Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-19T20:45:37.662Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  03 December 2009

Fiona Simpson
Affiliation:
Georg-August-Universität, Göttingen, Germany
Karsten Bahr
Affiliation:
Georg-August-Universität, Göttingen, Germany
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achache, J., Courtillot, V., Ducruix, J. and LeMouel, J. L. (1980). The late 1960s secular variation impulse: further constraints on deep mantle conductivity. Phys. Earth Planet. Inter. 23: 72–75.CrossRefGoogle Scholar
Agarwal, A. K. and Weaver, J. T. (1990). A three-dimensional numerical study of induction in southern India by an electrojet source. Phys. Earth Planet. Inter. 60: 1–17.CrossRefGoogle Scholar
Akima, H. (1978). A method of bivariate interpolation and smooth surface fitting for irregularly distributed data points. ACM Trans. Math. Software 4: 148–159.CrossRefGoogle Scholar
Aldredge, L. R. (1977). Deep mantle conductivity. J. Geophys. Res. 82: 5427–5431.CrossRefGoogle Scholar
Allmendinger, R. W., Sharp, J. W., Tish, D.et al. (1983). Cenozoic and Mesozoic structure of the eastern basin and range province, Utah, from COCORP seismic-reflection data. Geology, 11: 532–536.2.0.CO;2>CrossRefGoogle Scholar
Archie, G. E. (1942). The electrical resistivity log as an aid to determining some reservoir characteristics. Trans. A. I. M. E. 146: 389–409.Google Scholar
Bahr, K. (1988). Interpretation of the magnetotelluric impedance tensor: regional induction and local telluric distortion. J. Geophys. 62: 119–127.Google Scholar
Bahr, K. (1991). Geological noise in magnetotelluric data: a classification of distortion types. Phys. Earth Planet. Inter. 66: 24–38.CrossRefGoogle Scholar
Bahr, K. (1997). Electrical anisotropy and conductivity distribution functions of fractal random networks and of the crust: the scale effect of connectivity. Geophys. J. Int. 130: 649–660.CrossRefGoogle Scholar
Bahr, K., Bantin, M., Jantos, Chr., Schneider, E. and Storz, W. (2000). Electrical anisotropy from electromagnetic array data: implications for the conduction mechanism and for distortion at long periods. Phys. Earth Planet. Inter. 119: 237–257.CrossRefGoogle Scholar
Bahr, K. and Duba, A. (2000). Is the asthenosphere electrically anisotropic?Earth Planet. Sci. Lett. 178: 87–95.CrossRefGoogle Scholar
Bahr, K. and Filloux, J. H. (1989). Local Sq response functions from EMSLAB data. J. Geophys. Res. 94: 14.195–14.200.CrossRefGoogle Scholar
Bahr, K., Olsen, N. and Shankland, T. J. (1993). On the combination of the magnetotelluric and the geomagnetic depth sounding method for resolving an electrical conductivity increase at 400 km depth. Geophys. Res. Lett. 20: 2937–2940.CrossRefGoogle Scholar
Bahr, K. and Simpson, F. (2002). Electrical anisotropy below slow- and fast-moving plates: paleoflow in the upper mantle?Science 295: 1270–1272.CrossRefGoogle ScholarPubMed
Bahr, K., Smirnov, M., Steveling, E. and BEAR working group (2002). A gelation analogy of crustal formation derived from fractal conductive structures. J. Geophys. Res. 107: (B11) 2314, doi: 10.1029/2001JB000506.CrossRefGoogle Scholar
Bai, D., Meju, M. and Liao, Z. (2001). Magnetotelluric images of deep crustal structure of the Rehai geothermal field near Tengchong, Southern China. Geophys. J. Int. 147: 677–687.CrossRefGoogle Scholar
Banks, R. J. (1969). Geomagnetic variations and the electrical conductivity of the upper mantle. Geophys. J. R. Astr. Soc 17: 457–487.CrossRefGoogle Scholar
Bell, D. R. and Rossman, G. R. (1992). Water in the Earth's mantle: the role of nominally anhydrous minerals. Science 255: 1391–1397.CrossRefGoogle ScholarPubMed
Berdichevsky, M. N. (1999). Marginal notes on magnetotellurics. Surv. Geophys., 20: 341–375.CrossRefGoogle Scholar
Berdichevsky, M. N. and Dimitriev, V. I. (1976). Distortion of magnetic and electric fields by near-surface lateral inhomogeneities. Acta Geodaet., Geophys. et Montanist. Acad. Sci. Hung. 11: 447–483.Google Scholar
Bigalke, J. (2003). Analysis of conductivity of random media using DC, MT, and TEM. Geophysics 68: 506–515.CrossRefGoogle Scholar
BIRPS and ECORS (1986). Deep seismic profiling between England, France and Ireland. J. Geol. Soc. London 143: 45–52.CrossRef
Boas, M. L. (1983). Mathematical Methods in the Physical Sciences, 2nd edn. New York: Wiley & Sons.Google Scholar
Brasse, H., Lezaeta, P., Rath, V., Schwalenberg, K., Soyer, W. and Haak, V. (2002). The Bolivian Altiplano conductivity anomaly. J. Geophys. Res. 107: (B5), doi: 10.1029/2001JB000391.CrossRefGoogle Scholar
Brasse, H. and Junge, A. (1984). The influence of geomagnetic variations on pipelines and an application of large-scale magnetotelluric depth sounding, J. Geophys. 55: 31–36.Google Scholar
Brasse, H. and Rath, V. (1997). Audiomagnetotelluric investigations of shallow sedimentary basins in Northern Sudan. Geophys. J. Int. 128: 301–314.CrossRefGoogle Scholar
Brown, C. (1994). Tectonic interpretation of regional conductivity anomalies. Surv. Geophys. 15: 123–157.CrossRefGoogle Scholar
Cagniard, L. (1953). Basic theory of the magnetotelluric method of geophysical prospecting. Geophysics 18: 605–645.CrossRefGoogle Scholar
Campbell, W. H. (1987). Introduction to electrical properties of the Earth's mantle. Pure Appl. Geophys. 125: 193–204.CrossRefGoogle Scholar
Campbell, W. H.(1997). Introduction to Geomagnetic Fields. Cambridge: Cambridge University Press.Google Scholar
Cantwell, T. (1960). Detection and analysis of low-frequency magnetotelluric signals. Ph.D. Thesis, Dept. Geol. Geophys. M.I.T., Cambridge, Mass.
Chamberlain, T. C. (1899). On Lord Kelvin's address on the age of the Earth. Annual Report of the Smithsonian Institution, pp. 223–246.
Chapman, D. S. and Furlong, K. P. (1992). Thermal state of the continental crust. In The Continental Lower Crust, eds. Fountain, D. M., Arculus, R. J. and Kay, R. W.. Amsterdam: Elsevier, pp. 81–143.Google Scholar
Chapman, S. (1919). The solar and lunar diurnal variations of terrestrial magnetism. Phil. Trans. Roy. Soc. London A218: 1–118.Google Scholar
Chapman, S. and Ferraro, V. C. A. (1931). A new theory of magnetic storms. Terr. Mag. 36: 77–97.CrossRefGoogle Scholar
Chave, A. D. and Smith, J. T. (1994). On electric and magnetic galvanic distortion tensor decompositions. J. Geophys. Res. 99: 4669–4682.CrossRefGoogle Scholar
Clarke, J., Gamble, T. D., Goubau, W. M., Koch, R. H. and Miracky, R. F. (1983). Remote-reference magnetotellurics: equipment and procedures. Geophys. Prosp. 31: 149–170.CrossRefGoogle Scholar
Constable, S. C., Parker, R. L. and Constable, C. G. (1987). Occam's inversion: A practical algorithm for generating smooth models from EM sounding data. Geophysics 52: 289–300.CrossRefGoogle Scholar
Constable, S. C., Orange, A. S., Hoversten, G. M. and Morrison, H. F. (1998). Marine magnetotellurics for petroleum exploration. Part I: a seafloor equipment system. Geophysics 63: 816–825.CrossRefGoogle Scholar
Constable, S. C., Shankland, T. J. and Duba, A. (1992). The electrical conductivity of an isotropic olivine mantle. J. Geophys. Res. 97: 3397–3404.CrossRefGoogle Scholar
Davies, G. F. and Richards, M. A. (1992). Mantle convection. J. Geol. 100: 151–206.CrossRefGoogle Scholar
Debayle, E. and Kennett, B. L. N. (2000). The Australian continental upper mantle: structure and deformation inferred from surface waves, J. Geophys. Res. 105: 25423–25450.CrossRefGoogle Scholar
DEKORP Research Group (1991). Results of the DEKORP 1 (BELCORP-DEKORP) deep seismic reflection studies in the western part of the Rhenish Massif. Geophys. J. Int. 106: 203–227.CrossRef
Dobbs, E. R. (1985). Electromagnetic Waves. London: Routledge & Kegan Paul.Google Scholar
Dosso, H. W. and Oldenburg, D. W. (1991). The similitude equation in magnetotelluric inversion. Geophys. J. Int. 106: 507–509.CrossRefGoogle Scholar
Duba, A., Heard, H. C. and Schock, R. N. (1974). Electrical conductivity of olivine at high pressure and under controlled oxygen fugacity. J. Geophys. Res. 79: 1667–1673.CrossRefGoogle Scholar
Duba, A., Heikamp, S., Meurer, W., Nover, G. and Will, G. (1994). Evidence from borehole samples for the role of accessory minerals in lower-crustal conductivity. Nature 367: 59–61.CrossRefGoogle Scholar
Duba, A. and Nicholls, I. A. (1973). The influence of oxidation state on the electrical conductivity of olivine. Earth Planet. Sci. Lett. 18: 279–284.CrossRefGoogle Scholar
Duba, A., Peyronneau, J., Visocekas, F. and Poirier, J.-P. (1997). Electrical conductivity of magnesiowüstite/perovskite produced by laser heating of synthetic olivine in the diamond anvil cell. J. Geophys. Res. 102: 27723–27728.CrossRefGoogle Scholar
Duba, A. and Shankland, T. J. (1982) Free carbon and electrical conductivity in the mantle. Geophys. Res. Lett. 11: 1271–1274.CrossRefGoogle Scholar
Duba, A. and der Gönna, J. (1994) Comment on change of electrical conductivity of olivine associated with the olivine–spinel transition. Phys. Earth Planet. Inter. 82: 75–77.CrossRefGoogle Scholar
Echternacht, F., Tauber, S., Eisel, M., Brasse, H., Schwarz, G. and Haak, V. (1997). Electromagnetic study of the active continental margin in northern Chile. Phys. Earth Planet. Inter. 102: 69–87.CrossRefGoogle Scholar
Eckhardt, D. H. (1963). Geomagnetic induction in a concentrically stratified Earth. J. Geophys. Res. 68: 6273–6278.CrossRefGoogle Scholar
Edwards, R. E. and Nabighian, M. N. (1981). Extensions of the magnetometric resistivity (MMR) method. Geophysics 46: 459–460.Google Scholar
Egbert, G. D. (1997). Robust multiple-station magnetotelluric data processing. Geophys. J. Int. 130: 475–496.CrossRefGoogle Scholar
