). Oxford University Press, Oxford
Blumen, W. (1979). On short-wave baroclinic instability. J. Atmos. Sci. 36, 1925–332.0.CO;2>CrossRefGoogle Scholar
Bond, N. A. and Shapiro, M. A. (1991). Polar lows over the Gulf of Alaska in conditions of reverse shear. Mon. Wea. Rev. 119, 551–5722.0.CO;2>CrossRefGoogle Scholar
Bratseth, A. M. (1985). A note on CISK in polar air masses. Tellus 37A, 403–6CrossRefGoogle Scholar
Bresch, J. F., Reed, R. J. and Albright, M. D. (1997). A polar-low development over the Bering Sea: analysis, numerical simulation, and sensitivity experiments. Mon. Wea. Rev. 125, 3109–302.0.CO;2>CrossRefGoogle Scholar
Bretherton, F. P. (1966). Baroclinic instability and the short wave cut-off in terms of potential vorticity. Quart. J. Roy. Met. Soc. 92, 335–345CrossRefGoogle Scholar
Bromwich, D. H. (1986). Boundary layer studies in Terra Nova Bay, Antarctica. Antarctic Climate Research 1, 9–13Google Scholar
Bromwich, D. H. (1987). A case study of mesoscale cyclogenesis over the southwestern Ross Sea. Ant. J. of the US 22, 254–256Google Scholar
Bromwich, D. H. (1988). Snowfall in high southern latitudes. Rev. Geophys. 26, 149–168CrossRefGoogle Scholar
Bromwich, D. H. (1989). Satellite analysis of Antarctic katabatic wind behaviour. Bull. Amer. Met. Soc. 70, 738–7492.0.CO;2>CrossRefGoogle Scholar
Bromwich, D. H. (1991). Mesoscale cyclogenesis over the southwestern Ross Sea linked to strong katabatic winds. Mon. Wea. Rev. 119, 1736–522.0.CO;2>CrossRefGoogle Scholar
Bromwich, D. H. and Parish, T. R. (1988). Mesoscale cyclone interactions with the surface windfield near Terra Nova Bay, Antarctica. Ant. J. of the US 23, 172–175Google Scholar
Bromwich, D. H., Carrasco, J. F., Liu, Z. and Tzeng, R. Y. (1993). Hemispheric atmospheric variations and oceanographic impacts associated with katabatic surges across the Ross Ice Shelf, Antarctica. J. Geophys. Res. – Atmos. 98, 13045–62CrossRefGoogle Scholar
Bromwich, D. H., Carrasco, J. F. and Turner, J. (1996). A downward developing mesoscale cyclone over the Ross Ice Shelf during winter. Global Atmos. Ocean Sys. 4, 125–147Google Scholar
Bromwich, D. H., Robasky, F. M., Cullather, R. I. and Woert, M. L. (1995). The atmospheric hydrologic cycle over the Southern Ocean and Antarctica from operational numerical analyses. Mon. Wea. Rev. 123, 3518–382.0.CO;2>CrossRefGoogle Scholar
Browning, K. A. (1990). Organization of clouds and precipitation in extratropical cyclones. In Extratropical Cyclones: The Erik Palmén Memorial Volume, ed. C. W. Newton and E. O. Holopainen. pp. 129–53. American Meteorological Society, Boston
Browning, K. A. and Dicks, E. M. (2001). Mesoscale structure of a polar low with strong upper-level forcing. Quart. J. Roy. Met. Soc. 127, 359–375CrossRefGoogle Scholar
Businger, S. (1985). The synoptic climatology of polar-low outbreaks. Tellus 37A, 419–432CrossRefGoogle Scholar
Businger, S. (1987). The synoptic climatology of polar-low outbreaks over the Gulf of Alaska and the Bering Sea. Tellus 39A, 307–325CrossRefGoogle Scholar
Businger, S. and Baik, J. J. (1991). An Arctic hurricane over the Bering Sea. Mon. Wea. Rev. 119, 2293–3222.0.CO;2>CrossRefGoogle Scholar
Businger, S. and Reed, R. J. (1989a). Cyclogenesis in cold air masses. Wea. and Forecasting 2, 133–1562.0.CO;2>CrossRefGoogle Scholar
Businger, S. and Reed, R. J. (1989b). Polar lows. In Polar and Arctic Lows, ed. P. F. Twitchell, E. Rasmussen and K. L. Davidson. pp. 3–45. A Deepak, Hampton, VA
Callaghan, J. and Betts, M. S. (1987). Some cases of westward moving disturbances in the Mawson–Davis area, Antarctica. Aust. Met. Mag. 35, 79–85Google Scholar
Carleton, A. M. (1979). A synoptic climatology of satellite observed extratropical cyclone activity for the Southern Hemisphere winter. Arch. Met. Geophys. Biokl. B 27, 265–279CrossRefGoogle Scholar
Carleton, A. M. (1981a). Climatology of the ‘instant occlusion’ phenomenon for the Southern Hemisphere winter. Mon. Wea. Rev. 109, 177–1812.0.CO;2>CrossRefGoogle Scholar
Carleton, A. M. (1981b). Ice–ocean–atmosphere interactions at high southern latitudes in winter from satellite observations. Aust. Met. Mag. 29, 183–195Google Scholar
Carleton, A. M. (1981c). Monthly variability of satellite-derived cyclonic activity for the Southern Hemisphere winter. J. Clim. 1, 21–38CrossRefGoogle Scholar
Carleton, A. M. (1985a). Satellite climatological aspects of the ‘polar low’ and ‘instant occlusion’. Tellus 37A, 433–450CrossRefGoogle Scholar
Carleton, A. M. (1985b). Synoptic cryosphere–atmosphere interactions in the northern hemisphere from DMSP image analysis. Int. J. Rem. Sens. 6, 239–261CrossRefGoogle Scholar
Carleton, A. M. (1986). Synoptic-dynamic character of ‘bursts’ and ‘breaks’ in the Southwest U. S. summer precipitation singularity. J. Clim. 6, 605–623CrossRefGoogle Scholar
Carleton, A. M. (1988a). Meridional transport of eddy sensible heat in winters marked by extremes of the North Atlantic Oscillation, 1948/49–1979/80. J. Clim. 1, 212–2232.0.CO;2>CrossRefGoogle Scholar
Carleton, A. M. (1988b). Sea ice–atmosphere signal of the Southern Oscillation in the Weddell Sea, Antarctica. J. Clim. 1, 379–3882.0.CO;2>CrossRefGoogle Scholar
Carleton, A. M. (1989). Antarctic sea–ice relationships with indices of the atmospheric circulation of the Southern Hemisphere. Clim. Dyn. 3, 207–220CrossRefGoogle Scholar
Carleton, A. M. (1992). Synoptic interactions between Antarctica and lower latitudes. Aust. Met. Mag. 40, 129–147Google Scholar
Carleton, A. M. (1995). On the interpretation and classification of mesoscale cyclones from satellite infrared imagery. Int. J. Rem. Sens. 16, 2457–85CrossRefGoogle Scholar
Carleton, A. M. (1996). Satellite climatological aspects of cold air mesocyclones in the Arctic and Antarctic. Global Atmos. Ocean Sys. 5, 1–42Google Scholar
Carleton, A. M. and Carpenter, D. A. (1989a). Satellite climatology of ‘polar air’ vortices for the Southern Hemisphere winter. In Polar and Arctic Lows, ed. P. F. Twitchell, E. A. Rasmussen, and K. L. Davidson. pp. 401–13. A Deepak, Hampton, VA
Carleton, A. M. and Carpenter, D. A. (1989b). Intermediate-scale sea ice–atmosphere interactions over high southern latitudes in winter. Geoj. 18, 87–101CrossRefGoogle Scholar
Carleton, A. M. and Carpenter, D. A. (1990). Satellite climatology of ‘polar lows’ and broadscale climatic associations for the southern hemisphere. Int. J. Climatol. 10, 219–246CrossRefGoogle Scholar
Carleton, A. M. and Fitch, M. (1993). Synoptic aspects of Antarctic mesocyclones. J. Geophys. Res. – Atmos. 98, 12997–3018CrossRefGoogle Scholar
Carleton, A. M. and Song, Y. (1997). Synoptic climatology, and intrahemispheric associations, of cold air mesocyclones in the Australasian sector. J. Geophys. Res. – Atmos. 102, 13873–87CrossRefGoogle Scholar
Carleton, A. M. and Song, Y. (2000). Satellite passive sensing of the marine atmosphere associated with cold-air mesoscale cyclones. Professional Geographer (Special Focus Issue on Remote Sensing in Hydroclimatology) 52, 289–306Google Scholar
Carleton, A. M., Carpenter, D. A. and Weser, P. J. (1990). Mechanisms of interannual variability of the Southwest U. S. summer rainfall maximum. J. Clim. 3, 999–10152.0.CO;2>CrossRefGoogle Scholar
Carleton, A. M., John, G. and Welsch, R. (1998). Interannual variations and regionality of Antarctic sea-ice–temperature associations. Ann. Glaciol. 27, 403–8CrossRefGoogle Scholar
Carleton, A. M., McMurdie, L. A., Katsaros, K. B., Zhao, H., Mognard, N. M. and Claud, C. (1995). Satellite-derived features and associated atmospheric environments of Southern Ocean mesocyclone events. Global Atmos. Ocean Sys. 3, 209–248Google Scholar
Carleton, A. M., McMurdie, L. A., Zhao, H., Katsaros, K. B., Mognard, N. and Claud, C. (1993). Satellite microwave sensing of Antarctic ocean mesocyclones. In Proceedings of the Fourth International Conference on Southern Hemisphere Meteorology and Oceanography. March 29–April 2, 1993, Hobart, Australia, pp. 497–8. AMS, Boston
Carlson, T. N. (1991). Mid-latitude Weather Systems. HarperCollins Academic, London
Carrasco, J. F. and Bromwich, D. H. (1991). A case study of katabatic wind-forced mesoscale cyclogenesis near Byrd Glacier. Ant. J. of the US 26, 258–261Google Scholar
Carrasco, J. F. and Bromwich, D. H. (1993). Mesoscale cyclogenesis dynamics over the southwestern Ross Sea, Antarctica. J. Geophys. Res. 98 D7, 12973–95CrossRefGoogle Scholar
Carrasco, J. F. and Bromwich, D. H. (1994). A survey of mesoscale cyclonic activity near McMurdo Station, Antarctica. Ant. J. of the US 29, 298–301Google Scholar
Carrasco, J. F. and Bromwich, D. H. (1995). A case study of a midtropospheric subsynoptic-scale cyclone that developed over the Ross Sea and Ross Ice Shelf of Antarctica. Antarct. Sci. 7, 199–210CrossRefGoogle Scholar
Carrasco, J. F. and Bromwich, D. H. (1996). Mesoscale cyclone activity near Terra Nova Bay and Byrd Glacier, Antarctica during 1991. Global Atmos. Ocean Sys. 5, 43–72Google Scholar
Carrasco, J. F., Bromwich, D. H. and Liu, Z. (1997a). Mesoscale cyclone activity over Antarctica during 1991. 1. Marie Byrd Land. J. Geophys. Res. – Atmos. 102, 13923–37CrossRefGoogle Scholar
Carrasco, J. F., Bromwich, D. H. and Liu, Z. (1997b). Mesoscale cyclone activity over Antarctica during 1991. 2. Near the Antarctic peninsula. J. Geophys. Res. – Atmos. 102, 13939–54CrossRefGoogle Scholar
Carroll, J. J. (1982). Long-term means and short-term variability of the surface energy balance components at the South Pole. J. Geophys. Res. 87, 4277–86CrossRefGoogle Scholar
Cavanie, A. and Gohin, F. (1995). The AMI-Wind scatterometer. Ocean. Apps. Rem. Sens. 1, 457–460Google Scholar
Charney, J. G. (1955). The use of the primitive equations of motions in numerical prediction. Tellus 7, 22–26CrossRefGoogle Scholar
Charney, J. and Eliassen, A. (1964). On the growth of the hurricane depression. J. Atmos. Sci. 21, 68–752.0.CO;2>CrossRefGoogle Scholar
Charnock, H. (1955). Wind stress over a water surface. Quart. J. Roy. Met. Soc. 81, 630–640CrossRefGoogle Scholar
