Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-01T12:39:26.827Z Has data issue: false hasContentIssue false

13 - Evolved stars

from III - Stars and their environment

Published online by Cambridge University Press:  05 May 2015

Ludmilla Kolokolova
Affiliation:
University of Maryland, College Park
James Hough
Affiliation:
University of Hertfordshire
Anny-Chantal Levasseur-Regourd
Affiliation:
Université de Paris VI (Pierre et Marie Curie)
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitken, D. K., Smith, C. H., Moore, T. J., and Roche, P. F. (1995). Mid-infrared studies of Eta Carinae-II. Polarimetric imaging at 12.5 μm and the magnetic field structure. Monthly Notices of the Royal Astronomical Society, 273, 359366.CrossRefGoogle Scholar
Assaf, K. A., Diamond, P. J., Richards, A. M. S., and Gray, M. D. (2013). Polarization morphology of SiO masers in the circumstellar envelope of the asymptotic giant branch star R Cassiopeiae. Monthly Notices of the Royal Astronomical Society, 431(2), 10771089.CrossRefGoogle Scholar
Bains, I., Gledhill, T. M., Yates, J. A., and Richards, A. M. S. (2003). MERLIN polarimetry of the OH masers in OH17. 7–2.0. Monthly Notices of the Royal Astronomical Society, 338(2), 287302.CrossRefGoogle Scholar
Bains, I., Richards, A. M. S., Gledhill, T. M., and Yates, J. A. (2004). MERLIN polarimetry of the OH masers in IRAS 20406+ 2953. Monthly Notices of the Royal Astronomical Society, 354(2), 529542.CrossRefGoogle Scholar
Bains, I., Richards, A. M. S., and Szymczak, M. (2009). MERLIN polarimetry of OH masers in post-AGB stars. In The Eighth Pacific Rim Conference on Stellar Astrophysics: A Tribute to Kam-Ching Leung, Vol. 404. San Francisco CA: Astronomical Society of the Pacific, p. 368.Google Scholar
Balick, B. and Frank, A. (2002). Shapes and shaping of planetary nebulae. Annual Review of Astronomy and Astrophysics, 40(1), 439486.CrossRefGoogle Scholar
Balick, B., Gomez, T., Vinković, D.et al. (2012). The illumination and growth of CRL 2688: An analysis of new and archival Hubble Space Telescope observations. The Astrophysical Journal, 745(2), 188.CrossRefGoogle Scholar
Blackman, E. G., Frank, A., Markiel, J. A., Thomas, J. H., and Van Horn, H. M. (2001). Dynamos in asymptotic-giant-branch stars as the origin of magnetic fields shaping planetary nebulae. Nature, 409(6819), 485487.CrossRefGoogle ScholarPubMed
Claussen, M. J., Sahai, R., and Morris, M. R. (2009). The motion of water masers in the pre-planetary nebula IRAS 16342-3814. The Astrophysical Journal, 691(1), 219.CrossRefGoogle Scholar
DavisJr, L. and Greenstein, J. L. (1951). The polarization of starlight by aligned dust grains. The Astrophysical Journal, 114, 206.CrossRefGoogle Scholar
Delgado, D. G., Olofsson, H., Schwarz, H. E.et al. (2003). Imaging polarimetry of stellar light scattered in detached shells around the carbon stars R Scl and U Ant. Astronomy and Astrophysics, 399(3), 10211036.CrossRefGoogle Scholar
De Marco, O. (2009). The origin and shaping of planetary nebulae: Putting the binary hypothesis to the test. Publications of the Astronomical Society of the Pacific, 121(878), 316342.CrossRefGoogle Scholar
De Marco, O., Passy, J. C., Frew, D. J., Moe, M., and Jacoby, G. H. (2013). The binary fraction of planetary nebula central stars–I. A high-precision, I-band excess search. Monthly Notices of the Royal Astronomical Society, 428(3), 21182140.CrossRefGoogle Scholar
Diamond, P. J. and Kemball, A. J. (2003). A movie of a star: Multiepoch very long baseline array imaging of the SiO masers toward the Mira variable TX Cam. The Astrophysical Journal, 599(2), 1372.CrossRefGoogle Scholar
Dolginov, A. Z. and Mytrophanov, I. G. (1976). Orientation of cosmic dust grains. Astrophysics and Space Science, 43(2), 291317.CrossRefGoogle Scholar