Egbert, G. D. and Booker, J. R. (1986). Robust estimation of geomagnetic transfer functions. Geophys. J. R. Astr. Soc. 87: 173–194.CrossRefGoogle Scholar
Eisel, M. and Bahr, K. (1993). Electrical anisotropy under British Columbia: interpretation after magnetotelluric tensor decomposition. J. Geomag. Geoelectr. 45: 1115–1126.CrossRefGoogle Scholar
Eisel, M. and Haak, V. (1999). Macro-anisotropy of the electrical conductivity of the crust: a magneto-telluric study from the German Continental Deep Drilling site (KTB). Geophys. J. Int. 136: 109–122.CrossRefGoogle Scholar
ELEKTB group (1997). KTB and the electrical conductivity of the crust. J. Geophys. Res. 102: 18289–18305.CrossRef
Engels, M., Korja, T. and BEAR Working Group (2002). Multisheet modeling of the electrical conductivity structure in the Fennoscandian Shield. Earth, Planets and Space 54: 559–573.CrossRefGoogle Scholar
Evans, C. J., Chroston, P. N. and Toussaint-Jackson, J. E. (1982). A comparison study of laboratory measured electrical conductivity in rocks with theoretical conductivity based on derived pore aspect ratio spectra. Geophys. J. R. Astr. Soc. 71: 247–260.CrossRefGoogle Scholar
Ferguson, I. J., Lilley, F. E. M. and Filloux, J. H. (1990). Geomagnetic induction in the Tasman Sea and electrical conductivity structure beneath the Tasman seafloor. Geophys. J. Int. 102: 299–312.CrossRefGoogle Scholar
Filloux, J. H. (1973). Techniques and instrumentation for studies of natural electromagnetic induction at sea. Phys. Earth Planet. Inter. 7: 323–338.CrossRefGoogle Scholar
Filloux, J. H. (1987). Instrumentation and experimental methods for oceanic studies. In Geomagnetism, Volume 1, ed. Jacobs, J. A.. London: Academic Press, pp. 143–248.Google Scholar
Fiordelisi, A., Manzella, A., Buonasorte, G., Larsen, J. C. and Mackie, R. L. (2000). MT methodology in the detection of deep, water-dominated geothermal systems. In Proceedings World Geothermal Congress, eds. Iglesias, E., Blackwell, D., Hunt, T., Lund, J. and Tamanyu, S.. Tokyo: International Geothermal Association, pp. 1121–1126.Google Scholar
Fischer, G. and Quang, B. V. (1982). Parameter trade-off in one-dimensional magnetotelluric modelling. J. Geophys. 51: 206–215.Google Scholar
Fischer, G., Schnegg, P.-A., Pegiron, M. and Quang, B. V. (1981). An analytic one-dimensional magnetotelluric inversion scheme. Geophys. J. R. Astr. Soc. 67: 257–278.CrossRefGoogle Scholar
Freund, R. J. and Wilson, W. J. (1998). Regression Analysis: Statistical modeling of a response variable. San Diego: Academic Press.Google Scholar
Frost, B. R. (1979). Mineral equilibria involving mixed volatiles in a C–O–H fluid phase: the stabilities of graphite and siderite. Amer. J. Sci., 279: 1033–1059.CrossRefGoogle Scholar
Frost, B. R., Fyfe, W. S., Tazaki, K. and Chan, T. (1989). Grain boundary graphite in rocks and implications for high electrical conductivity in the crust. Nature 340: 134–136.CrossRefGoogle Scholar
Furlong, K. P. and Fountain, D. M. (1986). Continental crustal underplating: thermal considerations and seismic-petrologic consequences. J. Geophys. Res. 91: 8285–8294.CrossRefGoogle Scholar
Furlong, K. P. and Langston, C. A. (1990). Geodynamic aspects of the Loma Prieta Earthquake, Geophys. Res. Lett. 17: 1457–1460.CrossRefGoogle Scholar
Gaherty, J. B. and Jordan, T. H. (1995). Lehmann discontinuity as the base of an anisotropic layer beneath continents. Science 268: 1468–1471.CrossRefGoogle ScholarPubMed
Gamble, T. D., Goubau, W. M. and Clarke, J. (1979). Magnetotellurics with a remote magnetic reference. Geophysics 44: 53–68.CrossRefGoogle Scholar
Gauss, C. F. (1838). Erläuterungen zu den Terminszeichnungen und den Beobachtungszahlen. In Resultate aus den Beobachtungen des magnetischen Vereins im Jahre 1837, eds. Gauss, C. F. and Weber, W.. Göttingen: Dieterichsche Buchhandlung, pp. 130–137.Google Scholar
Gauss, C. F.(1839). Allgemeine Theorie des Erdmagnetismus. In Resultate aus den Beobachtungen des magnetischen Vereins im Jahre 1838, eds. Gauss, C. F. and Weber, W.. Göttingen: Dieterichsche Buchhandlung, pp. 1–57.Google Scholar
Glassley, W. E. (1982). Fluid evolution and graphite genesis in the deep continental crust. Nature 295: 229–231.CrossRefGoogle Scholar
Goubau, W. M., Gamble, T. D. and Clarke, J. (1979). Magnetotelluric data analysis: removal of bias. Geophysics 43: 1157–1166.CrossRefGoogle Scholar
Graham, G. (1724). An account of observations made of the variation of the horizontal needle at London in the latter part of the year 1722 and beginning 1723. Phil. Trans. Roy. Soc. London 383: 96–107.CrossRefGoogle Scholar
Grammatica, N. and Tarits, P. (2002). Contribution at satellite altitude of electromagnetically induced anomalies arising from a three-dimensional heterogeneously conducting Earth, using Sq as an inducing source field. Geophys. J. Int. 151: 913–923.CrossRefGoogle Scholar
Groom, R. W. and Bahr, K. (1992). Correction for near-surface effects: decomposition of the magnetotelluric impedance tensor and scaling corrections for regional resistivities: a tutorial. Surv. Geophys. 13: 341–379.CrossRefGoogle Scholar
Groom, R. W. and Bailey, R. C. (1989). Decomposition of the magnetotelluric impedance tensor in the presence of local three-dimensional galvanic distortion. J. Geophys. Res. 94: 1913–1925.CrossRefGoogle Scholar
Groot-Hedlin, C. (1991). Removal of static shift in two dimensions by regularized inversion. Geophysics 56: 2102–2106.CrossRefGoogle Scholar
Groot-Hedlin, C. and Constable, S. C. (1990). Occam's inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics 55: 1613–1624.CrossRefGoogle Scholar
Guéguen, Y., David, Chr. and Gavrilenko, P. (1991). Percolation networks and fluid transport in the crust. Geophys. Res. Lett. 18: 931–934.CrossRefGoogle Scholar
Guéguen, Y. and Palciauskas, V. (1994). Introduction to the Physics of Rocks. Princeton: Princeton University Press.Google Scholar
Haak, V. and Hutton, V. R. S. (1986). Electrical resistivity in continental lower crust. In The Nature of the Lower Continental Crust, eds. Dawson, J. B., Carswell, D. A., Hall, J., and Wedepohl, K. H.. Geological Society Special Publication 24: 35–49. Oxford: Blackwell Scientific Publications.Google Scholar
Haak, V., Stoll, J. and Winter, H. (1991). Why is the electrical resistivity around KTB hole so low?Phys. Earth Planet. Inter. 66: 12–23.CrossRefGoogle Scholar
Hamano, Y. (2002). A new time-domain approach for the electromagnetic induction problem in a three-dimensional heterogeneous Earth. Geophys. J. Int. 150: 753–769.CrossRefGoogle Scholar
Hashin, Z. and Shtrikman, S. (1962). A variational approach to the theory of the effective magnetic permeability of multiphase materials. J. Appl. Phys. 33: 3125–3131.CrossRefGoogle Scholar
Hautot, S. and Tarits, P. (2002). Effective electrical conductivity of 3-D heterogeneous porous media. Geophys. Res. Lett. 29, No. 14, 10.1029/2002GL014907.CrossRefGoogle Scholar
Hautot, S., Tarits, P., Whaler, K., Gall, B., Tiercelin, J-J and Turdu, C. (2000). Deep structure of the Baringo Rift Basin (central Kenya) from three-dimensional magnetotelluric imaging: implications for rift evolution. J. Geophys Res. 105: 23 493–23 518.CrossRefGoogle Scholar
Heinson, G. S. (1999). Electromagnetic studies of the lithosphere and asthenosphere. Surv. Geophys. 20: 229–255.CrossRefGoogle Scholar
Heinson, G. S. and Lilley, F. E. M. (1993). An application of thin sheet electromagnetic modelling to the Tasman Sea. Phys. Earth Planet. Inter. 81: 231–251.CrossRefGoogle Scholar
Hermance, J. F. (1979). The electrical conductivity of materials containing partial melt: a simple model of Archie's law. Geophys. Res. Lett. 6: 613–616.CrossRefGoogle Scholar
Hirsch, L. M, Shankland, T. and Duba, A. (1993). Electrical conduction and polaron mobility in Fe-bearing olivine. Geophys. J. Int. 114: 36–44.CrossRefGoogle Scholar
Hobbs, B. A. (1992). Terminology and symbols for use in studies of electromagnetic induction in the Earth. Surv. Geophys., 13: 489–515.CrossRefGoogle Scholar
Hohmann, G. W. (1975). Three-dimensional induced polarisation and electromagnetic modeling. Geophysics 40: 309–324.CrossRefGoogle Scholar
Hoversten, G. M., Morrison, H. F. and Constable, S. C. (1998). Marine magnetotellurics for petroleum exploration, Part II: Numerical analysis of subsalt resolution. Geophysics 63: 826–840.CrossRefGoogle Scholar
Huber, P. J. (1981). Robust Statistics. New York: John Wiley & Sons.CrossRefGoogle Scholar
Huenges, E., Engeser, B., Erzinger, J., Kessels, W., Kück, J. and Pusch, G. (1997). The permeable crust: geohydraulic properties down to 9101 m depth. J. Geophys. Res. 102: 18255–18265.CrossRefGoogle Scholar
Hyndman, R. D. and Shearer, P. M. (1989). Water in the lower crust: modelling magnetotelluric and seismic reflection results. Geophys. J. R. Astr. Soc. 98: 343–365.CrossRefGoogle Scholar
Jackson, J. D. (1975). Classical Electrodynamics, 2nd edn. New York: John Wiley & Sons.Google Scholar
Jenkins, G. M. and Watts, D. G. (1968). Spectral Analysis and its Applications. San Francisco: Holden-Day.Google Scholar
Ji, S., Rondenay, S., Mareschal, M. and Senechal, G. (1996). Obliquity between seismic and electrical anisotropies as a potential indicator of movement sense for ductile shear zones in the upper mantle. Geology 24: 1033–1036.2.3.CO;2>CrossRefGoogle Scholar
Jödicke, H. (1992). Water and graphite in the Earth's crust – an approach to interpretation of conductivity models. Surv. Geophys. 13: 381–407.CrossRefGoogle Scholar
Jones, A. G. (1977). Geomagnetic induction studies in southern Scotland. Ph.D. Thesis, University of Edinburgh.