Chen, B., Smith, S. R. and Bromwich, D. H. (1996). Evolution of the tropospheric split jet over the South Pacific Ocean during the 1986–89 ENSO cycle. Mon. Wea. Rev. 124, 1711–312.0.CO;2>CrossRefGoogle Scholar
Chunchuzov, I., Vachon, P. W. and Ramsay, B. (2000). Detection and characterization of mesoscale cyclones in RADARSAT Synthetic Aperture Radar images of the Labrador Sea. Can. J. Rem. Sens. 26, 213–230CrossRefGoogle Scholar
Claud, C., Katsaros, K. B., Mognard, N. M. and Scott, N. A. (1996). Comparative satellite study of mesoscale disturbances in polar regions. Global Atmos. Ocean Sys. 4, 233–273Google Scholar
Claud, C., Katsaros, K. B., Petty, G. W., Chedin, A. and Scott, N. A. (1992). A cold air outbreak over the Norwegian Sea observed with the TIROS-N Operational Vertical Sounder (TOVS) and the Special Sensor Microwave Imager (SSM/I). Tellus 44A, 100–118CrossRefGoogle Scholar
Claud, C., Mognard, N. M., Katsaros, K. B., Chedin, A. and Scott, N. A. (1993). Satellite observations of a polar low over the Norwegian Sea by special sensor microwave imager, Geosat, and TIROS-N operational vertical sounder. J. Geophys. Res. – Oceans 98, 14487–506CrossRefGoogle Scholar
Coughlan, M. J. (1983). A comparative climatology of blocking action in the two hemispheres. Aust. Met. Mag. 31, 3–13Google Scholar
Craig, G. and Cho, H. R. (1989). Baroclinic instability and CISK as the driving mechanism for polar lows and comma clouds. In Polar and Arctic Lows, ed. P. F. Twitchell, E. Rasmussen and K. L. Davidson. pp. 131–40. A Deepak, Hampton, VA
Craig, G. C. and Gray, S. L. (1996). CISK or WISHE as the mechanism for tropical cyclone intensification. J. Atmos. Sci. 53, 3528–402.0.CO;2>CrossRefGoogle Scholar
Cullather, R. I., Bromwich, D. H. and Woert, M. L. (1996). Interannual variations in Antarctic precipitation related to El Niño southern oscillation. J. Geophys. Res. 101, 19109–18CrossRefGoogle Scholar
Dalu, G., Prabhakara, C. and Nuccarione, J. (1993). Optimization of an algorithm for the estimation of rainfall from the SSM/I data. J. Met. Soc. Jap. 71, 419–424CrossRefGoogle Scholar
Danielsen, E. F. (1990). In defense of Ertel's potential vorticity and its general applicability as a meteorological tracer. J. Atmos. Sci. 47, 2013–202.0.CO;2>CrossRefGoogle Scholar
Dannevig, P. (1954). Meteorologi for Flygere [in Norwegian]. Aschehoug, Oslo
Davidova, N. G. (1967). Types of synoptic process and associated wind fields in oceanic regions of the Southern Hemisphere. In Polar Meteorology, WMO Tech. Note 87, Proceedings WMO/SCAR/ICPM Symp. on Polar Meteorology, Geneva, 5–9 Sept. 1966 (WMO-No. 211. TP.11). Secretariat of the WMO, Geneva
Davis, C. A. (1992). A potential-vorticity diagnosis of the importance of initial structure and condensational heating in observed extratropical cyclogenesis. Mon. Wea. Rev. 120, 2409–282.0.CO;2>CrossRefGoogle Scholar
Davis, C. A. and Emanuel, K. A. (1991). Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev. 119, 1929–532.0.CO;2>CrossRefGoogle Scholar
Davis, C. A., Grell, E. D. and Shapiro, M. A. (1996). The balanced dynamical nature of a rapidly intensifying oceanic cyclone. Mon. Wea. Rev. 124, 3–262.0.CO;2>CrossRefGoogle Scholar
Deser, C. and Blackmon, M. L. (1993). Surface climate variations over the north-atlantic ocean during winter – 1900–1989. J. Clim. 6, 1743–532.0.CO;2>CrossRefGoogle Scholar
Dickson, R. R. and Namias, J. (1976). North American influences on the circulation and climate of the North Atlantic sector, Mon. Wea. Rev. 104, 1255–652.0.CO;2>CrossRefGoogle Scholar
Douglas, M. W., Fedor, L. S. and Shapiro, M. A. (1991). Polar low structure over the northern Gulf of Alaska based on research aircraft observations. Mon. Wea. Rev. 119, 32–542.0.CO;2>CrossRefGoogle Scholar
Douglas, M. W., Shapiro, M. A., Fedor, L. S. and Saukkonen, L. (1995). Research aircraft observations of a polar low at the east Greenland ice edge. Mon. Wea. Rev. 123, 5–152.0.CO;2>CrossRefGoogle Scholar
Drewry, D. J. (1983). Antarctica: Glaciological and Geophysical Folio. Scott Polar Research Institute, Cambridge
Dudhia, J. (1993). A nonhydrostatic version of the Penn State–NCAR Mesoscale Model: validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev. 121, 1493–5132.0.CO;2>CrossRefGoogle Scholar
Duncan, C. N. (1977). A numerical investigation of polar lows. Quart. J. Roy. Met. Soc. 103, 255–268CrossRefGoogle Scholar
Duncan, C. N. (1978). Baroclinic instability in a reversed shear flow. Met. Mag. 107, 17–23Google Scholar
Durran, D. R. (1999). Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Springer-Verlag, New York
Dysthe, K. B. and Harbitz, A. (1987). Big waves from polar lows? Tellus 39A, 500–8CrossRefGoogle Scholar
Eady, E. T. (1949). Long waves and cyclone waves. Tellus 1, 33–52CrossRefGoogle Scholar
Edouard, S., Vautard, R. and Brunet, G. (1997). On the maintenance of potential vorticity in isentropic coordinates. Quart. J. Roy. Met. Soc. 123, 2069–94CrossRefGoogle Scholar
Eidsvik, K. J. (1985). Polar low trajectories stochastic model identification, Technical Report No. 15, The Polar Lows Project. Norwegian Meteorological Institute, Oslo
Eliassen, A. (1952). Slow thermally or frictionally controlled meridional circulations in a circular vortex. Astrophysica Norvegica 5, 19–60Google Scholar
Ellett, D. J. (1993). The north-east Atlantic: a fan-assisted storage heater? Weather 48, 118–126CrossRefGoogle Scholar
Emanuel, K. A. (1985). Frontal circulation in the presence of small symmetric stability. J. Atmos. Sci. 42, 1062–712.0.CO;2>CrossRefGoogle Scholar
Emanuel, K. A. (1986a). An air–sea interaction theory for tropical cyclones. Part I: steady-state maintenance. J. Atmos. Sci. 43, 585–6042.0.CO;2>CrossRefGoogle Scholar
Emanuel, K. A. (1986b). A two stage air–sea interaction theory for polar lows. In Preprints, The International Conference on Polar Lows, Oslo, Norway, 20–23 May 1986. pp. 187–200. Norwegian Meteorological Institute, Oslo
Emanuel, K. A. (1988). Observational evidence of slantwise convective adjustment. Mon. Wea. Rev. 116, 1805–162.0.CO;2>CrossRefGoogle Scholar
Emanuel, K. A. (1994). Sea–air heat transfer effects on extratropical cyclones. In The Life Cycles of Extratropical Cyclones Volume III. Proceedings of an International Symposium 27 June–1 July 1994, Bergen, Norway, ed. S. Gronås and M. A. Shapiro. pp. 67–72. American Meteorological Society, Boston
Emanuel, K. A. and Rotunno, R. (1989). Polar lows as arctic hurricanes. Tellus 41A, 1–17CrossRefGoogle Scholar
Emanuel, K. A., Neelin, J. D. and Bretherton, C. S. (1994). On large-scale circulations in convecting atmospheres. Quart. J. Roy. Met. Soc. 120, 1111–43CrossRefGoogle Scholar
Engels, R. and Heinemann, G. (1996). Three-dimensional structures of summertime Antarctic meso-scale cyclones. Part II: Numerical simulations with a limited area model. Global Atmos. Ocean Sys. 4, 181–208Google Scholar
Enomoto, H. and Ohmura, A. (1990). The influence of atmospheric half-yearly cycle on the sea ice extent in the Antarctic. J. Geophys. Res. 95, 9497–511CrossRefGoogle Scholar
Ernst, J. A. and Matson, M. (1983). A Mediterranean tropical storm? Weather 38, 332–337CrossRefGoogle Scholar
Ese, T., Kanestrom, I. and Pedersen, K. (1988). Climatology of polar lows over the Norwegian and Barents Seas. Tellus 40A, 248–255CrossRefGoogle Scholar
Fantini, M. (1990). The influence of heat and moisture fluxes from the ocean on the development of baroclinic waves. J. Atmos. Sci. 47, 840–8552.0.CO;2>CrossRefGoogle Scholar
Farrara, J. D., Ghil, M., Mechoso, C. R. and Mo, K. C. (1989). Empirical orthogonal functions and multiple flow regimes in the Southern Hemisphere winter. J. Atmos. Sci. 46, 3219–232.0.CO;2>CrossRefGoogle Scholar
Farrell, B. (1985). Transient growth of damped baroclinic waves. J. Atmos. Sci. 42, 2718–272.0.CO;2>CrossRefGoogle Scholar
Fett, R. W. (1989a). Navy Tactical Applications Guide. Volume 8, Part 1. Arctic–Greenland/ Norwegian/Barents Seas. Weather Analysis and Forecast Applications. Science and Technology Corporation, Hampton, VA
Fett, R. W. (1989b). Polar low development associated with boundary layer fronts in the Greenland, Norwegian and Barents Seas. In Polar and Arctic Lows, ed. P. F. Twitchell, E. Rasmussen, and K. L. Davidson. pp. 313–22. A Deepak, Hampton, VA
Fett, R. W. (1992). Navy Tactical Applications Guide. Volume 8, Part 2. Arctic–East Siberian/ Chukchi/Beaufort Seas. Weather Analysis and Forecast Applications. Naval Research Laboratory, Monterey, CA
Fett, R. W., Englebretson, R. E. and Perryman, D. C. (1993). Forecasters Handbook for the Bering Sea, Aleutian Islands and Gulf of Alaska. Naval Research Laboratory, Monterey, CA
Fitch, M. and Carleton, A. M. (1992). Antarctic mesoscale regimes from satellite and conventional data. Tellus 44A, 180–196CrossRefGoogle Scholar
Forbes, G. S. and Lottes, W. D. (1985). Classification of mesoscale vortices in polar air streams and the influence of the large-scale environment on their evolutions. Tellus 37A, 132–155CrossRefGoogle Scholar
Forbes, G. S. and Merrit, J. H. (1984). Mesoscale vortices over the Great Lakes in wintertime. Mon. Wea. Rev. 112, 377–3812.0.CO;2>CrossRefGoogle Scholar
Fujiyoshi, Y., Kodama, Y., Tuboki, K., Nishimura, K. and Ono, N. (1996). Structure of cold air during the development of a broad cloud band and a meso-α-scale vortex: simultaneous two-point radiosonde observations. J. Met. Soc. Jap. 74, 281–297CrossRefGoogle Scholar
Fujiwhara, S. (1923). On the growth and decay of vortical systems. Quart. J. Roy. Met. Soc. 49, 287–293Google Scholar
Fujiwhara, S. (1931). Short note on the behaviour of two vortices. Proc. Phys. Math. Soc. Japan Ser. 3, 13, 106–110Google Scholar
Gallée, H. (1995). Simulation of the mesocyclonic activity in the Ross Sea, Antarctica. Mon. Wea. Rev. 123, 2051–692.0.CO;2>CrossRefGoogle Scholar
Gallée, H. (1996). Mesoscale atmospheric circulations over the southwestern Ross Sea sector, Antarctica. J. Appl. Met. 35, 1129–412.0.CO;2>CrossRefGoogle Scholar