Draine, B. T. and Weingartner, J. C. (1996). Radiative torques on interstellar grains: I. Superthermal spinup. The Astrophysical Journal, 470, 551565.CrossRefGoogle Scholar
Elitzur, M. (2002). Astronomical masers and their polarization. In Trujillo Bueno, J., Moreno-Insertis, F., and Sánchez, F., eds., Astrophysical Spectropolarimetry. Cambridge University Press, pp. 255264.Google Scholar
Forbes, F. F. (1967). The infrared polarization of the infrared star in Cygnus. The Astrophysical Journal, 147, 1226.CrossRefGoogle Scholar
Girart, J. M., Patel, N., Vlemmings, W. H. T., and Rao, R. (2012). Mapping the linearly polarized spectral line emission around the evolved star IRC+ 10216. The Astrophysical Journal Letters, 751(1), L20.CrossRefGoogle Scholar
Gledhill, T. M. (2005). Axisymmetry in protoplanetary nebulae–II. A near-infrared imaging polarimetric survey. Monthly Notices of the Royal Astronomical Society, 356(3), 883898.CrossRefGoogle Scholar
Gledhill, T. M., Chrysostomou, A., Hough, J. H., and Yates, J. A. (2001). Axisymmetry in protoplanetary nebulae: Using imaging polarimetry to investigate envelope structure. Monthly Notices of the Royal Astronomical Society, 322(2), 321342.CrossRefGoogle Scholar
Glenn, J., Walker, C. K., Bieging, J. H., and Jewell, P. R. (1997). Millimeter-wave spectropolarimetry of evolved stars: Evidence for polarized molecular line emission. The Astrophysical Journal Letters, 487(1), L89.CrossRefGoogle Scholar
Goldreich, P. and Kylafis, N. D. (1981). On mapping the magnetic field direction in molecular clouds by polarization measurements. The Astrophysical Journal, 243, L75L78.CrossRefGoogle Scholar
Goldreich, P. and Kylafis, N. D. (1982). Linear polarization of radio frequency lines in molecular clouds and circumstellar envelopes. The Astrophysical Journal, 253, 606621.CrossRefGoogle Scholar
Greaves, J. S. (2002). Toroidal magnetic fields around planetary nebulae. Astronomy and Astrophysics, 392(1), L1L4.CrossRefGoogle Scholar
Habing, H. J. (1996). Circumstellar envelopes and asymptotic giant branch stars. The Astronomy and Astrophysics Review, 7(2), 97207.CrossRefGoogle Scholar
Herpin, F., Baudry, A., Thum, C., Morris, D., and Wiesemeyer, H. (2006). Full polarization study of SiO masers at 86 GHz. Astronomy and Astrophysics, 450, 667680.CrossRefGoogle Scholar
Herpin, F., Baudy, A., Josselin, E., Thum, C., and Wiesemeyer, H. (2008). Magnetic fields in AGB stars and (proto-) planetary nebulae. Proceedings of the International Astronomical Union, 4(S259), 4752.CrossRefGoogle Scholar
Hiltner, W. A. (1951). Polarization of stellar radiation. III. The polarization of 841 stars. The Astrophysical Journal, 114, 241.CrossRefGoogle Scholar
Hrivnak, B. J., Lu, W., Bohlender, D. et al. (2011). Are proto-planetary nebulae shaped by a binary? Results of a long-term radial velocity study. The Astrophysical Journal, 734(1), 25.CrossRefGoogle Scholar
Huggins, P. J. (2007). Jets and tori in proto-planetary nebulae. The Astrophysical Journal, 663(1), 342.CrossRefGoogle Scholar
Ireland, M. J., Tuthill, P. G., Davis, J., and Tango, W. (2005). Dust scattering in the Miras R Car and RR Sco resolved by optical interferometric polarimetry. Monthly Notices of the Royal Astronomical Society, 361(1), 337344.CrossRefGoogle Scholar
Johnson, J. J., and Jones, T. J. (1991). From red giant to planetary nebula – Dust, asymmetry, and polarization. The Astronomical Journal, 101, 17351751.CrossRefGoogle Scholar
Jordan, S., Werner, K., and O’Toole, S. J. (2005). Discovery of magnetic fields in central stars of planetary nebulae. Astronomy and Astrophysics, 432, 273279.CrossRefGoogle Scholar
Jurgenson, C. A., Stencel, R. E., Theil, D. S., Klebe, D. I., and Ueta, T. (2003). Mid-infrared imaging polarimetry of NGC 7027. The Astrophysical Journal Letters, 582(1), L35.CrossRefGoogle Scholar