Jones, A. G.(1982). On the electrical crust–mantle structure in Fennoscandia: no Moho, and the asthenosphere revealed?Geophys. J. R. Astr. Soc. 68: 371–388.CrossRefGoogle Scholar
Jones, A. G.(1983). The problem of current channelling: a critical review. Geophysical Surveys 6: 79–122.CrossRefGoogle Scholar
Jones, A. G.(1992). Electrical conductivity of the continental lower crust. In Continental Lower Crust, eds. Fountain, D. M., Arculus, R. J. and Kay, R. W.. Amsterdam: Elsevier, pp. 81–143.Google Scholar
Jones, A. G.(1999). Imaging the continental upper mantle using electromagnetic methods. Lithos 48: 57–80.CrossRefGoogle Scholar
Jones, A. G., Groom, R. W., and Kurtz, R. D. (1993). Decomposition and modelling of the BC87 data set. J. Geomag. Geoelectr. 45: 1127–1150.CrossRefGoogle Scholar
Jones, F. W. and Pascoe, L. J. (1971). A general computer program to determine the perturbation of alternating electric currents in a two-dimensional model of a region of uniform conductivity with an embedded inhomogeneity. Geophys. J. R. Astr. Soc. 24: 3–30.Google Scholar
Jones, F. W. and Pascoe, L. J.(1972). The perturbation of alternating geomagnetic fields by three-dimensional conductivity inhomogeneities. Geophys. J. R. Astr. Soc. 27: 479–485.CrossRefGoogle Scholar
Jones, F. W. and Price, A. T. (1970). The perturbations of alternating geomagnetic fields by conductivity anomalies. Geophys. J. R. Astr. Soc. 20: 317–334.CrossRefGoogle Scholar
Jordan, T. H. (1978). Composition and development of the continental tectosphere. Nature 274: 544–548.CrossRefGoogle Scholar
Junge, A. (1990). A new telluric KCl probe using Filloux's Ag–AgCl electrode. Pure and Applied Geophysics 134: 589–598.CrossRefGoogle Scholar
Junge, A. (1994) Induzierte erdelektrische Felder–neue Beobachtungen in Norddeutschland und im Bramwald. Habilitation Thesis. Göttingen.
Karato, S. (1990). The role of hydrogen in the electrical conductivity of the upper mantle. Nature 347: 272–273.CrossRefGoogle Scholar
Karato, S. and Jung, H. (2003). Effects of pressure on high-temperature dislocation creep in olivine. Phil. Mag. 83, 401–414.CrossRefGoogle Scholar
Kariya, K. A. and Shankland, T. J. (1983). Electrical conductivity of dry lower crustal rocks. Geophysics 48: 52–61.CrossRefGoogle Scholar
Katsube, T. J. and Mareschal, M. (1993). Petrophysical model of deep electrical conductors: graphite lining as a source and its disconnection during uplift. J. Geophys. Res., 98: 8019–8030.CrossRefGoogle Scholar
Keller, G. V. and Frischknecht, F. C. (1966). Electrical methods in geophysical prospecting. In International Series of Monographs in Electromagnetic Waves, 10, eds. Cullen, A. L., Fock, V. A., and Wait, J. R.. Oxford: Pergammon Press.Google Scholar
Kellet, R. L., Mareschal, M. and Kurtz, R. D. (1992). A model of lower crustal electrical anisotropy for the Pontiac Subprovince of the Canadian Shield. Geophys. J. Int. 111: 141–150.CrossRefGoogle Scholar
Kemmerle, K. (1977). On the influence of local anomalies of conductivity at the Earth's surface on magnetotelluric data. Acta Geodaet., Geophys. et Montanist. Acad. Sci. Hung. 12: 177–181.Google Scholar
Key, K. and Constable, S. C. (2002). Broadband marine MT exploration of the East Pacific Rise at 9°50′N. Geophys. Res. Lett. 29: (22), 2054 doi:10.1029/2002GL016035.CrossRefGoogle Scholar
Keyser, M., Ritter, J. R. R. and Jordan, M. (2002). 3D shear-wave velocity structure of the Eifel plume, Germany. Earth Planet. Sci. Lett. 203: 59–82.CrossRefGoogle Scholar
Kohlstedt, D. L. and Mackwell, S. (1998). Diffusion of hydrogen and intrinsic point defects in olivine. Z. Phys. Chem. 207: 147–162.CrossRefGoogle Scholar
Koslovskaya, E. and Hjelt, S.-E. (2000). Modeling of elastic and electrical properties of solid–liquid rock system with fractal microstructure. Phys. Chem. Earth (A) 25: 195–200.CrossRefGoogle Scholar
Kozlovsky, Y. A. (1984). The world's deepest well. Scientific American, 251: 106–112.CrossRefGoogle Scholar
Kuckes, A. F. (1973). Relations between electrical conductivity of a mantle and fluctuating magnetic fields. Geophys. J. R. Astr. Soc. 32: 119–131.CrossRefGoogle Scholar
Kurtz, R. D., Craven, J. A., Niblett, E. R. and Stevens, R. A. (1993). The conductivity of the crust and mantle beneath the Kapuskasing uplift: electrical anisotropy in the upper mantle. Geophys. J. Int. 113: 483–498.CrossRefGoogle Scholar
Kuvshinov, A. V., Olsen, N., Avdeev, D. B. and Pankratov, O. V. (2002). Electromagnetic induction in the oceans and the anomalous behaviour of coastal C-responses for periods up to 20 days. Geophys. Res. Lett. 29: (12), doi:10.1029/2002GL014409.CrossRefGoogle Scholar
Lahiri, B. N. and Price, A. T. (1939). Electromagnetic induction in non-uniform conductors, and the determination of the conductivity of the Earth from terrestrial magnetic variations. Phil. Trans. Roy. Soc. London (A) 237: 509–540.CrossRefGoogle Scholar
Large, D. J., Christy, A. G. and Fallick, A. E. (1994). Poorly crystalline carbonaceous matter in high grade metasediments: implications for graphitisation and metamorphic fluid compositions. Contrib. Mineral. Petrol. 116: 108–116.CrossRefGoogle Scholar
Larsen, J. C. (1975). Low frequency (0.1–6.0 cpd) electromagnetic study of deep mantle electrical conductivity beneath the Hawaiian islands. Geophys. J. R. Astr. Soc. 43: 17–46.CrossRefGoogle Scholar
Larsen, J. C., Mackie, R. L., Manzella, A., Fiordelisi, A. and Rieven, S. (1996). Robust smooth magnetotelluric transfer functions. Geophys. J. Int. 124: 801–819.CrossRefGoogle Scholar
Lee, C. D., Vine, F. J. and Ross, R. G. (1983). Electrical conductivity models for the continental crust based on high grade metamorphic rocks. Geophys. J. R. Astr. Soc. 72: 353–372.CrossRefGoogle Scholar
Léger, A., Mathez, E. A., Duba, A., Pineau, F. and Ginsberg, S. (1996). Carbonaceous material in metamorphosed carbonate rocks from the Waits River Formation, NE Vermont, and its effect on electrical conductivity. J. Geophys. Res., 101: 22 203–22 214.CrossRefGoogle Scholar
Leibecker, J., Gatzemeier, A., Hönig, M., Kuras, O. and Soyer, W. (2002). Evidence of electrical anisotropic structures in the lower crust and the upper mantle beneath the Rhenish Shield. Earth Planet Sci. Lett. 202: 289–302.CrossRefGoogle Scholar
Li, S., Unsworth, M., Booker, J. R., Wie, W., Tan, H. and Jones, A. G. (2003). Partial melt or aqueous fluid in the mid-crust of Southern Tibet? Constraints from INDEPTH magnetotelluric data. Geophys. J. Int. 153: 289–304.CrossRefGoogle Scholar