Gallée, H. and Schayes, G. (1994). Development of a 3-dimensional meso-γ primitive equation model – katabatic winds simulation in the Area of Terra Nova Bay, Antarctica. Mon. Wea. Rev. 122, 671–6852.0.CO;2>CrossRefGoogle Scholar
Gill, A. E. (1982). Atmosphere and Ocean Dynamics. Academic Press, London
Giovinetto, M. B., Yamazaki, K., Wendler, G. and Bromwich, D. H. (1997). Atmospheric net transport of water vapor and latent heat across 60°S. J. Geophys. Res. 102, 11171–79CrossRefGoogle Scholar
Gloersen, P. (1995). Modulation of hemispheric sea-ice cover by ENSO events. Nature 373, 503–6CrossRefGoogle Scholar
Goodberlet, M. A., Swift, C. T. and Wilkerson, J. C. (1989). Remote sensing of ocean surface winds with the Special Sensor Microwave/Imager. J. Geophys. Res. 94, 14547–55CrossRefGoogle Scholar
Gray, W. M., Scheaffer, J. D. and Landsea, C. W. (1997). Climate trends associated with multi-decadal variability of intense Atlantic hurricane activity. In Hurricanes, Climate Changes and Socioeconomic Impacts: A Current Perspective, ed. H. Diaz and R. S. Pulwarty. pp. 15–53. Springer-Verlag, New York
Grell, G. A., Dudhia, J. and Stauffer, D. R. (1994). A description of the fifth-generation Penn State/NCAR mesoscale model (MM5). NCAR Technical Note, NCAR/TN-398 + STR, Boulder, CO. 138 pp
Grønås, S. (1995). The seclusion intensification of the New Year's Day storm, Tellus 47A, 733–746CrossRefGoogle Scholar
Grønås, S. and Hellevik, O. E. (1982). A limited area prediction model at the Norwegian Meteorological Institute. Tech. Rep. No. 61. Norwegian Meteorological Institute, Oslo
Grønås, S. and Kvamstø, N. G. (1994). Synoptic conditions for arctic front polar lows. In Proceedings of the International Conference on the Life Cycles of Extratropical Cyclones. Vol III. 27 June to 1 July 1994, Bergen, Norway, 3rd edition, pp. 89–95
Grønås, S. and Kvamstø, N. G. (1995). Numerical simulations of the synoptic conditions and development of Arctic outbreak polar lows. Tellus 47A, 797–814CrossRefGoogle Scholar
Grønås, S., Foss, A. and Lystad, M. (1987a). Numerical simulations of polar lows in the Norwegian Sea. Tellus 39A, 334–354CrossRefGoogle Scholar
Grønås, S., Foss, A. and Lystad, M. (1987b). The Norwegian mesoscale NWP system. Proceedings of the Symposium on Mesoscale Analysis and Forecasting, Vancouver, Canada. ESA SP-282
Guest, P. S., Davidson, K. L., Overland, J. E. and Frederickson, P. A. (1995). Atmosphere–ocean interactions in the marginal ice zones of the Nordic seas. Arctic Oceanography: Marginal Ice Zones and Continental Shelves. Coastal and Estuarine Studies 49, 51–95Google Scholar
Häkkinen, S. (1995). Simulated interannual variability of the Greenland Sea deep water formation and its connection to surface forcing. J. Geophys. Res. 100, 4761–70CrossRefGoogle Scholar
Hanley, D. and Richards, W. G. (1991). Polar Lows in Canadian Waters 1977–1989. Report: MAES 2-91. Scientific Services Division, Atlantic Region, Atmospheric Environment Service, Canada
Harangozo, S. A. (1997). Atmospheric meridional circulation impacts on contrasting winter sea ice extent in two years in the Pacific sector of the Southern Ocean. Tellus 49, 388–400CrossRefGoogle Scholar
Harley, D. G. (1960). Frontal contour analysis of a ‘polar’ low. Met. Mag. 89, 141–7Google Scholar
Harold, J. M. (1997). Characteristics of polar mesocyclones over the north-east Atlantic region. PhD thesis, University of East Anglia, 249pp
Harold, J. M., Bigg, G. R. and Turner, J. (1999a). Mesocyclone activity over the North-East Atlantic. Part 1: Vortex distribution and variability. Int. J. Climatol. 19, 1187–2043.0.CO;2-Q>CrossRefGoogle Scholar
Harold, J. M., Bigg, G. R. and Turner, J. (1999b). Mesocyclone activity over the Northeast Atlantic. Part 2: An investigation of causal mechanisms. Int. J. Climatol. 19, 1283–993.0.CO;2-T>CrossRefGoogle Scholar
Harrold, T. W. and Browning, K. A. (1969). The polar low as a baroclinic disturbance. Quart. J. Roy. Met. Soc. 95, 710–723CrossRefGoogle Scholar
Hattle, J. B. (1968). Polar fronts of the Southern Hemisphere. Notos 17, 15–22Google Scholar
Haugen, J. E. (1986). Numerical simulations with an idealized model. In Proceedings of the International Conference on Polar Lows, pp. 151–60. Norwegian Meteorological Institute, Oslo
Haynes, P. H. and McIntyre, M. E. (1987). On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci. 44, 828–8412.0.CO;2>CrossRefGoogle Scholar
Haynes, P. H. and McIntyre, M. E. (1990). On the conservation and impermeability theorems for potential vorticity. J. Atmos. Sci. 47, 2021–312.0.CO;2>CrossRefGoogle Scholar
Heinemann, G. (1990). Mesoscale vortices in the Weddell Sea region (Antarctica). Mon. Wea. Rev. 118, 779–7932.0.CO;2>CrossRefGoogle Scholar
Heinemann, G. (1996a). On the development of wintertime meso-scale cyclones near the sea ice front in the Arctic and Antarctic. Global Atmos. Ocean Sys. 4, 89–123Google Scholar
Heinemann, G. (1996b). Three-dimensional structures of summertime Antarctic meso-scale cyclones: Part I: Observational studies with aircraft, satellite and conventional data. Global Atmos. Ocean Sys. 4, 149–180Google Scholar
Heinemann, G. (1996c). A wintertime polar low over the eastern Weddell Sea (Antarctica): a study with AVHRR, TOVS, SSM/I and conventional data. Met. Atmos. Phys. 58, 83–102CrossRefGoogle Scholar
Heinemann, G. (1997). Idealized simulations of the Antarctic katabatic wind system with a three-dimensional mesoscale model. J. Geophys. Res. – Atmos. 102, 13825–34CrossRefGoogle Scholar
Heinemann, G. (1998). A mesoscale model-based study of the dynamics of a wintertime polar low in the Weddell Sea region of the Antarctic during the Winter Weddell Sea Program field phase 1986. J. Geophys. Res. 103, 5983–6000CrossRefGoogle Scholar
Heinemann, G. and Claud, C. (1997). Report of a workshop on ‘Theoretical and observational studies of polar lows’ of the European Geophysical Society Polar Lows Working Group. Bull. Amer. Met. Soc. 78, 2643–58CrossRefGoogle Scholar
Heinemann, G. and Rose, L. (1990). Surface energy balance parameterizations of boundary-layer heights and the application of resistance laws near an Antarctic ice shelf front. Bound.-Layer Meteorol. 51, 123–158CrossRefGoogle Scholar
Herman, Y. (1989). The Arctic Seas. Climatology, Oceanography, Geology and Biology. Van Nostrand Reinhold, New York
Hewson, T. D., Craig, G. C. and Claud, C. (2000). Evolution and mesoscale structure of a polar low outbreak. Quart. J. Roy. Met. Soc. 126, 1031–63CrossRefGoogle Scholar
Heygster, G., Burns, B., Hunewinkel, T., Künzi, K., Meyer-Lerbs, L., Schottmüller, H., Thomas, C., Lemke, P., Viehoff, T., Turner, J., Harangozo, S., Lachlan-Cope, T. and Pedersen, L. (1996). PELICON – Project for Estimation of Long-term variability in Ice CON centration. Final report to the EC. University of Bremen, Bremen
Hoem, V. (1985). Polar low case studies II, December 1982–December 1985. Technical Report No. 6, Polar Lows Project. Norwegian Meteorological Institute, Oslo
Hogan, A. W. (1997). A synthesis of warm air advection to the south polar plateau. J. Geophys. Res. 102, 14009–20CrossRefGoogle Scholar
Hollinger, J., Lo, R., Poe, G., Savage, R. and Pierce, J. (1987). Special sensor microwave/imager user's guide. Naval Research Laboratory, Washington, DC
Holton, J. R. (1979). An Introduction to Dynamic Meteorology, 2nd edition. Academic Press, New York
Holton, J. R. (1992). An Introduction to Dynamic Meteorology, 3rd edition. Academic Press, New York
Horel, J. D. and Wallace, J. M. (1981). Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev. 109, 813–8292.0.CO;2>CrossRefGoogle Scholar
Hoskins, B. J., McIntyre, M. E. and Robertson, A. W. (1985). On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Met. Soc. 111, 877–946CrossRefGoogle Scholar
Houmb, O. G. and Lönseth, L. (1986). Ocean waves under polar lows. In Polar lows in the Norwegian, Greenland and Barents Sea. Final report of the Polar Lows Project, pp. 173–96. Norwegian Meteorological Institute, Oslo
Houmb, O. G., Lönseth, L., Schjölberg, P. and Vollan, B. (1986). Environmental conditions under polar lows. In Proceedings The International Conference on Polar Lows, Oslo, Norway, pp. 343–57
Howard, D. A. (1983). An analysis of the variability of cyclones around Antarctica and their relationship to sea ice extent. Ann. Assoc. Am. Geogr. 73, 519–537CrossRefGoogle Scholar
Hurrell, J. W. (1995). Decadal trends in the North-Atlantic oscillation – regional temperatures and precipitation. Science 269, 676–679CrossRefGoogle ScholarPubMed
Hurrell, J. W. (1996). Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere temperature. Geophys. Res. Lett. 23, 665–668CrossRefGoogle Scholar
Hurrell, J. W. and Loon, H. (1994). A modulation of the atmospheric annual cycle in the Southern Hemisphere. Tellus 46A, 325–338CrossRefGoogle Scholar
Hurrell, J. W. and Loon, H. (1997). Decadal variations in climate associated with the North Atlantic Oscillation. Clim. Change 36, 301–326CrossRefGoogle Scholar
Hurrell, J. W., Kushnir, Y. and Visbeck, M. (2001). The North Atlantic Oscillation. Science 291, 603–5CrossRefGoogle ScholarPubMed
Jacobs, S. S. and Comiso, J. C. (1997). Climate variability in the Amundsen and Bellingshausen Seas. J. Clim. 10, 697–7092.0.CO;2>CrossRefGoogle Scholar
James, I. N. (1988). On the forcing of planetary scale Rossby waves by Antarctica. Quart. J. Roy. Met. Soc. 114, 619–637CrossRefGoogle Scholar
James, I. N. (1989). The Antarctic drainage flow: implications for hemispheric flow on the southern hemisphere. Antarctic Sci. 1, 279–290CrossRefGoogle Scholar
Jones, D. A. and Simmonds, I. (1993). A climatology of Southern Hemisphere extratropical cyclones. Clim. Dyn. 9, 131–145CrossRefGoogle Scholar
Katsaros, K. B., Bhatti, I., McMurdie, L. A. and Petty, G. W. (1989). Identification of atmospheric fronts over the ocean with microwave measurements of water vapor and rain. Wea. and Forecasting 4, 449–460Google Scholar