Kastner, J. H. and Weintraub, D. (1993). Dust envelopes of post-AGB stars and supergiants – A near infrared polarimetric imaging survey. In Luminous High-Latitude Stars. ASP Conference Series, Vol. 45. San Francisco, USA: Astronomical Society of the Pacific, p. 151.Google Scholar
Kastner, J. H., Li, J., Siebenmorgen, R., and Weintraub, D. A. (2002). Infrared space observatory polarimetric imaging of the Egg Nebula (RAFGL 2688). The Astronomical Journal, 123(5), 2658.CrossRefGoogle Scholar
Kemball, A. J. and Diamond, P. J. (1997). Imaging the magnetic field in the atmosphere of TX Camelopardalis. The Astrophysical Journal Letters, 481(2), L111.CrossRefGoogle Scholar
King, D. J., Perkins, H. G., Scarrott, S. M., and Taylor, K. N. R. (1981). Optical polarization in the bipolar nebula M2-9. Monthly Notices of the Royal Astronomical Society, 196, 45.CrossRefGoogle Scholar
Königl, A. and Pudritz, R. E. (2000). Disk winds and the accretion-outflow connection. In Protostars and Planets IV. Tuscon: University of Arizona Press, p. 759.Google Scholar
Kwok, S. (2000). The Origin and Evolution of Planetary Nebulae. Cambridge University Press.CrossRefGoogle Scholar
Kylafis, N. D. (1983). Linear polarization of interstellar radio-frequency absorption lines and magnetic field direction. The Astrophysical Journal, 275, 135144.CrossRefGoogle Scholar
Lagadec, E., Verhoelst, T., Mékarnia, D.et al. (2011). A mid-infrared imaging catalogue of post-asymptotic giant branch stars. Monthly Notices of the Royal Astronomical Society, 417(1), 3292.CrossRefGoogle Scholar
Lazarian, A. (2007). Tracing magnetic fields with aligned grains. Journal of Quantitative Spectroscopy and Radiative Transfer, 106(1), 225256.CrossRefGoogle Scholar
Matt, S., Balick, B., Winglee, R., and Goodson, A. (2000). Disk formation by asymptotic giant branch winds in dipole magnetic fields. The Astrophysical Journal, 545(2), 965.CrossRefGoogle Scholar
McCall, A. and Hough, J. H. (1980). Near infrared polarimetry of cool stars. Astronomy and Astrophysics Supplement Series, 42, 141154.Google Scholar
Meixner, M., Ueta, T., Dayal, A.et al. (1999). A mid-infrared imaging survey of proto-planetary nebula candidates. The Astrophysical Journal Supplement Series, 122(1), 221.CrossRefGoogle Scholar
Michalsky, J. J., Stokes, R. A., and Ekstrom, P. A. (1976). Polarization studies of the infrared source CRL 2688 at visible wavelengths. The Astrophysical Journal, 203, L43.CrossRefGoogle Scholar
Min, M., Jeffers, S. V., Canovas, H.et al. (2013). The color dependent morphology of the post-AGB star HD 161796. Astronomy and Astrophysics, 554, 1525.CrossRefGoogle Scholar
Morris, M. (1975). The IRC +10216 molecular envelope. The Astrophysical Journal, 197, 603610.CrossRefGoogle Scholar
Murakawa, K. and Izumiura, H. (2012). Dust shell model of the water fountain source IRAS 16342–3814. Astronomy and Astrophysics, 544(A58), 17.CrossRefGoogle Scholar
Murakawa, K., Ohnaka, K., Driebe, T.et al. (2008). Near-IR bispectrum speckle interferometry, AO imaging polarimetry, and radiative transfer modeling of the proto-planetary nebula Frosty Leonis. Astronomy and Astrophysics, 489(1), 195206.CrossRefGoogle Scholar
Murakawa, K., Izumiura, H., Oudmaijer, R. D., and Maud, L. T. (2013). Investigation of dust properties of the proto-planetary nebula IRAS 18276-1431. Monthly Notices of the Royal Astronomical Society, 430(4), 31123119.CrossRefGoogle Scholar
Ney, E. P., Merrill, K. M., Becklin, E. E., Neugebauer, G., and Wynn-Williams, C. G. (1975). Studies of the infrared source CRL 2688. The Astrophysical Journal, 198, L129L131.CrossRefGoogle Scholar
Norris, B. R., Tuthill, P. G., Ireland, M. J. et al. (2012). A close halo of large transparent grains around extreme red giant stars. Nature, 484(7393), 220222.CrossRefGoogle ScholarPubMed