Lines, L. R. and Jones, F. W. (1973). The perturbation of alternating geomagnetic fields by three-dimensional island structures. Geophys. J. R. Astr. Soc. 32: 133–154.CrossRefGoogle Scholar
Lizzaralde, D., Chave, A., Hirth, G. and Schultz, A. (1995). Northeastern Pacific mantle conductivity profile from long-period magnetotelluric sounding using Hawaii-to-California submarine cable data. J. Geophys. Res. 100: 17837–17854.CrossRefGoogle Scholar
Mackie, R. L., Bennett, B. R. and Madden, T. R. (1988). Long-period MT measurements near the central California coast: a land-locked view of the conductivity structure under the Pacific ocean. J. Geophys. Res. 95: 181–194.Google Scholar
Mackie, R. L. and Madden, T. R. (1993). Conjugate direction relaxation solutions for 3D magnetotelluric modelling. Geophysics 58: 1052–1057.CrossRefGoogle Scholar
Mackie, R. L., Madden, T. R. and Wannamaker, P. E. (1993). Three-dimensional magnetotelluric modeling using difference equations – Theory and comparisons to integral equation solutions. Geophysics 58: 215–226.CrossRefGoogle Scholar
Mackie, R. L., Rieven, S. and Rodi, W. (1997). Users Manual and Software Documentation for Two-Dimensional Inversion of Magnetotelluric Data. San Francisco: GSY-USA Inc.Google Scholar
Mackwell, S. J. and Kohlstedt, D. L. (1990). Diffusion of hydrogen in olivine: implications for water in the mantle. J. Geophys. Res. 95: 5079–5088.CrossRefGoogle Scholar
Madden, T. R. (1976). Random networks and mixing laws. Geophysics, 41: 1104–1125.CrossRefGoogle Scholar
Madden, T. and Nelson, P. (1964, reprinted 1986). A defence of Cagniard's magnetotelluric method. In Society of Exploration Geophysicists, Geophysics Reprint Series, No. 5., ed. Vozoff, K..Google Scholar
Manoj, C. and Nagarajan, N. (2003). The application of artificial neural networks to magnetotelluric time-series analysis. Geophys. J. Int. 153: 409–423.CrossRefGoogle Scholar
Mareschal, M. (1986). Modelling of natural sources of magnetospheric origin in the interpretation of regional studies: a review. Surv. Geophys. 8: 261–300.CrossRefGoogle Scholar
Mareschal, M., Fyfe, W. S., Percival, J. and Chan, T. (1992). Grain-boundary graphite in Kapuskasing gneisses and implication for lower crustal conductivity. Nature 357: 674–676.CrossRefGoogle Scholar
Mareschal, M., Kellett, R. L., Kurtz, R. D., Ludden, J. N. and Bailey, R. C. (1995). Archean cratonic roots, mantle shear zones and deep electrical anisotropy. Nature 375: 134–137.CrossRefGoogle Scholar
Mareschal, M., Kurtz, R. D., Chouteau, M. and Chakridi, R. (1991). A magnetotelluric survey on Manitoulin Island and Bruce Peninsula along GLIMPCE seismic line J: black shales mask the Grenville Front. Geophys. J. Int. 105: 173–183.CrossRefGoogle Scholar
Masero, W., Fischer, G. and Schnegg, P.-A. (1997). Electrical conductivity and crustal deformation from magnetotelluric results in the region of the Araguainha impact, Brazil. Phys. Earth Planet. Inter. 101: 271–289.CrossRefGoogle Scholar
Mathez, E. A., Duba, A. G., Peach, C. L., Léger, A., Shankland, T. J. and Plafker, G. (1995). Electrical conductivity and carbon in metamorphic rocks of the Yukon-Tanana Terrane, Alaska. J. Geophys. Res., 196: 10187–10196.CrossRefGoogle Scholar
Mathur, S. P. (1983). Deep crustal reflection results from the central Eromanga Basin, Australia. Tectonophysics 100: 163–173.CrossRefGoogle Scholar
Matsumoto, T., Honda, M., McDougall, I., Yatsevich, I. and O'Reilly, S. (1997). Plume-like neon in a metasomatic apatite from the Australian lithospheric mantle. Nature 388: 162–164.CrossRefGoogle Scholar
McKenzie, D. (1979). Finite deformation during fluid flow. Geophys. J. R. Astr. Soc. 58: 689–715.CrossRefGoogle Scholar
Meju, M. A. (1996). Joint inversion of TEM and distorted MT soundings: some effective practical considerations. Geophysics 61: 56–65.CrossRefGoogle Scholar
Meju, M. A.(2002). Geoelectromagnetic exploration for natural resources: models, case studies and challenges. Surv. Geophys. 23: 133–206.CrossRefGoogle Scholar
Meju, M. A.Fontes, S. L., Oliveira, M. F. B., Lima, J. P. R., Ulugergerli, E. U. and Carrasquilla, A. A. (1999). Regional aquifer mapping using combined VES-TEM-AMT / EMAP methods in the semiarid eastern margin of Parnaiba Basin, Brazil. Geophysics 64: 337–356.CrossRefGoogle Scholar
Merzer, A. M. and Klemperer, S. L. (1992). High electrical conductivity in a model lower crust with unconnected, conductive, seismically reflective layers. Geophys. J. Int. 108: 895–905.CrossRefGoogle Scholar
Morris, J. D., Leeman, W. P. and Tera, F. (1990). The subducted component in island arc lavas: constraints from Be isotopes and B–Be systematics. Nature 344: 31–36.CrossRefGoogle ScholarPubMed
Nelson, K. D. (1991). A unified view of craton evolution motivated by recent deep seismic reflection and refraction results. Geophys. J. Int. 105: 25–35.CrossRefGoogle Scholar
Nesbitt, B. E. (1993). Electrical resistivities of crustal fluids. J. Geophys. Res. 98: 4301–4310.CrossRefGoogle Scholar
Newton, R. C., Smith, J. V. and Windley, B. F. (1980). Carbonic metamorphism, granulites and crustal growth. Nature 288: 45–50.CrossRefGoogle Scholar
Nolasco, R., Tarits, P., Filloux, J. H. and Chave, A. D. (1998). Magnetotelluric imaging of the Society Island hotspot. J. Geophys. Res. 103: 30287–30309.CrossRefGoogle Scholar
Oettinger, G., Haak, V. and Larsen, J. C. (2001). Noise reduction in magnetotelluric time-series with a new signal-noise separation method and its application to a field experiment in the Saxonian Granulite Massif. Geophys. J. Int. 146: 659–669.CrossRefGoogle Scholar
Ogawa, Y. and Uchida, T. (1996). A two-dimensional magnetotelluric inversion assuming Gaussian static shift. Geophys. J. Int. 126: 69–76.CrossRefGoogle Scholar
Ogunade, S. O. (1995). Analysis of geomagnetic variations in south-western Nigeria. Geophys. J. Int. 121: 162–172.CrossRefGoogle Scholar
Olsen, N. (1998). The electrical conductivity of the mantle beneath Europe derived from C-responses from 3 to 720 hr. Geophys. J. Int. 133: 298–308.CrossRefGoogle Scholar
Olsen, N.(1999). Induction studies with satellite data. Surv. Geophys. 20: 309–340.CrossRefGoogle Scholar
Osipova, I. L., Hjelt, S. -E. and Vanyan, L. L. (1989). Source field problems in northern parts of the Baltic Shield. Phys. Earth Planet. Inter. 53: 337–342.CrossRefGoogle Scholar
Otnes, R. K. and Enochson, L. (1972). Digital Time Series Analysis. New York: John Wiley & Sons.Google Scholar
Padovani, E. and Carter, J. (1977). Aspects of the deep crustal evolution beneath south central New Mexico. In The Earth's Crust: Its Nature and Physical Properties, ed. Heacock, J. G., Amer. Geophys. Union Monogr. Series, 20: 19–55.