Kellogg, W. W. and Twitchell, P. F. (1986). Summary of the workshop on Arctic lows, 9–10 May 1985, Boulder, Colorado. Bull. Amer. Met. Soc. 67, 186–193Google Scholar
Kibe, S. (1988). Small scale low in the vicinity of the west coast of Hokkaido Island [in Japanese]. Tenki 35, 146–151Google Scholar
Kidson, J. W. (1988). Interannual variations in the Southern Hemisphere circulation. J. Clim. 1, 1177–982.0.CO;2>CrossRefGoogle Scholar
Kidson, J. W. (1991). Intraseasonal variations in the Southern Hemisphere circulation. J. Clim. 4, 939–9532.0.CO;2>CrossRefGoogle Scholar
King, J. C. (1994). Recent climate variability in the vicinity of the Antarctic Peninsula. Int. J. Climatol. 14, 357–369CrossRefGoogle Scholar
Klein, T. (1996). Idealized simulations of mesocyclonic activity in the eastern Weddell Sea region. Extended abstracts, workshop on Theoretical and observational studies of polar lows, St Petersburg, 23–26 September 1996. Meteorologisches Institut der Universität Bonn, pp. 12–16
Klein, T. and Heinemann, G. (2001). On the forcing mechanisms of mesocyclones in the eastern Weddell Sea region: process studies using a mesoscale numerical model. Meteorol. Zeitschr. 10, 113–122CrossRefGoogle Scholar
Kleinschmidt, E. (1951). Principles of the theory of tropical cyclones. Arch. Met. Geophys. Biokl. B 4a, 53–72CrossRefGoogle Scholar
Kottmeier, C. and Hartig, R. (1990). Winter observations of the atmosphere over Antarctic sea ice. J. Geophys. Res. 95, 16551–60CrossRefGoogle Scholar
Krauss, W. (1986). The North Atlantic current. J. Geophys. Res. 91, 5061–74CrossRefGoogle Scholar
Kuo, H. L. (1965). On the formation and intensification of tropical cyclones through latent heat release by cumulus convection. J. Atmos. Sci. 22, 40–632.0.CO;2>CrossRefGoogle Scholar
Kuroda, Y. (1992). The convergence cloud band and the shipwreck in the Japan Sea [in Japanese]. Umi to Sora 67, 261–279Google Scholar
Kushnir, Y., Cardone, V. J., Greenwood, J. G. and Crane, M. A. (1997). The recent increase in North Atlantic wave heights. J. Clim. 10, 2107–132.0.CO;2>CrossRefGoogle Scholar
Lamb, H. (1908). On the theory of waves propagating vertically in the atmosphere. Proc. London Math. Soc. 84, 551–572CrossRefGoogle Scholar
Lamb, H. (1932). Hydrodynamics (6th Edition 1945). Dover, New York
Lamb, P. J. and Peppler, R. A. (1987). North Atlantic Oscillation: concept and an application. Bull. Amer. Met. Soc. 68, 1218–252.0.CO;2>CrossRefGoogle Scholar
Large, W. G. and Loon, H. (1989). Large-scale low frequency variability of the 1979 FGGE surface buoy drifts and winds over the Southern Hemisphere. J. Phys. Ocean. 19, 216–2322.0.CO;2>CrossRefGoogle Scholar
LeMarshall, J. R., Kelly, G. A. and Karoly, D. J. (1985). An atmospheric climatology of the Southern Hemisphere based on the ten years of daily numerical analyses (1972–1982): I. Overview. Aust. Met. Mag. 33, 65–85Google Scholar
Lieder, M. and Heinemann, G. (1998). Antarctic mesocyclone events over the southern Pacific during FROST SOP1 and SOP3: A meso-scale analysis using AVHRR, SSM/I, ERS-Scatterometer and numerical model data. In Proceedings of The 1998 Meteorological Satellite Data Users' Conference, Paris, pp. 317–18
Lieder, M. and Heinemann, G. (1999). A summertime Antarctic mesocyclone event over the Southern Pacific during FROST SOP3: a mesoscale analysis using AVHRR, SSM/I, ERS, and numerical model data. Wea. and Forecasting 14, 893–9082.0.CO;2>CrossRefGoogle Scholar
Lindzen, S., Lorenz, E. N. and Platzman, G. W. (1990). The Atmosphere – A Challenge. The Science of Jule Gregory Charney. American Meteorological Society, Boston
Lyall, I. T. (1972). The polar low over Britain. Weather 27, 378–390CrossRefGoogle Scholar
Lyons, S. W. (1983). Characteristics of intense Antarctic depressions near the Drake Passage. In Preprints, First International Conference Southern Hemisphere Meteorology, 31 July-6 August 1983, pp. 238–40. American Meteorological Society. Boston
Lystad, M. (1986). Polar lows in the Norwegian, Greenland and Barents Seas. Final report, Polar Lows Project. Norwegian Meteorological Institute, Oslo
Lystad, M., Hoem, V. and Rabbe, A. (1986). Case studies. In Polar lows in the Norwegian, Greenland and Barents Sea. Final Report, Polar Lows Project, ed. M. Lystad, pp. 63–109. Norwegian Meteorological Institute, Oslo
Mailhot, J., Hanley, D., Bilodeau, B. and Hertzman, O. (1996). A numerical case study of a polar low in the Labrador Sea. Tellus 48A, 383–402CrossRefGoogle Scholar
Mak, M. (1982). On moist quasi-geostrophic baroclinic instability. J. Atmos. Sci. 39, 2028–372.0.CO;2>CrossRefGoogle Scholar
Mansfield, D. A. (1974). Polar lows: the development of baroclinic disturbances in cold air outbreaks. Quart. J. Roy. Met. Soc. 100, 541–554CrossRefGoogle Scholar
Mansfield, D. A. (1994), The use of potential vorticity in forecasting cyclones: operational aspects. In The Life Cycles of Extratropical Cyclones. Volume 3. Proceedings of an International Symposium, 27 June–1 July 1994, Bergen, Norway, ed. S. Grønås and M. A. Shapiro, pp. 326–31. American Meteorological Society, Boston
Mapes, B. E. (1997). Equilibrium vs. activation control of large-scale variations of tropical deep convection. In The Physics and Parameterization of Moist Convection. NATO-ASI Series C, vol. 505, ed. R. K. Smith, pp. 321–58. Kluwer Academic Publishers, Amsterdam
Marshall, G. J. and King, J. C. (1998). Southern Hemisphere circulation anomalies associated with extreme Antarctic Peninsula winter temperatures. Geophys. Res. Lett. 25, 2437–40CrossRefGoogle Scholar
Marshall, G. J. and Turner, J. (1997a). Surface wind fields of Antarctic mesocyclones derived from ERS-1 scatterometer data. J. Geophys. Res. 102, 13907–21CrossRefGoogle Scholar
Marshall, G. J. and Turner, J. (1997b). Katabatic wind propagation over the western Ross Sea observed using ERS-1 scatterometer data. Antarct. Sci. 9, 221–6CrossRefGoogle Scholar
Martin, D. W. (1968). Satellite studies of cyclonic developments over the Southern Ocean, Tech. Rept. No. 9. International Antarctic Meteorological Research Centre, Bureau of Meteorology, Melbourne
Mayes, P. R. (1985). Secular variations in cyclone frequencies near the Drake Passage, southwest Atlantic. J. Geophys. Res. 90, 5829–39CrossRefGoogle Scholar
McMurdie, L. A. and Katsaros, K. B. (1991). Satellite-derived integrated water-vapor distribution in oceanic midlatitude storms: variation with region and season. Mon. Wea. Rev. 119, 589–6052.0.CO;2>CrossRefGoogle Scholar
McMurdie, L. A., Claud, C. and Atakturk, S. (1997). Satellite-derived atmospheric characteristics of spiral and comma-shaped southern hemisphere mesocyclones. J. Geophys. Res. – Atmos. 102, 13889–905CrossRefGoogle Scholar
Meehl, G. A. and Loon, H. (1979). The seasaw in winter temperatures between Greenland and northern Europe. Part III: Teleconnections with lower latitudes. Mon. Wea. Rev. 107, 1095–1062.0.CO;2>CrossRefGoogle Scholar
Melander, M. V., McWilliams, J. C. and Zabusky, N. J. (1987). Axisymmetrization and vorticity-gradient intensification of an isolated two-dimensional vortex through filamentation. J. Fluid Mech. 178, 137–159CrossRefGoogle Scholar
Meteorological Office (1962). A Course in Elementary Meteorology. HMSO, London
Meteorological Office (1964). The Handbook of Weather Forecasting. Meteorological Office, Bracknell, UK
Meteorological Office (1972). The Meteorological Glossary. Meteorological Office, Bracknell, UK
Midtbø, K. H. (1986). Polar low forecasting. In Proceedings of the International Conference on Polar Lows, Oslo 1986, pp. 257–71. Norwegian Meteorological Institute, Oslo
Midtbø, K. H., Naustvik, M., Hoem, V. and Smits, J. C. (1986). Polar Low Forecasting. Part 1: Methods and Evaluation. Technical Report 19, Polar Lows Project. Norwegian Meteorological Institute, Oslo
Miner, T., Sousounis, P. J., Wallman, J. and Mann, G. (2000). Hurricane Huron. Bull. Amer. Met. Soc. 81, 223–2362.3.CO;2>CrossRefGoogle Scholar
Mitchell, H. L., Charett, C., Chouinard, C. and Brasnett, B. (1990). Revised interpolation statistics for the Canadian data assimilation procedure: their derivation and application. Mon. Wea. Rev. 118, 1591–6142.0.CO;2>CrossRefGoogle Scholar
Miyazawa, S. (1967). On the vortical mesoscale disturbances observed during the period of heavy snow or rain in the Hokuriku districts. J. Met. Soc. Jap. 45, 166–176CrossRefGoogle Scholar
Mo, K. C. and Ghil, M. (1987). Statistics and dynamics of persistent anomalies. J. Atmos. Sci. 44, 877–9012.0.CO;2>CrossRefGoogle Scholar
Mo, K. C. and White, G. H. (1985). Teleconnections in the Southern Hemisphere, Mon. Wea. Rev. 113, 22–372.0.CO;2>CrossRefGoogle Scholar
Mo, K. C. and Loon, H. (1984). Some aspects of the interannual variation of mean monthly sea level pressure on the Southern Hemisphere. J. Geophys. Res. 89, 9541–6CrossRefGoogle Scholar
Möller, J. D. and Montgomery, M. T. (2000). Tropical cyclone evolution via potential vorticity anomalies in a three dimensional balance model. J. Atmos. Sci. 57, 3366–872.0.CO;2>CrossRefGoogle Scholar
Monk, G. A., Browning, K. A. and Jonas, P. R. (1984). Examples of the operational utility of radar observations of cold air vortices. In Proceedings of the International Conference on Polar Lows, Oslo, Norway 20–23 May 1986
Montgomery, M. T. and Farrell, B. F. (1992). Polar low dynamics. J. Atmos. Sci. 49, 2484–5052.0.CO;2>CrossRefGoogle Scholar
Montgomery, M. T. and Enagonio, J. (1998). Tropical cyclogenesis via convectively forced vortex Rossby waves in a three-dimensional quasi-geostrophic model. J. Atmos. Sci. 55, 3176–2072.0.CO;2>CrossRefGoogle Scholar
Moore, G. W. and Peltier, W. R. (1987). Cyclogenesis in frontal zones. J. Atmos. Sci. 44, 384–4092.0.CO;2>CrossRefGoogle Scholar
Moore, G. W. K. and Peltier, W. R. (1989). On the development of polar low wavetrains. In Polar and Arctic Lows, ed. P. F. Twitchell, E. Rasmussen and K. L. Davidson, pp. 141-53. A Deepak, Hampton, VA
Moore, G. W., Reader, M. C., York, J. and Sathiyamoorthy, S. (1996). Polar lows in the Labrador Sea – a case study. Tellus 48A, 17–40CrossRefGoogle Scholar