Oppenheimer, B. D., Bieging, J. H., Schmidt, G. D.et al. (2005). Spectropolarimetry and radiative transfer modeling of three proto-planetary nebulae. The Astrophysical Journal, 624(2), 957.CrossRefGoogle Scholar
Parthasarathy, M., Jain, S. K., and Sarkar, G. (2005). Polarization measurements of post-asymptotic giant branch candidates and related stars. The Astronomical Journal, 129(5), 2451.CrossRefGoogle Scholar
Pérez-Sánchez, A. F. and Vlemmings, W. H. T. (2013). Linear polarization of submillimetre masers. Tracing magnetic fields with ALMA. Astronomy and Astrophysics, 551, A1524.CrossRefGoogle Scholar
Pérez-Sánchez, A. F., Vlemmings, W. H. T., and Chapman, J. M. (2011). Water maser polarization of the water fountains IRAS 15445-5449 and IRAS 18043-2116. Monthly Notices of the Royal Astronomical Society, 418(2), 14021407.CrossRefGoogle Scholar
Perkins, H. G., Scarrott, S. M., Murdin, P., and Bingham, R. G. (1981). The Red Rectangle – Its polarization and structure. Monthly Notices of the Royal Astronomical Society, 196, 635639.CrossRefGoogle Scholar
Ramstedt, S., Maercker, M., Olofsson, G., Olofsson, H., and Schoeier, F. L. (2011). Imaging the circumstellar dust distribution around AGB stars with the NOT/PolCor instrument. In Asymmetric Planetary Nebulae 5 Conference, Vol. 1. San Francisco CA: Astronomical Society of the Pacific.Google Scholar
Renzini, A. (1981). Red giants as precursors of planetary nebulae. In Physical Processes in Red Giants. The Netherlands: Springer, pp. 431446.CrossRefGoogle Scholar
Sabin, L., Zijlstra, A. A., and Greaves, J. S. (2007). Magnetic fields in planetary nebulae and post-AGB nebulae. Monthly Notices of the Royal Astronomical Society, 376(1), 378386.CrossRefGoogle Scholar
Sabin, L., Zhang, Q., Zijlstra, A. A.et al. (2014). Submillimetre polarization and magnetic field properties in the envelopes of protoplanetary nebulae CRL 618 and OH 231.8+ 13.2. Monthly Notices of the Royal Astronomical Society, 438(2), 17941804.CrossRefGoogle Scholar
Sahai, R. and Trauger, J. T. (1998). Multipolar bubbles and jets in low-excitation planetary nebulae: Toward a new understanding of the formation and shaping of planetary nebulae. The Astronomical Journal, 116(3), 1357.CrossRefGoogle Scholar
Sahai, R., Hines, D. C., Kastner, J. H.et al. (1998). The structure of the prototype bipolar protoplanetary nebula CRL 2688 (Egg Nebula): Broadband, polarimetric, and H2 line imaging with NICMOS on the Hubble Space Telescope. The Astrophysical Journal Letters, 492(2), L163.CrossRefGoogle Scholar
Schmidt, G. D., Angel, J. R. P., and Beaver, E. A. (1978). Photoelectric polarization maps of two bipolar reflection nebulae. The Astrophysical Journal, 219, 477479.CrossRefGoogle Scholar
Shu, F. H., Najita, J. R., Shang, H., and Li, Z.-Y. (2000). X-Winds Theory and Observations. Protostars and Planets IV. Tuscon: University of Arizona Press.Google Scholar
Smith, C. H., Wright, C. M., Aitken, D. K., Roche, P. F., and Hough, J. H. (2000). Studies in mid-infrared spectropolarimetry–II. An atlas of spectra. Monthly Notices of the Royal Astronomical Society, 312(2), 327361.CrossRefGoogle Scholar
Soker, N. (2001). Extrasolar planets and the rotation and axisymmetric mass-loss of evolved stars. Monthly Notices of the Royal Astronomical Society, 324(3), 699704.CrossRefGoogle Scholar
Soker, N. (2002). Why every bipolar planetary nebula is “unique.”Monthly Notices of the Royal Astronomical Society, 330(2), 481486.CrossRefGoogle Scholar
Steffen, M., Szczerba, R., and Schönberner, D. (1998). Hydrodynamical models and synthetic spectra of circumstellar dust shells around AGB stars. Astronomy and Astrophysics, 337, 149177.Google Scholar