Pádua, M. B., Padilha, A. L. and Vitorello, Í. (2002). Disturbances on magnetotelluric data due to DC electrified railway: a case study from southeastern Brazil. Earth, Planets and Space 54: 591–596.CrossRefGoogle Scholar
Park, S. K. (1985). Distortion of magnetotelluric sounding curves by three-dimensional structures. Geophysics 50: 785–797.CrossRefGoogle Scholar
Parker, E. N. (1958). Dynamics of the interplanetary gas and magnetic field. Astrophys. J. 128: 664–676.CrossRefGoogle Scholar
Parker, R. L. (1980). The inverse problem of electromagnetic induction: existence and construction of solutions based on incomplete data. J. Geophys. Res. 85: 4421–4428.CrossRefGoogle Scholar
Parker, R. L. and Whaler, K. A. (1981). Numerical methods for establishing solutions to the inverse problem of electromagnetic induction. J. Geophys. Res. 86: 9574–9584.CrossRefGoogle Scholar
Parkinson, W. (1959). Directions of rapid geomagnetic variations. Geophys. J. R. Astr. Soc. 2: 1–14.CrossRefGoogle Scholar
Parkinson, W. (1971). An analysis of the geomagnetic diurnal variation during the IGY. Gerlands Beitr. Geophys. 80: 199–232.Google Scholar
Parzen, E. (1961). Mathematical considerations in the estimation of spectra: comments on the discussion of Messers, Tukey and Goodman. Technometrics 3: 167–190, 232–234.CrossRefGoogle Scholar
Parzen, E. (1992). Modern Probability Theory and its Applications. New York: John Wiley & Sons.Google Scholar
Pek, J. and Verner, T. (1997). Finite-difference modelling of magnetotelluric fields in two-dimensional anisotropic media. Geophys. J. Int. 128: 505–521.CrossRefGoogle Scholar
Petiau, G. and Dupis, A. (1980). Noise, temperature coefficient and long time stability of electrodes for telluric observations. Geophys. Prosp. 28: 792–804.CrossRefGoogle Scholar
Pous, J., Heise, W., Schnegg, P. -A., Munoz, G., Marti, J. and Soriano, C. (2002). Magnetotelluric study of Las Cañadas caldera (Tenerife, Canary Islands): structural and hydrogeological implications. Earth Planet. Sci. Lett. 204: 249–263.CrossRefGoogle Scholar
Prácser, E. and Szarka, L. (1999). A correction to Bahr's ‘phase deviation’ method for tensor decomposition. Earth, Planets and Space 51: 1019–1022.CrossRefGoogle Scholar
Praus, O., Pecova, J., Petr, V, Babuska, V. and Plomerova, J. (1990). Magnetotelluric and seismological determination of the lithosphere–asthenosphere transition in Central Europe. Phys. Earth Planet. Inter. 60: 212–228.CrossRefGoogle Scholar
Presnall, D. C., Simmons, C. L.Porath, H. (1972). Changes in electriacal conductivitty of a syenthetic basalt during melting. J. Geophys. Res. 77: 5665–5672.CrossRefGoogle Scholar
Price, A. T. (1962). The theory of magnetotelluric fields when the source field is considered. J. Geophys. Res. 67: 1907–1918.CrossRefGoogle Scholar
Primdahl, F. (1979). The fluxgate magnetometer. J. Phys. E: Sci. Instrum. 12: 241–253.CrossRefGoogle Scholar
Raiche, A. P. (1974). An integral equation approach to three-dimensional modelling. Geophys. J. R. Astr. Soc. 36: 363–376.CrossRefGoogle Scholar
Ranganayaki, R. P. (1984). An interpretative analysis of magnetotelluric data. Geophysics 49: 1730–1748.CrossRefGoogle Scholar
Ranganayaki, R. P. and Madden, T. R. (1980). Generalized thin sheet analysis in magnetotellurics: an extension of Price's analysis. Geophys. J. R. Astr. Soc. 60: 445–457.CrossRefGoogle Scholar
Rangarajan, G. K. (1989). Indices of geomagnetic activity. In Geomagnetism, Volume 3, ed. Jacobs, J. A.. London: Academic Press, pp. 323–384.Google Scholar
Rauen, A. and Laštovičková, M. (1995). Investigation of electrical anisotropy in the deep borehole KTB. Surv. Geophys. 16: 37–46CrossRefGoogle Scholar
Reddy, I. K., Rankin, D. and Phillips, R. J. (1977). Three-dimensional modelling in magnetotelluric and magnetic variational sounding. Geophys. J. R. Astr. Soc. 51: 313–325.Google Scholar
Reynolds, J. M. (1997). An Introduction to Applied and Environmental Geophysics. New York: John Wiley & Sons.Google Scholar
Ribe, N. M. (1989). Seismic anisotropy and mantle flow. J. Geophys. Res. 94: 4213–4223.CrossRefGoogle Scholar
Ritter, P. and Banks, R. J. (1998). Separation of local and regional information in distorted GDS response functions by hypothetical event analysis. Geophys. J. Int. 135: 923–942.CrossRefGoogle Scholar
Ritter, J. R. R., Jordan, M., Christensen, U. R. and Achauer, U. (2001). A mantle plume below the Eifel volcanic fields, Germany. Earth Planet. Sci. Lett. 186: 7–14.CrossRefGoogle Scholar
Roberts, J. J., Duba, A. G., Mathez, E. A., Shankland, T. J. and Kinsler, R. (1999). Carbon-enhanced electrical conductivity during fracture of rocks. J. Geophys. Res. 104: 737–747.CrossRefGoogle Scholar
Roberts, J. J. and Tyburczy, J. A. (1991). Frequency-dependent electrical properties of polycrystalline olivine compacts. J. Geophys. Res. 96: 16205–16222.CrossRefGoogle Scholar
Roberts, J. J. and Tyburczy, J. A. (1999). Partial-melt electrical conductivity: influence of melt-composition. J. Geophys. Res. 104: 7055–7065.CrossRefGoogle Scholar
Ross, J. V. and Bustin, R. M. (1990). The role of strain energy in creep graphitisation of anthracite. Nature 343: 58–60.CrossRefGoogle Scholar
Rumble, D. R. and Hoering, T. C. (1986). Carbon isotope geochemistry of graphite vein deposits from New Hampshire, U.S.A. Geochim. Cosmochim. Acta 50: 1239–1247.CrossRefGoogle Scholar
Schilling, F. R., Partzsch, G. M., Brasse, H. and Schwarz, G. (1997). Partial melting below the magmatic arc in the central Andes deduced from geoelectromagnetic field experiments and laboratory data. Phys. Earth Planet. Inter. 103: 17–31.CrossRefGoogle Scholar
Schmeling, H. (1985). Numerical models on the influence of partial melt on elastic, anelastic and electrical properties of rocks. Part I: elasticity and anelasticity. Phys. Earth Planet. Inter. 41: 105–110.CrossRefGoogle Scholar
Schmeling, H.(1986). Numerical models on the influence of partial melt on elastic, anelastic and electrical properties of rocks. Part II: electrical conductivity. Phys. Earth Planet. Inter. 43: 123–136.CrossRefGoogle Scholar
Schmucker, U. (1970). Anomalies of geomagnetic variations in the Southwestern United States. Bull. Scripps Inst. Ocean., University of California, 13.
Schmucker, U.(1973). Regional induction studies: a review of methods and results. Phys. Earth Planet. Inter. 7: 365–378.CrossRefGoogle Scholar
Schmucker, U.(1978). Auswertungsverfahren Göttingen. In Protokoll Kolloquium Elektromagnetische Tiefenforschung, eds. Haak, V. and Homilius, J.. Free University Berlin, pp. 163–189.Google Scholar
Schmucker, U.(1987). Substitute conductors for electromagnetic response estimates. Pure and Appl. Geophys. 125: 341–367.CrossRefGoogle Scholar
Schmucker, U.(1995). Electromagnetic induction in thin sheets: integral equations and model studies in two dimensions. Geophys. J. Int. 121: 173–190.CrossRefGoogle Scholar
Schultz, A., Kurtz, R. D., Chave, A. D. and Jones, A. G. (1993). Conductivity discontinuities in the upper mantle beneath a stable craton. Geophys. Res. Lett. 20: 2941–2944.CrossRefGoogle Scholar
Schuster, A. (1889). The diurnal variation of terrestrial magnetism. Phil. Trans. Roy. Soc. London A210: 467–518.CrossRefGoogle Scholar
Sénéchal, R., Rondenay, G. S., Mareschal, M., Guilbert, J. and Poupinet, G. (1996). Seismic and electrical anisotropies in the lithosphere across the Grenville Front, Canada. Geophys. Res. Lett. 23: 2255–2258.CrossRefGoogle Scholar
Shankland, T. J. and Ander, M. E. (1983). Electrical conductivity, temperatures, and fluids in the lower crust. J. Geophys. Res. 88: 9475–9484.CrossRefGoogle Scholar
Shankland, T. J., Duba, A., Mathez, E. A. and Peach, C. L. (1997). Increase of electrical conductivity with pressure as an indication of conduction through a solid phase in mid-crustal rocks. J. Geophys. Res. 102: 14741–14750.CrossRefGoogle Scholar
Shankland, T. J., Peyronneau, J. and Poirier, J. -P. (1993). Electrical conductivity of the Earth's lower mantle. Nature 366: 453–455.CrossRefGoogle Scholar
Shankland, T. J. and Waff, H. S. (1977). Partial melting and electrical conductivity anomalies in the upper mantle. J. Geophys. Res. 82: 5409–5417.CrossRefGoogle Scholar
Siegesmund, S., Vollbrecht, A. and Nover, G. (1991). Anisotropy of compressional wave velocities, complex electrical resistivity and magnetic susceptibility of mylonites from the deeper crust and their relation to the rock fabric. Earth Planet. Sci. Lett. 105: 247–259.CrossRefGoogle Scholar
Siemon, B. (1997). An interpretation technique for superimposed induction anomalies. Geophys. J. Int. 130: 73–88.CrossRefGoogle Scholar
Simpson, F. (1999). Stress and seismicity in the lower continental crust: a challenge to simple ductility and implications for electrical conductivity mechanisms. Surveys in Geophysics 20: 201–227.CrossRefGoogle Scholar
Simpson, F.(2000). A three-dimensional electromagnetic model of the southern Kenya Rift: departure from two-dimensionality as a possible consequence of a rotating stress field. J. Geophys. Res. 105: 19321–19334.CrossRefGoogle Scholar
Simpson, F.(2001a). Fluid trapping at the brittle–ductile transition re-examined. Geofluids 1: 123–136.CrossRefGoogle Scholar
Simpson, F.(2001b). Resistance to mantle flow inferred from the electromagnetic strike of the Australian upper mantle. Nature 412: 632–635.CrossRefGoogle Scholar
Simpson, F.(2002a). Intensity and direction of lattice-preferred orientation of olivine: are electrical and seismic anisotropies of the Australian mantle reconcilable? Earth Planet Sci. Lett. 203: 535–547.CrossRefGoogle Scholar
Simpson, F.(2002b). A comparison of electromagnetic distortion and resolution of upper mantle conductivities beneath continental Europe and the Mediterranean using islands as windows. Phys. Earth Planet. Inter. 129: 117–130.CrossRefGoogle Scholar
Simpson, F. and Warner, M. (1998). Coincident magnetotelluric, P-wave and S-wave images of the deep continental crust beneath the Weardale granite, NE England: seismic layering, low conductance and implications against the fluids paradigm. Geophys. J. Int. 133: 419–434.CrossRefGoogle Scholar
Sims, W. E., Bostick, F. X. Jr. and Smith, H. W. (1971). The estimation of magnetotelluric impedance tensor elements from measured data. Geophysics 36: 938–942.CrossRefGoogle Scholar
Smith, T. and Booker, J. (1988). Magnetotelluric inversion for minimum structure. Geophysics 53: 1565–1576.CrossRefGoogle Scholar
Smith, T. and Booker, J.(1991). Rapid inversion of two- and three-dimensional magnetotelluric data. J. Geophys. Res., 96: 3905–3922.CrossRefGoogle Scholar
Soyer, W. and Brasse, H. (2001). A magneto-variation array study in the central Andes of N Chile and SW Bolivia. Geophys. Res. Lett. 28: 3023–3026.CrossRefGoogle Scholar
Spitzer, K. (1993). Observations of geomagnetic pulsations and variations with a new borehole magnetometer down to depths of 3000 m. Geophys. J. Int. 115: 839–848.CrossRefGoogle Scholar
Spitzer, K.(1995). A 3-D finite difference algorithm for dc resistivity modelling using conjugate gradient methods. Geophys. J. Int. 123: 903–914.CrossRefGoogle Scholar
Srivastava, S. P. (1965). Methods of interpretation of magnetotelluric data when the source field is considered. J. Geophys. Res. 70: 945–954.CrossRefGoogle Scholar
Stacey, F. D. (1992). Physics of the Earth. Brisbane: Brookfield Press.Google Scholar
Stalder, R. and Skogby, H. (2003). Hydrogen diffusion in natural and synthetic orthopyroxene. Phys. Chem. Minerals 30: 12–19.CrossRefGoogle Scholar
Stanley, W. D. (1989). Comparison of geoelectrical/tectonic models for suture zones in the western U.S.A. and eastern Europe: are black shales a possible source of high conductivities? Phys. Earth Planet. Inter. 53: 228–238.CrossRefGoogle Scholar
Stauffer, D. and Aharony, A. (1992). Introduction to Percolation Theory, 2nd edn. London: Taylor and Francis.Google Scholar
Sternberg, B. K., Washburne, J. C. and Pellerin, L. (1988). Correction for the static shift in magnetotellurics using transient electromagnetic soundings. Geophysics 53: 1459–1468.CrossRefGoogle Scholar
Stesky, R. M. and Brace, W. F. (1973). Electrical conductivity of serpentinized rocks to 6 kilobars. J. Geophys. Res. 78: 7614–7621.CrossRefGoogle Scholar
Stoerzel, A. (1996). Estimation of geomagnetic transfer functions from non-uniform magnetic fields induced by the equatorial electrojet: a method to determine static shifts in magnetotelluric data. J. Geophys. Res. 101: 917–927.CrossRefGoogle Scholar
Strack, K. M. (1992). Exploration with Deep Transient Electromagnetics. Amsterdam: Elsevier.Google Scholar
Swift, C. M. (1967). A magnetotelluric investigation of an electrical conductivity anomaly in the South Western United States. Ph.D. Thesis, M.I.T., Cambridge, Mass.