Moore, G. W. K. and Vachon, P. W. (2002). A polar low over the Labrador Sea: Interactions with topography and an upper level potential vorticity anomaly, and an observation by RADARSAT-1 SAR. Geophys. Res. Lett. 10.1029/2001 GL014007CrossRef
Moses, T., Kiladis, G. N., Diaz, H. and Barry, R. G. (1987). Characteristics and frequency of reversals in mean sea level pressure in the North Atlantic sector and their relationship to long-term temperature trends. J. Clim. 7, 13–30CrossRefGoogle Scholar
Motoki, T. (1974). A small cyclonic echo pattern formed in the Ishikari Plain [in Japanese]. Tenki 21, 245–250Google Scholar
Mullen, S. L. (1979). An investigation of small synoptic cyclones in polar air streams. Mon. Wea. Rev. 107, 1636–472.0.CO;2>CrossRefGoogle Scholar
Mullen, S. L. (1982). Cyclone development in the polar airstreams over the wintertime continent. Mon. Wea. Rev. 110, 1664–762.0.CO;2>CrossRefGoogle Scholar
Mullen, S. L. (1983). Explosive cyclogenesis associated with cyclones in polar air streams. Mon. Wea. Rev. 111, 1537–532.0.CO;2>CrossRefGoogle Scholar
Münzenberg-St Denis, A. (1994). Quasilineare instabilitätsanalyse und ihre Anwendung auf die strukturaufklärung von mesozyklonen im östlichen Weddellmeergebiet. PhD thesis, University of Bonn, 131pp
Denis, Münzenberg-St A. and Schilling, H. D. (1996). Dynamical features of mesocyclones in the East Weddell Sea region, an instability analysis. Global Atmos. Ocean Sys. 4, 209–231Google Scholar
Nagata, M. (1987). On the structure of a convergent cloud band over the Japan Sea in winter; a prediction experiment. J. Met. Soc. Jap. 65, 871–883CrossRefGoogle Scholar
Nagata, M. (1992). Modeling case study of the Japan Sea convergent cloud band in a varying large-scale environment; evolution and upscale effect, J. Met. Soc. Jap. 70, 649–671CrossRefGoogle Scholar
Nagata, M. (1993). Meso-α-scale vortices developing along the Japan Sea polar airmass convergence zone cloud band: numerical simulation. J. Met. Soc. Jap. 71, 43–57CrossRefGoogle Scholar
Nakamura, N. and Oort, A. H. (1988). Atmospheric heat budgets of the polar regions. J. Geophys. Res. 93, 9510–24CrossRefGoogle Scholar
Nielsen, N. W. (1997). An early-autumn polar low formation over the Norwegian Sea. J. Geophys. Res. – Atmos. 102, 13955–73CrossRefGoogle Scholar
Ninomiya, K. (1976). Wind profile and the kinetic energy budget in the mixed layer of polar air-mass transformed over Kuroshio region. J. Met. Soc. Jap. 54, 361–9CrossRefGoogle Scholar
Ninomiya, K. (1989). Polar/comma-cloud lows over the Japan Sea and the northwestern Pacific in winter. J. Met. Soc. Jap. 67, 83–97CrossRefGoogle Scholar
Ninomiya, K. (1991). Polar low development over the east coast of the Asian Continent on 9–11 December 1986. J. Met. Soc. Jap. 69, 669–685CrossRefGoogle Scholar
Ninomiya, K. (1994). A meso-scale low family formed over the northeastern Japan Sea in the northwestern part of a parent polar low. J. Met. Soc. Jap. 72, 589–603CrossRefGoogle Scholar
Ninomiya, K. and Hoshino, K. (1990). Evolution process and multi-scale structure of a polar low developed over the Japan Sea on 11–12 December 1985. Part II. Meso-β-scale low in meso-α-scale polar low. J. Met. Soc. Jap. 68, 306–318Google Scholar
Ninomiya, K., Fujimori, J. and Akiyama, T. (1996). Multi-scale features of the cold air outbreak over the Japan Sea and the northwestern Pacific. J. Met. Soc. Jap. 74, 745–761CrossRefGoogle Scholar
Ninomiya, K., Hoshino, K. and Kurihara, K. (1990). Evolution process and multi-scale structure of a polar low developed over the Japan Sea on 11–12 December 1989. Part I: Evolution process and meso-α-scale structure. J. Met. Soc. Jap. 68, 293–306CrossRefGoogle Scholar
Ninomiya, K., Wakahara, K. and Okubo, H. (1993). Meso-a-scale low development over the northeastern Japan Sea under the influence of a parent large-scale low and a cold vortex aloft. J. Met. Soc. Jap. 71, 73–91CrossRefGoogle Scholar
Nordeng, T. E. (1986). Parameterization of physical processes in a three dimensional numerical weather prediction model. Technical Report No. 65. The Norwegian Meteorological Institute, Oslo
Nordeng, T. E. (1987). The effect of vertical and slantwise convection on the simulation of polar lows. Tellus 39A, 354–376CrossRefGoogle Scholar
Nordeng, T. E. (1990). A model-based diagnostic study of the development and maintenance of two polar lows. Tellus 42A, 92–108CrossRefGoogle Scholar
Nordeng, T. E. and Rasmussen, E. A. (1992). A most beautiful polar low – a case study of a polar low development in the Bear Island region. Tellus 44A, 81–99CrossRefGoogle Scholar
Nordeng, T. E., Foss, A., Grønås, S., Lystad, M. and Midtbø, K. H. (1989). On the role of resolution and physical parameterization for numerical simulations of polar lows. In Polar and Arctic Lows, ed. P. F. Twitchell, E. Rasmussen and K. L. Davidson. pp. 217–32. A Deepak, Hampton, VA
O'Connor, W. P., Bromwich, D. H. and. Carrasco, J. F. (1994). Cyclonically forced barrier winds along the Transantarctic Mountains near Ross Island. Mon. Wea. Rev. 122, 137–1502.0.CO;2>CrossRefGoogle Scholar
Offiler, D. (1994). The Calibration of ERS-1 Satellite Scatterometer Winds. J. Atmos. Ocean. Tech. 11, 1002–172.0.CO;2>CrossRefGoogle Scholar
Ogura, Y. (1964). Frictionally controlled, thermally driven circulation in a circular vortex with application to tropical cyclones. J. Atmos. Sci. 21, 610–6212.0.CO;2>CrossRefGoogle Scholar
Økland, H. (1977). On the intensification of small-scale cyclones formed in very cold air masses heated over the ocean. Institute Report Series No. 26. Institutt for Geofysikk, Universitet, Oslo
Økland, H. (1983). Modelling the height, temperature and relative humidity of a well-mixed planetary boundary layer over a water surface. Bound.-Layer Meteorol. 25, 121–141CrossRefGoogle Scholar
Økland, H. (1987). Heating by organized convection as a source of polar low intensification. Tellus 39A, 397–408CrossRefGoogle Scholar
Økland, H. (1989). On the genesis of polar lows. In Polar and Arctic Lows, ed. P. F. Twitchell, E. Rasmussen and K. L. Davidson. pp. 179–90. A Deepak, Hampton, VA
Økland, H. and Schyberg, H. (1987). On the contrasting influence of organized moist convection and surface heat on a barotropic vortex. Tellus 39A, 385–390CrossRefGoogle Scholar
Ooyama, K. (1964). A dynamical model for the study of tropical cyclone development. Geofis. Intern. 4, 187–198Google Scholar
Ooyama, K. V. (1969). Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci. 26, 3–402.0.CO;2>CrossRefGoogle Scholar
Orlanski, I. (1975). A rational subdivision of scales for atmospheric processes. Bull. Amer. Met. Soc. 56, 527–530Google Scholar
Orvig, S. (1970). Climates of the Polar Regions, World Survey of Climatology, Vol. 14. Elsevier, Amsterdam
Palmén, E. and Newton, C. W. (1969). Atmospheric Circulation Systems. Academic Press, New York
Parish, T. R. (1982). Surface airflow over East Antarctica. Mon. Wea. Rev. 110, 84–902.0.CO;2>CrossRefGoogle Scholar
Parish, T. R. (1992). On the interaction between Antarctic katabatic winds and tropospheric motions in the high southern latitudes. Aust. Met. Mag. 40, 149–167Google Scholar
Parish, T. R. and Bromwich, D. H. (1986). The inversion wind pattern over West Antarctica. Mon. Wea. Rev. 114, 849–8602.0.CO;2>CrossRefGoogle Scholar
Parish, T. R. and Bromwich, D. H. (1987). The surface windfield over the Antarctic ice sheets. Nature 328, 51–54CrossRefGoogle Scholar
Parish, T. R. and Bromwich, D. H. (1998). A case study of Antarctic katabatic wind interaction with large-scale forcing. Mon. Wea. Rev. 126, 199–2092.0.CO;2>CrossRefGoogle Scholar
Parker, M. N. (1989). Polar lows in the Beaufort Sea. In Polar and Arctic Lows, ed. P. F. Twitchell, E. Rasmussen and K. L. Davidson. pp. 323–30. A Deepak, Hampton, VA
Parker, N. (1991). Polar Low Handbook for Canadian Meteorologists. Environment Canada, Edmonton
Parker, N. (1997). Cold air vortices and polar low handbook for Canadian meteorologists. Environment Canada, Edmonton
Pearson, G. M. and Strogaitis. G. (1988). Satellite imagery interpretation in synoptic and mesoscale meteorology (unpublished). Atmospheric Environment Service, Downsview, Ontario, Canada
Pedersen, T. S. and Rasmussen, E. A. (1985) On the cut-off problem in linear CISK-models, Tellus 37A, 394–402CrossRefGoogle Scholar
Pettersen, S. (1950). Some aspects of the general circulation or the atmosphere. In Cent. Proc. Roy. Met. Soc., pp. 120–55. Royal Meteorological Society, London
Petterssen, S. and Smebye, S. J. (1971). On the development of extratropical cyclones. Quart. J. Roy. Met. Soc. 97, 457–482CrossRefGoogle Scholar
Petterssen, S., Bradburg, L. and Pederson, K. (1962). The Norwegian cyclone models in relation to heat and cold sources. Geophys. Norwegica 24, 243–280Google Scholar
Phillips, N. A. (1951). A simple three-dimensional model for the study of large-scale extratropical flow patterns. J. Meteorol. 8, 381–3942.0.CO;2>CrossRefGoogle Scholar
Pittock, A. B. (1980). Patterns of climatic variations in Argentina and Chile – I. Precipitation, 1931–60. Mon. Wea. Rev. 108, 1347–612.0.CO;2>CrossRefGoogle Scholar
Pittock, A. B. (1984). On the reality, stability and usefulness of Southern Hemisphere teleconnections. Aust. Met. Mag. 32, 75–82Google Scholar
Pytharoulis, I., Craig, G. C. and Ballard, S. P. (1999). Study of the hurricane-like Mediterranean cyclone of January 1995. Phys. Chem. Earth (B) 24, 627–632CrossRefGoogle Scholar
Rabbe, A. (1975). Arctic instability lows. Met. Annaler 6, 303–329Google Scholar
Rabbe, A. (1987). A polar low over the Norwegian Sea, 29 February–1 March 1984. Tellus 39A, 326–333CrossRefGoogle Scholar
Radok, U., Smith, C. A. and Wendler, G. (1998). Southern Ocean synoptics – observations and analyses. Met. Apps. 5, 33–36CrossRefGoogle Scholar
Ralph, F. M., Shapiro, M. A., Neiman, P. J. and Miletta, J. (1994). Observations of multiple mesoscale cyclones (50–700 km) within synoptic-scale cyclones. Proceedings, International Symposium on the life Cycles of Extratropical Cyclones, 27 June–1 July 1994, Bergen, Norway. Vol. III, pp. 192–8