Su, K. Y., Hrivnak, B. J., Kwok, S., and Sahai, R. (2003). High-resolution near-infrared imaging and polarimetry of four proto-planetary nebulae. The Astronomical Journal, 126(2), 848.CrossRefGoogle Scholar
Taylor, K. N. R. and Scarrott, S. M. (1980). The Boomerang Nebula – A highly polarized bipolar. Monthly Notices of the Royal Astronomical Society, 193, 321327.CrossRefGoogle Scholar
Trammell, S. R., Dinerstein, H. L., and Goodrich, R. W. (1994). Evidence for the early onset of aspherical structure in the planetary nebula formation process: Spectropolarimetry of post-AGB stars. The Astronomical Journal, 108, 984997.CrossRefGoogle Scholar
Tuthill, P. G., Monnier, J. D., Danchi, W. C., Wishnow, E. H., and Haniff, C. A. (2000). Michelson interferometry with the Keck I telescope. Publications of the Astronomical Society of the Pacific, 112(770), 555565.CrossRefGoogle Scholar
Tuthill, P., Lacourb, S., Amicoc, P.et al. (2010). Sparse aperture masking (SAM) at NAOS/CONICA on the VLT. In Proceedings of the International Society for Optics and Photonics, Vol. 7735. Bellingham WA: International Society for Optics and Photonics, p. 77351O.Google Scholar
Ueta, T., Meixner, M., and Bobrowsky, M. (2000). A Hubble Space Telescope snapshot survey of proto-planetary nebula candidates: Two types of axisymmetric reflection nebulosities. The Astrophysical Journal, 528(2), 861.CrossRefGoogle Scholar
Ueta, T., Murakawa, K., and Meixner, M. (2005). Hubble Space Telescope NICMOS imaging polarimetry of proto-planetary nebulae: Probing the dust shell structure via polarized light. The Astronomical Journal, 129(3), 1625.CrossRefGoogle Scholar
Ueta, T., Murakawa, K., and Meixner, M. (2007). Hubble Space Telescope NICMOS imaging polarimetry of proto-planetary nebulae. II. Macromorphology of the dust shell structure via polarized light. The Astronomical Journal, 133(4), 1345.CrossRefGoogle Scholar
Van Winckel, H. (2003). Post-AGB stars. Annual Review of Astronomy and Astrophysics, 41(1), 391427.CrossRefGoogle Scholar
Vlemmings, W. (2011). Magnetic fields around (post-) AGB stars and (pre-) planetary nebulae. In Asymmetric Planetary Nebulae 5 Conference, Vol. 1. San Francisco, USA: Astronomical Society of the Pacific. arXiv preprint arXiv:1009.4067.Google Scholar
Vlemmings, W. H. T. and Diamond, P. J. (2006). Intrinsic properties of the magnetically collimated H2O maser jet of W43A. The Astrophysical Journal Letters, 648(1), L59.CrossRefGoogle Scholar
Vlemmings, W. H. T., Ramstedt, S., Rao, R., and Maercker, M. (2012). Polarization of thermal molecular lines in the envelope of IK Tauri. Astronomy and Astrophysics, 540, L3L8.CrossRefGoogle Scholar
Warren-Smith, R. F., Scarrott, S. M., Murdin, P., and Bingham, R. G. (1979). Optical polarization map of Eta Carinae and the nature of its outburst. Monthly Notices of the Royal Astronomical Society, 187, 761768.CrossRefGoogle Scholar
Waters, L. B. F. M., Waelkens, C., Van Winckel, H.et al. (1998). An oxygen-rich dust disk surrounding an evolved star in the Red Rectangle. Nature, 391(6670), 868871.CrossRefGoogle Scholar
Weintraub, D. A., Kastner, J. H., Hines, D. C., and Sahai, R. (2000). Pinpointing the position of the post-asymptotic giant branch star at the core of RAFGL 2688 using polarimetric imaging with NICMOS. The Astrophysical Journal, 531(1), 401.CrossRefGoogle Scholar
Zijlstra, A. A., te Lintel Hekkert, P., Pottasch, S. R., Caswell, J. L., Ratag, M., and Habing, H. J. (1989). OH maser emission from young planetary nebulae. Astronomy and Astrophysics, 217, 157178.Google Scholar
Zuckerman, B., Gilra, D. P., Turner, B. E., Morris, M., and Palmer, P. (1976). CRL 2688 – A post-carbon-star object and probable planetary nebula progenitor. The Astrophysical Journal, 205, L15L19.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×