Swift, C. M.(1986). A magnetotelluric investigation of an electrical conductivity anomaly in the South Western United States. In Magnetotelluric Methods, ed. Vozoff, K.. Tulsa: Society of Exploration Geophysicists, pp. 156–166.Google Scholar
Tikhonov, A. N. (1950). The determination of the electrical properties of deep layers of the Earth's crust. Dokl. Acad. Nauk. SSR 73: 295–297 (in Russian).Google Scholar
Tikhonov, A. N.(1986). On determining electrical characteristics of the deep layers of the Earth's crust. In Magnetotelluric Methods, ed. Vozoff, K.. Tulsa: Society of Exploration Geophysicists, pp. 2–3.Google Scholar
Ting, S. C. and Hohmann, G. W. (1981). Integral equation modeling of three-dimensional magnetotelluric response. Geophysics 46: 182–197.CrossRefGoogle Scholar
Tipler, P. A. (1991). Physics for Scientists and Engineers. New York: Worth Publishers.Google Scholar
Torres-Verdin, C. and Bostick, F. X. (1992). Principles of spatial surface electric field filtering in magnetotellurics: electromagnetic array profiling (EMAP). Geophysics 57: 603–622.CrossRefGoogle Scholar
Touret, J. (1986). Fluid inclusions in rocks from the lower continental crust. In The Nature of the Lower Continental Crust, eds. Dawson, J. B., Carswell, D. A., Hall, J. and Wedepohl, K. H.. Geological Society Special Publication24: 161–172. Oxford: Blackwell Scientific Publications.Google Scholar
Tyburczy, J. A. and Waff, H. S. (1983). Electrical conductivity of molten basalt and andersite to 25 kilobars pressure: geophysical significance and implications for charge transport and melt structure. J. Geophys. Res. 88: 2413–2430.CrossRefGoogle Scholar
Valdivia, J. A., Sharma, A. S. and Papadopoulos, K. (1996). Prediction of magnetic storms by nonlinear models. Geophys. Res. Lett. 23: 2899–2902.CrossRefGoogle Scholar
Vanyan, L. L. and Gliko, A. O. (1999). Seismic and electromagnetic evidence of dehydration as a free water source in the reactivated crust. Geophys. J. Int. 137: 159–162.CrossRefGoogle Scholar
Vasseur, G. and Weidelt, P. (1977). Bimodal electromagnetic induction in non-uniform thin sheets with an application to the northern Pyrenean induction anomaly. Geophys. J. R. Astr. Soc. 51: 669–690.CrossRefGoogle Scholar
Vozoff, K. (1972). The magnetotelluric method in the exploration of sedimentary basins. Geophysics 37: 98–141.CrossRefGoogle Scholar
Waff, H. S. (1974). Theoretical considerations on electrical conductivity in a partially molten mantle and implications for geothermometry. J. Geophys. Res. 79: 4003–4010.CrossRefGoogle Scholar
Wait, J. R. (1954). On the relation between telluric currents and the Earth's magnetic field. Geophysics 19: 281–289.CrossRefGoogle Scholar
Wang, L. J. and Lilley, F. E. M. (1999). Inversion of magnetometer array data by thin-sheet modelling. Geophys. J. Int. 137: 128–138.CrossRefGoogle Scholar
Wang, L., Zhang, Y. and Essene, E. (1996). Diffusion of the hydrous component in pyrope. Amer. Mineral. 81: 706–718.CrossRefGoogle Scholar
Wannamaker, P. E., Hohmann, G. W. and Ward, S. H. (1984a). Magnetotelluric responses of three-dimensional bodies in layered Earths. Geophysics 49: 1517–1533.CrossRefGoogle Scholar
Wannamaker, P. E., Hohmann, G. W. and San Filipo, W. A. (1984b). Electromagnetic modelling of three-dimensional bodies in layered Earths using integral equations. Geophysics 48: 1402–1405.Google Scholar
Wannamaker, P. E., Stodt, J. A. and Rijo, L. (1986). A stable finite element solution for two-dimensional magnetotelluric modelling. Geophys. J. R. Astr. Soc. 88: 277–296.CrossRefGoogle Scholar
Wannamaker, P. E. (2000). Comment on ‘The petrological case for a dry lower crust’ by Bruce W. D. Yardley and John W. Valley. J. Geophys. Res. 105: 6057–6064.CrossRefGoogle Scholar
Weaver, J. T. (1994). Mathematical Methods for Geo-Electromagnetic Induction. Taunton, Somerset, UK: Research Studies Press Ltd.Google Scholar
Wei, W., Unsworth, M., Jones, A. G.et al. (2001). Detection of widespread fluids in the Tibetan crust by magnetotelluric studies. Science 292: 716–718.CrossRefGoogle ScholarPubMed
Weidelt, P. (1972). The inverse problem of geomagnetic induction. Z. Geophys. 38: 257–289.Google Scholar
Weidelt, P.(1975). Electromagnetic induction in three-dimensional structures. J. Geophys. Res. 41: 85–109.Google Scholar
Weidelt, P.(1985). Construction of conductance bounds from magnetotelluric impedances. J. Geophys. 57: 191–206.Google Scholar
Wiese, H. (1962). Geomagnetische tiefensondierung. Teil II: Die Streichrichtung der Untergrundstrukturen des elektrischen Widerstandes, erschlossen aus geomagnetischen variationen. Geofis. Pura et Appl. 52: 83–103.CrossRefGoogle Scholar
Winch, D. E. (1981). Spherical harmonic analysis of geomagnetic tides, 1964–1965. Phil. Trans. Roy. Soc. Lond. A303: 1–104.CrossRefGoogle Scholar
Woods, S. C., Mackwell, S. and Dyar, D. (2000). Hydrogen in diopside: diffusion profiles. Amer. Mineral. 85: 480–487.CrossRefGoogle Scholar
Xu, Y., Poe, B. T., Shankland, T. J. and Rubie, D. C. (1998). Electrical conductivity of olivine, wadsleyite, and ringwoodite under upper-mantle conditions. Science 280: 1415–1418.CrossRefGoogle ScholarPubMed
Xu, Y. and Shankland, T. J. (1999). Electrical conductivity of orthopyroxene and its high pressure phases. Geophys. Res. Lett. 26: 2645–2648.CrossRefGoogle Scholar
Xu, Y., Shankland, T. J. and Poe, B. T. (2000). Laboratory-based electrical conductivity in the Earth's mantle. J. Geophys. Res. 105: 27865–27875.CrossRefGoogle Scholar
Yardley, B. W. D. (1986). Is there water in the deep continental crust? Nature 323: 111.CrossRefGoogle Scholar
Yardley, B. W. D. and Valley, J. W. (1997). The petrological case for a dry lower crust. J. Geophys. Res. 102: 12173–12185.CrossRefGoogle Scholar
Yardley, B. W. D. and Valley, J. W. (2000). Reply to Wannamaker (2000) “Comment on ‘The petrological case for a dry lower crust’”J. Geophys. Res. 105: 6065–6068.CrossRefGoogle Scholar
Zhdanov, M. S., Varentsov, I. M., Weaver, J. T., Golubev, N. G. and Krylov, V. A. (1997). Methods for modelling electromagnetic fields. Results from COMMEMI – the international project on the comparison of modelling methods for electromagnetic induction. J. Appl. Geophys. 37: 133–271.CrossRefGoogle Scholar
Zhang, P., Pedersen, L. B., Mareschal, M. and Chouteau, M. (1993). Channelling contribution to tipper vectors: a magnetic equivalent to electrical distortion. Geophys. J. Int. 113: 693–700.CrossRefGoogle Scholar
Zonge, K. L. and Hughes, L. H. (1991). Controlled-source audio-frequency magnetotellurics. In Electromagnetic Methods in Applied Geophysics. Volume 2: Applications, Part B., ed. Nabighian, M. C.. Tulsa: Society of Exploration Geophysicists, pp. 713–809.CrossRefGoogle Scholar
Achache, J., Courtillot, V., Ducruix, J. and LeMouel, J. L. (1980). The late 1960s secular variation impulse: further constraints on deep mantle conductivity. Phys. Earth Planet. Inter. 23: 72–75.CrossRefGoogle Scholar
Agarwal, A. K. and Weaver, J. T. (1990). A three-dimensional numerical study of induction in southern India by an electrojet source. Phys. Earth Planet. Inter. 60: 1–17.CrossRefGoogle Scholar
Akima, H. (1978). A method of bivariate interpolation and smooth surface fitting for irregularly distributed data points. ACM Trans. Math. Software 4: 148–159.CrossRefGoogle Scholar
Aldredge, L. R. (1977). Deep mantle conductivity. J. Geophys. Res. 82: 5427–5431.CrossRefGoogle Scholar
Allmendinger, R. W., Sharp, J. W., Tish, D.et al. (1983). Cenozoic and Mesozoic structure of the eastern basin and range province, Utah, from COCORP seismic-reflection data. Geology, 11: 532–536.2.0.CO;2>CrossRefGoogle Scholar
Archie, G. E. (1942). The electrical resistivity log as an aid to determining some reservoir characteristics. Trans. A. I. M. E. 146: 389–409.Google Scholar
Bahr, K. (1988). Interpretation of the magnetotelluric impedance tensor: regional induction and local telluric distortion. J. Geophys. 62: 119–127.Google Scholar
Bahr, K. (1991). Geological noise in magnetotelluric data: a classification of distortion types. Phys. Earth Planet. Inter. 66: 24–38.CrossRefGoogle Scholar