Rasmussen, E. (1977). The polar low as a CISK phenomena. University of Copenhagen, Institute for Theoretical Meteorology, Copenhagen
Rasmussen, E. (1979). The polar low as an extratropical CISK disturbance. Quart. J. Roy. Met. Soc. 105, 531–549CrossRefGoogle Scholar
Rasmussen, E. (1981). An investigation of a polar low with a spiral cloud structure. J. Atmos. Sci. 38, 1785–922.0.CO;2>CrossRefGoogle Scholar
Rasmussen, E. (1983). A review of meso-scale disturbances in cold air masses. In Mesoscale Meteorology – Theories, Observations and Models, ed. D. K. Lilly and T. Gal-Chen, pp. 247–83. D Reidel, BostonCrossRef
Rasmussen, E. (1985a). A case study of a polar low development over the Barents Sea. Tellus 37A, 407–418CrossRefGoogle Scholar
Rasmussen, E. (1985b). A Polar Low Development over the Barents Sea. Norwegian Meteorological Institute, Oslo
Rasmussen, E. A. (1987). How satellite imagery describes the evolution and structure of polar lows. In Satellite and Radar Imagery Interpretation, pp. 205–22. EUMETSAT, Darmstadt
Rasmussen, E. A. (1989). A comparative study of tropical cyclones and polar lows. In Polar and Arctic Lows, ed. P. F. Twitchell, E. Rasmussen and K. L. Davidson. pp. 47–80. A Deepak, Hampton, VA
Rasmussen, E. A. (1990). On the application of satellite data for forecasting/nowcasting and research of polar lows. In Proceedings of the Fifth Conference on Satellite Meteorology and Oceanography, September 3–7 1990, London, England, pp. 384–5. American Meteorological Society, Boston
Rasmussen, E. A. and Aakjær, P. D. (1992). Two polar lows affecting Denmark. Weather 47, 326–338CrossRefGoogle Scholar
Rasmussen, E. A. and Cederskov, A. (1994). Polar lows: a critical appraisal. In Proceedings, International Symposium on the life Cycles of Extratropical Cyclones, 27 June–1 July 1994, Bergen, Norway, Vol. III, pp. 199–203
Rasmussen, E. and Lystad, M. (1987). The Norwegian polar lows project: a summary of the international conference on polar lows. Bull. Amer. Met. Soc. 68, 801–816Google Scholar
Rasmussen, E. A. and Purdom, J. F. (1992). Investigations of a polar low using geostationary satellite data. In Preprints, Sixth Conference on Satellite Meteorology and Oceanography, Atlanta, Georgia, pp. 120–5. American Meteorological Society, Boston
Rasmussen, E. and Zick, C. (1987). A subsynoptic vortex over the Mediterranean Sea with some resemblance to polar lows. Tellus 39A, 408–425CrossRefGoogle Scholar
Rasmussen, E. A., Claud, C. and Purdom, J. F. (1996). Labrador Sea polar lows. Global Atmos. Ocean Sys. 4, 275–333Google Scholar
Rasmussen, E. A., Guest, P. S. and Davidson, K. L. (1997). Synoptic and mesoscale atmospheric features over the ice-covered portion of the Fram Strait in spring. J. Geophys. Res. – Atmos. 102, 13975–86CrossRefGoogle Scholar
Rasmussen, E. A., Pedersen, T. S., Pedersen, L. T. and Turner, J. (1992). Polar lows and arctic instability lows in the Bear Island region. Tellus 44A, 133–154CrossRefGoogle Scholar
Rasmussen, E. A., Turner, J. and Twitchell, P. F. (1993). Report of a workshop on the applications of new forms of satellite data in polar low research. Bull. Amer. Met. Soc. 74, 1057–73Google Scholar
Rasmussen, L. (1989). Greenland winds and satellite imagery. VEJRET, Special issue in English 32–7
Rayner, J. N. and Howarth, D. A. (1979). Antarctic sea ice: 1972–1975. Geog. Rev. 69, 202–223CrossRefGoogle Scholar
Reed, R. J. (1979). Cyclogenesis in polar airstreams. Mon. Wea. Rev. 107, 38–522.0.CO;2>CrossRefGoogle Scholar
Reed, R. J. (1987). Polar lows. In Conference proceedings, The Nature and Prediction of Extra Tropical Weather Systems 7–11 September 1987, ECMWF, Reading. pp. 213–36
Reed, R. J. (1992). An Arctic hurricane over the Bering Sea – comment. Mon. Wea. Rev. 120, 2713–152.0.CO;2>CrossRefGoogle Scholar
Reed, R. J. and Blier, W. (1986a). A case study of a comma cloud development in the Eastern Pacific. Mon. Wea. Rev. 114, 1681–952.0.CO;2>CrossRefGoogle Scholar
Reed, R. J. and Blier, W. (1986b). A further case study of comma cloud development in the Eastern Pacific. Mon. Wea. Rev. 114, 1696–7082.0.CO;2>CrossRefGoogle Scholar
Reed, R. J. and Duncan, C. N. (1987). Baroclinic instability as a mechanism for the serial development of polar lows: a case study. Tellus 39A, 376–385CrossRefGoogle Scholar
Reed, R. J., Kuo, Y. H., Albright, M. D., Gao, K. and Huang, W. (2001). Analysis and modelling of a tropical-like cyclone in the Mediterranean Sea. Met. Atmos. Phys. 76, 183–202CrossRefGoogle Scholar
Renfrew, I. A., Moore, G. W. K. and Clerk, A. A. (1997). Binary interactions between polar lows. Tellus Ser. A 49, 577–594CrossRefGoogle Scholar
Renfrew, I. A., Moore, G. W. K., Holt, T. R., Chang, S. W. and Guest, P. (1999). Mesoscale forecasting during a field program: meteorological support of the Labrador Sea deep convection experiment. Bull. Amer. Met. Soc. 80, 605–6202.0.CO;2>CrossRefGoogle Scholar
Roch, M., Benoit, R. and Parker, N. (1991). Sensitivity experiments for polar low forecasting with the CMC mesoscale finite-element model. Atmos.-Ocean. 29, 381–419CrossRefGoogle Scholar
Rockey, C. C. and Braaten, D. A. (1995). Characterization of polar cyclonic activity and relationship to observed snowfall events at McMurdo Station, Antarctica. In Proceedings of the Fourth Conference on Polar Meteorology and Oceanography, January 15–20 1995, Dallas, Texas, pp. 244–5. American Meteorological Society, Boston
Rogers, J. C. (1981). Spatial variability of seasonal sea level pressure and 500 mb height anomalies. Mon. Wea. Rev. 109, 2093–1062.0.CO;2>CrossRefGoogle Scholar
Rogers, J. C. (1984). The association between the North Atlantic Oscillation and the Southern Oscillation in the Northern Hemisphere. Mon. Wea. Rev. 112, 1999–20152.0.CO;2>CrossRefGoogle Scholar
Rogers, J. C. (1997). North Atlantic storm track variability and its association to the north Atlantic oscillation and climate variability of northern Europe. J. Clim. 10, 1635–472.0.CO;2>CrossRefGoogle Scholar
Rogers, J. C. and Mosley-Thompson, E. (1995). Atlantic arctic wave cyclones and the mild Siberian winters of the 1980s. Geophys. Res. Lett. 22, 799–802CrossRefGoogle Scholar
Rogers, J. C. and Loon, H. (1979). The seasaw in winter temperatures between Greenland and northern Europe. Part II: Some oceanic and atmospheric effects in middle and high latitudes. Mon. Wea. Rev. 107, 509–5192.0.CO;2>CrossRefGoogle Scholar
Rogers, J. C. and Loon, H. (1982). Spatial variability of sea level pressure and 500 mb height anomalies over the Southern Hemisphere. Mon. Wea. Rev. 110, 1375–922.0.CO;2>CrossRefGoogle Scholar
Rogers, J. C., Bolzan, J. F. and Pohjola, V. A. (1998). Atmospheric circulation variability associated with shallow-core seasonal isotopic extremes near Summit Greenland. J. Geophys. Res. – Atmos. 103, 11205–19CrossRefGoogle Scholar
Røsting, B., Sunde, J. and Midtbø, K. H. (1996). Monitoring of NWP models by use of satellite data. Met. Apps. 3, 331–340CrossRefGoogle Scholar
Rutherford, G. T. (1969). Occlusion sequences south of Australia. In Proceedings of Inter-Regional Seminar on the Interpretation of Meteorological Satellite Data, pp. 49–53. Bureau of Meteorology for WMO, Melbourne
Sanders, F. and Gyakum, J. R. (1980). Synoptic-dynamic climatology of the ‘bomb’. Mon. Wea. Rev. 108, 1589–6062.0.CO;2>CrossRefGoogle Scholar
Sardie, J. M. and Warner, T. T. (1983). On the mechanism for the development of polar lows. J. Atmos. Sci. 40, 869–8812.0.CO;2>CrossRefGoogle Scholar
Sardie, J. M. and Warner, T. T. (1985). A numerical study of the development mechanism of polar lows. Tellus 37, 460–477CrossRefGoogle Scholar
Sater, J. E., Ronhovde, A. G. and Van Allen, L. C. (1971). Arctic Environment and Resources. The Arctic Institute of North America, Washington, DC
Sawyer, J. S. (1947). Notes on the theory of tropical cyclones. Quart. J. Roy. Met. Soc. 73, 101–126CrossRefGoogle Scholar
Scherhag, R. and Klauser, L. (1962). Grundlagen der Wettervorhersage. In Meteorologisches Taschenbuch, ed. F. Bauer. Akademische Verlagsgesellschaft, Leipzig
Schubert, W. H. and Alworth, B. (1987). Evolution of potential vorticity in tropical cyclones. Quart. J. Roy. Met. Soc. 113, 147–162CrossRefGoogle Scholar
Schubert, W. H. and Hack, J. J. (1982). Inertial stability and tropical cyclone development. J. Atmos. Sci. 39, 1687–972.0.CO;2>CrossRefGoogle Scholar
Schubert, W. H., Hack, J. J., Dias, Silva P. L. and Fulton, S. R. (1980). Geostrophic adjustment in an axisymmetric vortex. J. Atmos. Sci. 37, 1464–842.0.CO;2>CrossRefGoogle Scholar
Schwerdtfeger, W. (1960). The seasonal variation of the strength of the southern circumpolar vortex. Mon. Wea. Rev. 88, 203–82.0.CO;2>CrossRefGoogle Scholar
Schwerdtfeger, W. (1975). The effect of the Antarctic Peninsula on the temperature regime of the Weddell Sea. Mon. Wea. Rev. 103, 45–512.0.CO;2>CrossRefGoogle Scholar
Schwerdtfeger, W. (1979). Meteorological aspects of the drift of ice from the Weddell Sea toward the mid-latitude westerlies. J. Geophys. Res. 84, 6321–8CrossRefGoogle Scholar
Schwerdtfeger, W. (1984). Weather and Climate of the Antarctic. Elsevier, Amsterdam
Scorer, R. S. (1952). Sonic and advective disturbances. Quart. J. Roy. Met. Soc. 78, 76–81CrossRefGoogle Scholar
Scorer, R. S. (1986). Cloud Investigation by Satellite. Ellis Horwood, Chichester
Scorer, R. S. (1988). Sunny Greenland. Quart. J. Roy. Met. Soc. 114, 3–29CrossRefGoogle Scholar
Sechrist, F. S., Fett, R. W. and Perryman, D. C. (1989). Forecasters Handbook for the Arctic. Technical Report TR 89–12. Naval Environmental Prediction Research Facility, Monterey, CA
Serreze, M. C., Kahl, J. and Schnell, R. (1992). Low-level temperature inversions of the Eurasian Arctic and comparisons with Soviet ice island data. J. Clim. 5, 599–6132.0.CO;2>CrossRefGoogle Scholar
Serreze, M. C., Rogers, J. C., Carsey, F. and Barry, R. G. (1997). Icelandic low cyclone activity: climatological features, linkages with the NAO and relationships with recent changes in the Northern Hemisphere circulation. J. Clim. 10, 453–4642.0.CO;2>CrossRefGoogle Scholar
Shapiro, L. J. (2000). Potential vorticity asymmetries and tropical cyclone evolution in moist three-layer model. J. Atmos. Sci. 57, 3645–622.0.CO;2>CrossRefGoogle Scholar
Shapiro, M. A. and Fedor, L. S. (1989). A case study of an ice-edge boundary layer front and polar low development over the Norwegian and Barents Seas. In Polar and Arctic Lows, ed. P. F. Twitchell, E. Rasmussen and K. L. Davidson. pp. 257–77. A Deepak, Hampton, VA
Shapiro, M. A. and Keyser, D. (1990). Fronts, jet streams and the tropopause. In Extratropical Cyclones, The Erik Palmén Memorial Volume, ed. C. W. Newton and E. O. Holopainen. pp. 167–91. American Meteorological Society, Boston
Shapiro, L. J. and Willoughby, H. E. (1982). The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci. 39, 378–3942.0.CO;2>CrossRefGoogle Scholar
Shapiro, M. A., Fedor, L. S. and Hampel, T. (1987). Research aircraft measurements of a polar low over the Norwegian Sea. Tellus 39A, 272–306CrossRefGoogle Scholar
Shapiro, M. A., Hampel, T. and Fedor, L. S. (1989). Research aircraft observations of an Arctic front over the Barents Sea. In Polar and Arctic Lows, ed. P. F. Twitchell, E. Rasmussen and K. L. Davidson. pp. 279–89. A Deepak, Hampton, VA
Shaw, W. J., Pauley, R. L., Gobel, T. M. and Radke, L. F. (1991). A case study of atmospheric boundary layer mean structure for flow parallel to the ice edge, aircraft observations from CEAREX. J. Geophys. Res. 96, 4691–708CrossRefGoogle Scholar
Simmonds, I. and Jacka, T. H. (1995). Relationships between the interannual variability of Antarctic sea ice and the Southern Oscillation. J. Clim. 8, 637–6472.0.CO;2>CrossRefGoogle Scholar
Simmonds, I. and Jones, D. A. (1998). The mean structure and temporal variability of the semiannual oscillation in the southern extratropics. Int. J. Climatol. 18, 473–5043.0.CO;2-0>CrossRefGoogle Scholar
Sinclair, M. R. (1994). An objective cyclone climatology for the Southern Hemisphere. Mon. Wea. Rev. 122, 2239–562.0.CO;2>CrossRefGoogle Scholar
Sinclair, M. R. (1995). A climatology of cyclogenesis for the Southern Hemisphere. Mon. Wea. Rev. 123, 1601–192.0.CO;2>CrossRefGoogle Scholar
Sinclair, M. R. and Cong, X. (1992). Polar air stream cyclogenesis in the Australasian region: a composite study using ECMWF analyses. Mon. Wea. Rev. 120, 1950–722.0.CO;2>CrossRefGoogle Scholar
Sinclair, M. R., Renwick, J. A. and Kidson, J. W. (1997). Low-frequency variability of Southern Hemisphere sea level pressure and weather system activity. Mon. Wea. Rev. 125, 2531–432.0.CO;2>CrossRefGoogle Scholar
Smith, R. K. (1997). On the theory of CISK. Quart. J. Roy. Met. Soc. 123, 407–418CrossRefGoogle Scholar
Smith, R. K. (2000). The role of cumulus convection in hurricanes and its representation in hurricane models. Rev. Geophys. 38, 465–489CrossRefGoogle Scholar
Smith, S. R. and Stearns, C. R. (1993). Antarctic pressure and temperature anomalies surrounding the minimum in the Southern Oscillation index. J. Geophys. Res. 98 D7, 13071–83CrossRefGoogle Scholar
Smits, J. C. (1985). Polar lows observed during the winter 1984/85 and a summary of the three winter seasons 1982–85. Polar Lows Project, Technical Report 13. DNMI, Oslo
Song, Y. and Carleton, A. M. (1997). Climatological ‘models’ of cold air mesocyclones derived from SSM/I data. Geocarto Int. 12, 79–90CrossRefGoogle Scholar
Stearns, C. R. and Wendler, G. (1988). Research results from Antarctic automatic weather stations. Rev. Geophys. 26, 45–61CrossRefGoogle Scholar
Stevens, B., Randall, D. A., Lin, X. and Montgomery, M. T. (1997). Comments on ‘On large-scale circulations in convecting atmospheres’ by Emanuel et al., (1994). Quart. J. Roy. Met. Soc. 123, 1771–78Google Scholar
Stevenson, C. M. (1968). The snowfall of early December 1967. Weather 23, 156–161CrossRefGoogle Scholar
Stoelinga, M. T. (1996). A potential vorticity based study of the role of diabatic heating and friction in a numerically simulated baroclinic cyclone. Mon. Wea. Rev. 124, 849–8742.0.CO;2>CrossRefGoogle Scholar
Streten, N. A. (1968). Some features of mean annual windspeed data for coastal East Antarctica. Polar Rec. 14, 315–322CrossRefGoogle Scholar
Streten, N. A. (1975). Satellite derived influences to some characteristics of the South Pacific atmospheric circulation associated with the Niño event of 1972–73. Mon. Wea. Rev. 103, 989–9952.0.CO;2>CrossRefGoogle Scholar
Streten, N. A. (1977). Aspects of the year-to-year variation of seasonal and monthly mean station temperature over the Southern Hemisphere. Mon. Wea. Rev. 105, 195–2062.0.CO;2>CrossRefGoogle Scholar
Streten, N. A. (1980). Some synoptic indices of the Southern Hemisphere mean sea level circulation 1972–77. Mon. Wea. Rev. 108, 18–362.0.CO;2>CrossRefGoogle Scholar
Streten, N. A. (1983). Antarctic sea ice and related atmospheric circulation during FGGE. Arch. für Met. Geophys. und Biokl. A32, 231–246CrossRefGoogle Scholar
Streten, N. A. (1990). A review of the climate of Mawson – a representative strong wind site in East Antarctica. Antarctic Sci. 2, 79–89CrossRefGoogle Scholar
Streten, N. A. and Troup, A. J. (1973). A synoptic climatology of satellite observed cloud vortices over the Southern Hemisphere. Quart. J. Roy. Met. Soc. 99, 56–72CrossRefGoogle Scholar
Streten, N. A. and Pike, D. J. (1980). Characteristics of the broadscale Antarctic sea ice extent and the associated atmospheric circulation 1972–1977. Arch. für Met., Geophys. und Biokl. A 29, 279–299CrossRefGoogle Scholar
Sumner, E. J. (1950). The significance of vertical stability in synoptic development. Quart. J. Roy. Met. Soc. 76, 384–392CrossRefGoogle Scholar
Sunde, J., Rosting, B., Breivik, L. A., Midtbø, K. H. and Ulstad, C. (1994). Operational monitoring and forecasting of mesoscale weather phenomena in ocean regions surrounding Norway. Met. Apps. 1, 237–245CrossRefGoogle Scholar
Sundqvist, H. (1970). Numerical simulation of the development of tropical cyclones with a ten-level model, Part 1. Tellus 22, 359–390Google Scholar
Sundqvist, H., Berge, E. and Kristjansson, J. E. (1989). Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Mon. Wea. Rev. 117, 1641–572.0.CO;2>CrossRefGoogle Scholar
Suttie, T. K. (1970). Portrait of a polar low, Weather 25, 504–7CrossRefGoogle Scholar
Sutton, R. T. and Allen, M. R. (1997). Decadal predictability of North Atlantic sea surface temperature and climate. Nature 388, 563–7CrossRefGoogle Scholar
Taljaard, J. J. (1969). Air masses of the Southern Hemisphere. Notos 18, 79–104Google Scholar
Taylor, H. W., Gordon, A. L. and Molinelli, E. (1978). Climatic characteristics of the Antarctic Polar Front zone. J. Geophys. Res. 83, 4572–8CrossRefGoogle Scholar
The Lab Sea Group (1998). The Labrador Sea deep convection experiment. Bull. Amer. Met. Soc. 79, 2033–582.0.CO;2>CrossRef
Thompson, D. W. J. and Wallace, J. M. (1998). The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett. 25, 1297–300CrossRefGoogle Scholar
Thompson, W. T. and Burk, S. D. (1991). An investigation of an Arctic front with a vertically nested mesoscale model. Mon. Wea. Rev. 119, 233–2612.0.CO;2>CrossRefGoogle Scholar
Thorpe, A. J. (1985). Diagnosis of balanced vortex structure using potential vorticity. J. Atmos. Sci. 42, 397–4062.0.CO;2>CrossRefGoogle Scholar
Thorpe, A. J. (1997). Attribution and its application to mesoscale structure associated with tropopause folds. Quart. J. Roy. Met. Soc. 123, 2377–99CrossRefGoogle Scholar
Thorpe, A. J. and Emanuel, K. A. (1985). Frontogenesis in the presence of small stability to slantwise cojnvection. J. Atmos. Sci. 42, 1809–242.0.CO;2>CrossRefGoogle Scholar
Tijm, A. B. C. and Delden, A. (1999). The role of sound waves in sea-breeze initiation. Quart. J. Roy. Met. Soc. 125, 1997–2018CrossRefGoogle Scholar
Trenberth, K. E. (1980). Planetary waves at 500 mb in the southern hemisphere. Mon. Wea. Rev. 108, 1378–892.0.CO;2>CrossRefGoogle Scholar
Trenberth, K. E. (1981). Interannual variability of the Southern Hemisphere 500 mb flow: regional characteristics. Mon. Wea. Rev. 109, 127–1362.0.CO;2>CrossRefGoogle Scholar
Trenberth, K. E. (1986). The signature of a blocking episode on the general circulation in the Southern Hemisphere. J. Atmos. Sci. 43, 2061–92.0.CO;2>CrossRefGoogle Scholar
Trenberth, K. E. (1991). Storm tracks in the Southern Hemisphere. J. Atmos. Sci. 48, 2159–782.0.CO;2>CrossRefGoogle Scholar
Trenberth, K. E. and Mo, K. C. (1985). Blocking in the Southern Hemisphere. Mon. Wea. Rev. 113, 3–212.0.CO;2>CrossRefGoogle Scholar
Trenberth, K. E. and Paolino, D. A. (1981). Characteristic patterns of variability of sea level pressure in the Northern Hemisphere. Mon. Wea. Rev. 109, 1169–892.0.CO;2>CrossRefGoogle Scholar
Trenberth, K. E. and Shea, D. J. (1987). On the evolution of the Southern Oscillation. Mon. Wea. Rev. 115, 3078–962.0.CO;2>CrossRefGoogle Scholar
Troup, A. J. and Streten, N. A. (1972). Satellite-observed southern hemisphere cloud vortices in relation to conventional observations. J. Appl. Met. 11, 909–9172.0.CO;2>CrossRefGoogle Scholar
Tsuboki, K. and Wakahama, G. (1992). Mesoscale cyclogenesis in winter monsoon air streams: quasi-geostrophic baroclinic instability as a mechamism of the cyclogenesis off the west coast of Hokkaido Island, Japan. J. Met. Soc. Jap. 70, 77–93CrossRefGoogle Scholar
Turner, J. and Ellrott, H. (1992). High latitude moisture structure determined from HIRS water vapour imagery. Int. J. Rem. Sens. 13, 81–95CrossRefGoogle Scholar
Turner, J. and Ladkin, R. (1998). Mesocyclones over the interior of the Antarctic. In Proceedings of the European Geophysical Society Polar Lows Working Group Workshop on ‘Polar lows – current state and needs of future research’, Copenhagen, 17–19 June 1998, EGS Polar Lows Working Group, Bonn. pp. 12–17
Turner, J. and Row, M. (1989). Mesoscale vortices in the British Antarctic Territory. In Polar and Arctic lows, ed. P. F. Twitchell, E. Rasmussen and K. L. Davidson. pp. 347–56. A Deepak, Hampton, VA