Bahr, K. (1997). Electrical anisotropy and conductivity distribution functions of fractal random networks and of the crust: the scale effect of connectivity. Geophys. J. Int. 130: 649–660.CrossRefGoogle Scholar
Bahr, K., Bantin, M., Jantos, Chr., Schneider, E. and Storz, W. (2000). Electrical anisotropy from electromagnetic array data: implications for the conduction mechanism and for distortion at long periods. Phys. Earth Planet. Inter. 119: 237–257.CrossRefGoogle Scholar
Bahr, K. and Duba, A. (2000). Is the asthenosphere electrically anisotropic?Earth Planet. Sci. Lett. 178: 87–95.CrossRefGoogle Scholar
Bahr, K. and Filloux, J. H. (1989). Local Sq response functions from EMSLAB data. J. Geophys. Res. 94: 14.195–14.200.CrossRefGoogle Scholar
Bahr, K., Olsen, N. and Shankland, T. J. (1993). On the combination of the magnetotelluric and the geomagnetic depth sounding method for resolving an electrical conductivity increase at 400 km depth. Geophys. Res. Lett. 20: 2937–2940.CrossRefGoogle Scholar
Bahr, K. and Simpson, F. (2002). Electrical anisotropy below slow- and fast-moving plates: paleoflow in the upper mantle?Science 295: 1270–1272.CrossRefGoogle ScholarPubMed
Bahr, K., Smirnov, M., Steveling, E. and BEAR working group (2002). A gelation analogy of crustal formation derived from fractal conductive structures. J. Geophys. Res. 107: (B11) 2314, doi: 10.1029/2001JB000506.CrossRefGoogle Scholar
Bai, D., Meju, M. and Liao, Z. (2001). Magnetotelluric images of deep crustal structure of the Rehai geothermal field near Tengchong, Southern China. Geophys. J. Int. 147: 677–687.CrossRefGoogle Scholar
Banks, R. J. (1969). Geomagnetic variations and the electrical conductivity of the upper mantle. Geophys. J. R. Astr. Soc 17: 457–487.CrossRefGoogle Scholar
Bell, D. R. and Rossman, G. R. (1992). Water in the Earth's mantle: the role of nominally anhydrous minerals. Science 255: 1391–1397.CrossRefGoogle ScholarPubMed
Berdichevsky, M. N. (1999). Marginal notes on magnetotellurics. Surv. Geophys., 20: 341–375.CrossRefGoogle Scholar
Berdichevsky, M. N. and Dimitriev, V. I. (1976). Distortion of magnetic and electric fields by near-surface lateral inhomogeneities. Acta Geodaet., Geophys. et Montanist. Acad. Sci. Hung. 11: 447–483.Google Scholar
Bigalke, J. (2003). Analysis of conductivity of random media using DC, MT, and TEM. Geophysics 68: 506–515.CrossRefGoogle Scholar
BIRPS and ECORS (1986). Deep seismic profiling between England, France and Ireland. J. Geol. Soc. London 143: 45–52.CrossRef
Boas, M. L. (1983). Mathematical Methods in the Physical Sciences, 2nd edn. New York: Wiley & Sons.Google Scholar
Brasse, H., Lezaeta, P., Rath, V., Schwalenberg, K., Soyer, W. and Haak, V. (2002). The Bolivian Altiplano conductivity anomaly. J. Geophys. Res. 107: (B5), doi: 10.1029/2001JB000391.CrossRefGoogle Scholar
Brasse, H. and Junge, A. (1984). The influence of geomagnetic variations on pipelines and an application of large-scale magnetotelluric depth sounding, J. Geophys. 55: 31–36.Google Scholar
Brasse, H. and Rath, V. (1997). Audiomagnetotelluric investigations of shallow sedimentary basins in Northern Sudan. Geophys. J. Int. 128: 301–314.CrossRefGoogle Scholar
Brown, C. (1994). Tectonic interpretation of regional conductivity anomalies. Surv. Geophys. 15: 123–157.CrossRefGoogle Scholar
Cagniard, L. (1953). Basic theory of the magnetotelluric method of geophysical prospecting. Geophysics 18: 605–645.CrossRefGoogle Scholar
Campbell, W. H. (1987). Introduction to electrical properties of the Earth's mantle. Pure Appl. Geophys. 125: 193–204.CrossRefGoogle Scholar
Campbell, W. H.(1997). Introduction to Geomagnetic Fields. Cambridge: Cambridge University Press.Google Scholar
Cantwell, T. (1960). Detection and analysis of low-frequency magnetotelluric signals. Ph.D. Thesis, Dept. Geol. Geophys. M.I.T., Cambridge, Mass.
Chamberlain, T. C. (1899). On Lord Kelvin's address on the age of the Earth. Annual Report of the Smithsonian Institution, pp. 223–246.
Chapman, D. S. and Furlong, K. P. (1992). Thermal state of the continental crust. In The Continental Lower Crust, eds. Fountain, D. M., Arculus, R. J. and Kay, R. W.. Amsterdam: Elsevier, pp. 81–143.Google Scholar
Chapman, S. (1919). The solar and lunar diurnal variations of terrestrial magnetism. Phil. Trans. Roy. Soc. London A218: 1–118.Google Scholar
Chapman, S. and Ferraro, V. C. A. (1931). A new theory of magnetic storms. Terr. Mag. 36: 77–97.CrossRefGoogle Scholar
Chave, A. D. and Smith, J. T. (1994). On electric and magnetic galvanic distortion tensor decompositions. J. Geophys. Res. 99: 4669–4682.CrossRefGoogle Scholar
Clarke, J., Gamble, T. D., Goubau, W. M., Koch, R. H. and Miracky, R. F. (1983). Remote-reference magnetotellurics: equipment and procedures. Geophys. Prosp. 31: 149–170.CrossRefGoogle Scholar
Constable, S. C., Parker, R. L. and Constable, C. G. (1987). Occam's inversion: A practical algorithm for generating smooth models from EM sounding data. Geophysics 52: 289–300.CrossRefGoogle Scholar
Constable, S. C., Orange, A. S., Hoversten, G. M. and Morrison, H. F. (1998). Marine magnetotellurics for petroleum exploration. Part I: a seafloor equipment system. Geophysics 63: 816–825.CrossRefGoogle Scholar
Constable, S. C., Shankland, T. J. and Duba, A. (1992). The electrical conductivity of an isotropic olivine mantle. J. Geophys. Res. 97: 3397–3404.CrossRefGoogle Scholar
Davies, G. F. and Richards, M. A. (1992). Mantle convection. J. Geol. 100: 151–206.CrossRefGoogle Scholar
Debayle, E. and Kennett, B. L. N. (2000). The Australian continental upper mantle: structure and deformation inferred from surface waves, J. Geophys. Res. 105: 25423–25450.CrossRefGoogle Scholar
DEKORP Research Group (1991). Results of the DEKORP 1 (BELCORP-DEKORP) deep seismic reflection studies in the western part of the Rhenish Massif. Geophys. J. Int. 106: 203–227.CrossRef
Dobbs, E. R. (1985). Electromagnetic Waves. London: Routledge & Kegan Paul.Google Scholar
Dosso, H. W. and Oldenburg, D. W. (1991). The similitude equation in magnetotelluric inversion. Geophys. J. Int. 106: 507–509.CrossRefGoogle Scholar
Duba, A., Heard, H. C. and Schock, R. N. (1974). Electrical conductivity of olivine at high pressure and under controlled oxygen fugacity. J. Geophys. Res. 79: 1667–1673.CrossRefGoogle Scholar
Duba, A., Heikamp, S., Meurer, W., Nover, G. and Will, G. (1994). Evidence from borehole samples for the role of accessory minerals in lower-crustal conductivity. Nature 367: 59–61.CrossRefGoogle Scholar
Duba, A. and Nicholls, I. A. (1973). The influence of oxidation state on the electrical conductivity of olivine. Earth Planet. Sci. Lett. 18: 279–284.CrossRefGoogle Scholar
Duba, A., Peyronneau, J., Visocekas, F. and Poirier, J.-P. (1997). Electrical conductivity of magnesiowüstite/perovskite produced by laser heating of synthetic olivine in the diamond anvil cell. J. Geophys. Res. 102: 27723–27728.CrossRefGoogle Scholar
Duba, A. and Shankland, T. J. (1982) Free carbon and electrical conductivity in the mantle. Geophys. Res. Lett. 11: 1271–1274.CrossRefGoogle Scholar
Duba, A. and der Gönna, J. (1994) Comment on change of electrical conductivity of olivine associated with the olivine–spinel transition. Phys. Earth Planet. Inter. 82: 75–77.CrossRefGoogle Scholar
Echternacht, F., Tauber, S., Eisel, M., Brasse, H., Schwarz, G. and Haak, V. (1997). Electromagnetic study of the active continental margin in northern Chile. Phys. Earth Planet. Inter. 102: 69–87.CrossRefGoogle Scholar
Eckhardt, D. H. (1963). Geomagnetic induction in a concentrically stratified Earth. J. Geophys. Res. 68: 6273–6278.CrossRefGoogle Scholar
Edwards, R. E. and Nabighian, M. N. (1981). Extensions of the magnetometric resistivity (MMR) method. Geophysics 46: 459–460.Google Scholar
Egbert, G. D. (1997). Robust multiple-station magnetotelluric data processing. Geophys. J. Int. 130: 475–496.CrossRefGoogle Scholar
Egbert, G. D. and Booker, J. R. (1986). Robust estimation of geomagnetic transfer functions. Geophys. J. R. Astr. Soc. 87: 173–194.CrossRefGoogle Scholar