Turner, J. and Thomas, J. P. (1994). Summer-season mesoscale cyclones in the Bellingshausen–Weddell region of the Antarctic and links with the synoptic-scale environment. Int. J. Climatol. 14, 871–894CrossRefGoogle Scholar
Turner, J., Bromwich, D., Colwell, S., Dixon, S., Gibson, T., Hart, T., Heinemann, G., Hutchinson, H., Jacka, K., Leonard, S., Lieder, M., Marsh, L., Pendlebury, S., Phillpot, H., Pook, M. and Simmonds, I. (1996b). The Antarctic First Regional Observing Study of the Troposphere (FROST) project. Bull. Amer. Met. Soc. 77, 2007–322.0.CO;2>CrossRefGoogle Scholar
Turner, J., Colwell, S. R. and Harangozo, S. A. (1997). Variability of precipitation over the coastal western Antarctic Peninsula from synoptic observations. J. Geophys. Res. 102, 13999–4007CrossRefGoogle Scholar
Turner, J., Corcoran, G., Cummins, S., Lachlan-Cope, T. and Leonard, S. (1996a). Seasonal variability of mesocyclone activity in the Bellingshausen/Weddell region of Antarctica. Global Atmos. Ocean Sys. 5, 73–97Google Scholar
Turner, J., Lachlan-Cope, T. A. and Thomas, J. P. (1993a). A comparison of Arctic and Antarctic mesoscale vortices. J. Geophys. Res. 98 D7, 13019–34CrossRefGoogle Scholar
Turner, J., Lachlan-Cope, T. A., Thomas, J. P. and Colwell, S. (1995). The synoptic origins of precipitation over the Antarctic Peninsula. Antarctic Sci. 7, 327–337CrossRefGoogle Scholar
Turner, J., Lachlan-Cope, T. A., Warren, D. E. and Duncan, C. N. (1993b). A mesoscale vortex over Halley Station, Antarctica. Mon. Wea. Rev. 121, 1317–362.0.CO;2>CrossRefGoogle Scholar
Turner, J., Leonard, S., Marshall, G. J., Pook, M., Cowled, L., Jardine, R., Pendlebury, S. and Adams, N. (1999). An assessment of operational Antarctic analyses based on data from the FROST project. Wea. and Forecasting 14, 817–8342.0.CO;2>CrossRefGoogle Scholar
Twitchell, P. F., Rasmussen, E. A. and Davidson, K. L. (ed.) (1989). Polar and Arctic Lows. A Deepak, Hampton, VA
Delden, A. (1989). On the deepening and filling of balanced cyclones by diabatic heating. Met. Atmos. Phys. 41, 127–145CrossRefGoogle Scholar
Delden, A. (1992). The dynamics of meso-scale atmospheric circulations. Physics Reports 211, 252–376Google Scholar
Delden, A. (2000). Linear dynamics of hydrostatic adjustment to horizontally homogeneous heating. Tellus 52A, 380–390CrossRefGoogle Scholar
Loon, H. (1956). Blocking action in the Southern Hemisphere, Part 1. Notos 5, 171–5Google Scholar
Loon, H. (1962). On the movement of lows in the Ross and Weddell Sea sectors in summer. Notos 11, 47–50Google Scholar
Loon, H. (1966). On the annual temperature range over the southern oceans. Geog. Rev. 58, 497–515CrossRefGoogle Scholar
Loon, H. (1967). The half-yearly oscillations in middle and high Southern latitudes and the coreless winter. J. Atmos. Sci. 24, 472–4862.0.CO;2>CrossRefGoogle Scholar
van Loon, H. (1972). Pressure in the Southern Hemisphere. In Meteorology of the Southern Hemisphere, ed. H. van Loon, J. J. Taljaard, T. Sasamori, J. London, D. V. Hoyt, K. Labitzke and C. W. Newton. pp. 59–86. American Meteorological Society, BostonCrossRef
Loon, H. (1984). The Southern Oscillation, Part III: Associations with the trades and with the trough in the westerlies of the South Pacific Ocean. Mon. Wea. Rev. 112, 947–9542.0.CO;2>CrossRefGoogle Scholar
Loon, H. and Kidson, J. W. (1993). The association between latitudinal temperature gradient and eddy transport, Part III: the southern hemisphere. Aust. Met. Mag. 42, 31–37Google Scholar
Loon, H. and Rogers, J. C. (1978). The seesaw in winter temperatures between Greenland and northern Europe. Part I: General description. Mon. Wea. Rev. 106, 296–3102.0.CO;2>CrossRefGoogle Scholar
Loon, H. and Rogers, J. C. (1984). Interannual variations in the half-yearly cycle of pressure gradients and zonal wind at sea level on the Southern Hemisphere. Tellus 36A, 76–86CrossRefGoogle Scholar
Venzke, S., Allen, M. R., Sutton, R. T. and Rowell, D. P. (1999). The atmospheric response over the North Atlantic to decadal changes in sea surface temperature. J. Clim. 12, 2562–842.0.CO;2>CrossRefGoogle Scholar
Viebrock, H. (1962). The transfer of energy between the ocean and the atmosphere in the Antarctic region. J. Geophys. Res. 67, 4293–302CrossRefGoogle Scholar
Villalba, R., Cook, E. R., Darrigo, R. D., Jacoby, G. C., Jones, P. D., Salinger, M. J. and Palmer, J. (1997). Sea-level pressure variability around Antarctica since AD 1750 inferred from subantarctic tree-ring records. Clim. Dyn. 13, 375–390CrossRefGoogle Scholar
Wallace, J. M. and Gutzler, D. S. (1981). Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev. 109, 784–8122.0.CO;2>CrossRefGoogle Scholar
Wallace, J. M. and Hobbs, P. V. (1977). Atmospheric Science. An Introductory Survey. Academic Press, San Diego
Walsh, J. E. and Chapman, W. L. (1990). Short-term climatic variability of the Arctic. J. Clim. 3, 237–2502.0.CO;2>CrossRefGoogle Scholar
Walsh, J. E. and Portis, D. H. (1999). Variations of precipitation and evaporation over the North Atlantic Ocean, 1958–1997. J. Geophys. Res. – Atmos. 104, 16613–31CrossRefGoogle Scholar
Weldon, R. B. (1979). Cloud patterns and the upper air wind field, Part IV. NOAA, Washington, DC
Weller, G. (1980). Spatial and temporal variations in the South Polar surface energy balance. Mon. Wea. Rev. 108, 2006–142.0.CO;2>CrossRefGoogle Scholar
Wendland, W. M. and McDonald, N. S. (1986). Southern Hemisphere airstream climatology. Mon. Wea. Rev. 114, 88–942.0.CO;2>CrossRefGoogle Scholar
Wendler, G., Adolphs, U., Hauser, A. and Moore, B. (1997a). On the surface energy budget of sea ice. J. Glaciol. 43, 122–130CrossRefGoogle Scholar
Wendler, G., Gilmore, D. and Curtis, J. (1997b). On the formation of coastal polynyas in the area of Commonwealth Bay, eastern Antarctica. Atmos. Res. 45, 55–75CrossRefGoogle Scholar
Wendler, G., Ishikawa, N. and Kodama, Y. (1988). The heat balance of the icy slope of Adélie Land, Eastern Antarctica. J. Appl. Met. 27, 52–652.0.CO;2>CrossRefGoogle Scholar
Wendler, G., Stearns, C., Weidner, G., Dargaud, G. and Parish, T. (1997c). On the extraordinary katabatic winds of Adélie Land. J. Geophys. Res. – Atmos. 102, 4463–74CrossRefGoogle Scholar
White, W. B. and Peterson, R. G. (1996). An Antarctic circumpolar wave in surface pressure, wind, temperature and sea-ice extent. Nature 380, 699–702CrossRefGoogle Scholar
Whittaker, L. M. and Horn, L. H. (1984). Northern Hemisphere extratropical cyclone activity for four mid-season months. J. Climatol. 4, 297–310CrossRefGoogle Scholar
Wiin-Nielsen, A. (1989). On the precursors of polar lows. In Polar and Arctic Lows, ed. P. F. Twitchell, E. Rasmussen and K. L. Davidson. pp. 85–107. A Deepak, Hampton, VA
Wilhelmsen, K. (1985). Climatological study of gale-producing polar lows near Norway. Tellus 37A, 451–459CrossRefGoogle Scholar
Wilhelmsen, K. (1986a). Climatological study of gale producing polar lows near Norway. In: Proceedings of the International Conference on Polar Lows, Oslo 1986, pp. 31–9. The Norwegian Meteorological Institute, Oslo
Wilhelmsen, K. (1986b). Climatological study of polar lows near Norway, Part I. Norwegian Meteorological Institute, Oslo
Wilson, H. P. (1971). An interesting Arctic storm. (Unpublished manuscript)
Wirth, V. (1995). Diabatic heating in an axisymmetric cut-off cyclone and related stratosphere–troposphere exchange. Quart. J. Roy. Met. Soc. 121, 127–147CrossRefGoogle Scholar
Wirth, V. (2001). Cyclone–anticyclone asymmetry concerning the height of the thermal and the dynamical tropopause. J. Atmos. Sci. 58, 26–372.0.CO;2>CrossRefGoogle Scholar
Nielsen, Woetmann N. (1998). Om forudsigelighed af polare lavtryk [In Danish]. Vejret 20, 37–48Google Scholar
Yamagishi, Y., Doi, M., Kitabatake, N. and Kamiguchi, H. (1992). A polar low which accompanied strong gust [In Japanese]. Tenki 39, 27–36Google Scholar
Yarnal, B. and Henderson, K. G. (1989a). A climatology of polar low cyclogenetic regions over the North Pacific Ocean. J. Clim. 2, 1476–912.0.CO;2>CrossRefGoogle Scholar
Yarnal, B. and Henderson, K. G. (1989b). A satellite-derived climatology of polar low evolution in the North-Pacific. Int. J. Climatol. 9, 551–566CrossRefGoogle Scholar
Zick, C. (1983). Method and results of an analysis of comma cloud developments by means of vorticity fields from upper tropospheric satellite wind data. Meteor. Rdsch., 36, 69–84Google Scholar
Zick, C. (1994). Polar lows in the SW Pacific region and their transition from or into synoptic-scale cyclones. In The Life Cycles of Extratropical Cyclones, Volume III. Proceedings of an International Symposium 27 June–1 July 1994, Bergen, Norway, ed. S. Grønås and M. A. Shapiro, pp. 248–55. American Meteorological Society, Boston
Zillman, J. W. and Johnson, D. R. (1985). Thermally-forced mean mass circulations in the Southern Hemisphere. Tellus 37A, 56–76CrossRefGoogle Scholar
Zillman, J. W. and Price, P. G. (1972). On the thermal structure of mature Southern Ocean cyclones. Aust. Met. Mag. 20, 34–48Google Scholar
Zillman, J. W. and Dingle, W. R. J. (1969). Shorter contribution: Southern Ocean sea–air energy exchange. Aust. Met. Mag. 17, 166–172Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Edited by Erik A. Rasmussen, University of Copenhagen, John Turner, British Antarctic Survey, Cambridge
  • Book: Polar Lows
  • Online publication: 07 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511524974.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Edited by Erik A. Rasmussen, University of Copenhagen, John Turner, British Antarctic Survey, Cambridge
  • Book: Polar Lows
  • Online publication: 07 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511524974.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Edited by Erik A. Rasmussen, University of Copenhagen, John Turner, British Antarctic Survey, Cambridge
  • Book: Polar Lows
  • Online publication: 07 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511524974.009
Available formats
×