Eisel, M. and Bahr, K. (1993). Electrical anisotropy under British Columbia: interpretation after magnetotelluric tensor decomposition. J. Geomag. Geoelectr. 45: 1115–1126.CrossRefGoogle Scholar
Eisel, M. and Haak, V. (1999). Macro-anisotropy of the electrical conductivity of the crust: a magneto-telluric study from the German Continental Deep Drilling site (KTB). Geophys. J. Int. 136: 109–122.CrossRefGoogle Scholar
ELEKTB group (1997). KTB and the electrical conductivity of the crust. J. Geophys. Res. 102: 18289–18305.CrossRef
Engels, M., Korja, T. and BEAR Working Group (2002). Multisheet modeling of the electrical conductivity structure in the Fennoscandian Shield. Earth, Planets and Space 54: 559–573.CrossRefGoogle Scholar
Evans, C. J., Chroston, P. N. and Toussaint-Jackson, J. E. (1982). A comparison study of laboratory measured electrical conductivity in rocks with theoretical conductivity based on derived pore aspect ratio spectra. Geophys. J. R. Astr. Soc. 71: 247–260.CrossRefGoogle Scholar
Ferguson, I. J., Lilley, F. E. M. and Filloux, J. H. (1990). Geomagnetic induction in the Tasman Sea and electrical conductivity structure beneath the Tasman seafloor. Geophys. J. Int. 102: 299–312.CrossRefGoogle Scholar
Filloux, J. H. (1973). Techniques and instrumentation for studies of natural electromagnetic induction at sea. Phys. Earth Planet. Inter. 7: 323–338.CrossRefGoogle Scholar
Filloux, J. H. (1987). Instrumentation and experimental methods for oceanic studies. In Geomagnetism, Volume 1, ed. Jacobs, J. A.. London: Academic Press, pp. 143–248.Google Scholar
Fiordelisi, A., Manzella, A., Buonasorte, G., Larsen, J. C. and Mackie, R. L. (2000). MT methodology in the detection of deep, water-dominated geothermal systems. In Proceedings World Geothermal Congress, eds. Iglesias, E., Blackwell, D., Hunt, T., Lund, J. and Tamanyu, S.. Tokyo: International Geothermal Association, pp. 1121–1126.Google Scholar
Fischer, G. and Quang, B. V. (1982). Parameter trade-off in one-dimensional magnetotelluric modelling. J. Geophys. 51: 206–215.Google Scholar
Fischer, G., Schnegg, P.-A., Pegiron, M. and Quang, B. V. (1981). An analytic one-dimensional magnetotelluric inversion scheme. Geophys. J. R. Astr. Soc. 67: 257–278.CrossRefGoogle Scholar
Freund, R. J. and Wilson, W. J. (1998). Regression Analysis: Statistical modeling of a response variable. San Diego: Academic Press.Google Scholar
Frost, B. R. (1979). Mineral equilibria involving mixed volatiles in a C–O–H fluid phase: the stabilities of graphite and siderite. Amer. J. Sci., 279: 1033–1059.CrossRefGoogle Scholar
Frost, B. R., Fyfe, W. S., Tazaki, K. and Chan, T. (1989). Grain boundary graphite in rocks and implications for high electrical conductivity in the crust. Nature 340: 134–136.CrossRefGoogle Scholar
Furlong, K. P. and Fountain, D. M. (1986). Continental crustal underplating: thermal considerations and seismic-petrologic consequences. J. Geophys. Res. 91: 8285–8294.CrossRefGoogle Scholar
Furlong, K. P. and Langston, C. A. (1990). Geodynamic aspects of the Loma Prieta Earthquake, Geophys. Res. Lett. 17: 1457–1460.CrossRefGoogle Scholar
Gaherty, J. B. and Jordan, T. H. (1995). Lehmann discontinuity as the base of an anisotropic layer beneath continents. Science 268: 1468–1471.CrossRefGoogle ScholarPubMed
Gamble, T. D., Goubau, W. M. and Clarke, J. (1979). Magnetotellurics with a remote magnetic reference. Geophysics 44: 53–68.CrossRefGoogle Scholar
Gauss, C. F. (1838). Erläuterungen zu den Terminszeichnungen und den Beobachtungszahlen. In Resultate aus den Beobachtungen des magnetischen Vereins im Jahre 1837, eds. Gauss, C. F. and Weber, W.. Göttingen: Dieterichsche Buchhandlung, pp. 130–137.Google Scholar
Gauss, C. F.(1839). Allgemeine Theorie des Erdmagnetismus. In Resultate aus den Beobachtungen des magnetischen Vereins im Jahre 1838, eds. Gauss, C. F. and Weber, W.. Göttingen: Dieterichsche Buchhandlung, pp. 1–57.Google Scholar
Glassley, W. E. (1982). Fluid evolution and graphite genesis in the deep continental crust. Nature 295: 229–231.CrossRefGoogle Scholar
Goubau, W. M., Gamble, T. D. and Clarke, J. (1979). Magnetotelluric data analysis: removal of bias. Geophysics 43: 1157–1166.CrossRefGoogle Scholar
Graham, G. (1724). An account of observations made of the variation of the horizontal needle at London in the latter part of the year 1722 and beginning 1723. Phil. Trans. Roy. Soc. London 383: 96–107.CrossRefGoogle Scholar
Grammatica, N. and Tarits, P. (2002). Contribution at satellite altitude of electromagnetically induced anomalies arising from a three-dimensional heterogeneously conducting Earth, using Sq as an inducing source field. Geophys. J. Int. 151: 913–923.CrossRefGoogle Scholar
Groom, R. W. and Bahr, K. (1992). Correction for near-surface effects: decomposition of the magnetotelluric impedance tensor and scaling corrections for regional resistivities: a tutorial. Surv. Geophys. 13: 341–379.CrossRefGoogle Scholar
Groom, R. W. and Bailey, R. C. (1989). Decomposition of the magnetotelluric impedance tensor in the presence of local three-dimensional galvanic distortion. J. Geophys. Res. 94: 1913–1925.CrossRefGoogle Scholar
Groot-Hedlin, C. (1991). Removal of static shift in two dimensions by regularized inversion. Geophysics 56: 2102–2106.CrossRefGoogle Scholar
Groot-Hedlin, C. and Constable, S. C. (1990). Occam's inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics 55: 1613–1624.CrossRefGoogle Scholar
Guéguen, Y., David, Chr. and Gavrilenko, P. (1991). Percolation networks and fluid transport in the crust. Geophys. Res. Lett. 18: 931–934.CrossRefGoogle Scholar
Guéguen, Y. and Palciauskas, V. (1994). Introduction to the Physics of Rocks. Princeton: Princeton University Press.Google Scholar
Haak, V. and Hutton, V. R. S. (1986). Electrical resistivity in continental lower crust. In The Nature of the Lower Continental Crust, eds. Dawson, J. B., Carswell, D. A., Hall, J., and Wedepohl, K. H.. Geological Society Special Publication 24: 35–49. Oxford: Blackwell Scientific Publications.Google Scholar
Haak, V., Stoll, J. and Winter, H. (1991). Why is the electrical resistivity around KTB hole so low?Phys. Earth Planet. Inter. 66: 12–23.CrossRefGoogle Scholar
Hamano, Y. (2002). A new time-domain approach for the electromagnetic induction problem in a three-dimensional heterogeneous Earth. Geophys. J. Int. 150: 753–769.CrossRefGoogle Scholar
Hashin, Z. and Shtrikman, S. (1962). A variational approach to the theory of the effective magnetic permeability of multiphase materials. J. Appl. Phys. 33: 3125–3131.CrossRefGoogle Scholar
Hautot, S. and Tarits, P. (2002). Effective electrical conductivity of 3-D heterogeneous porous media. Geophys. Res. Lett. 29, No. 14, 10.1029/2002GL014907.CrossRefGoogle Scholar
Hautot, S., Tarits, P., Whaler, K., Gall, B., Tiercelin, J-J and Turdu, C. (2000). Deep structure of the Baringo Rift Basin (central Kenya) from three-dimensional magnetotelluric imaging: implications for rift evolution. J. Geophys Res. 105: 23 493–23 518.CrossRefGoogle Scholar
Heinson, G. S. (1999). Electromagnetic studies of the lithosphere and asthenosphere. Surv. Geophys. 20: 229–255.CrossRefGoogle Scholar
Heinson, G. S. and Lilley, F. E. M. (1993). An application of thin sheet electromagnetic modelling to the Tasman Sea. Phys. Earth Planet. Inter. 81: 231–251.CrossRefGoogle Scholar
Hermance, J. F. (1979). The electrical conductivity of materials containing partial melt: a simple model of Archie's law. Geophys. Res. Lett. 6: 613–616.CrossRefGoogle Scholar
Hirsch, L. M, Shankland, T. and Duba, A. (1993). Electrical conduction and polaron mobility in Fe-bearing olivine. Geophys. J. Int. 114: 36–44.CrossRefGoogle Scholar
Hobbs, B. A. (1992). Terminology and symbols for use in studies of electromagnetic induction in the Earth. Surv. Geophys., 13: 489–515.CrossRefGoogle Scholar
Hohmann, G. W. (1975). Three-dimensional induced polarisation and electromagnetic modeling. Geophysics 40: 309–324.CrossRefGoogle Scholar
Hoversten, G. M., Morrison, H. F. and Constable, S. C. (1998). Marine magnetotellurics for petroleum exploration, Part II: Numerical analysis of subsalt resolution. Geophysics 63: 826–840.CrossRefGoogle Scholar
Huber, P. J. (1981). Robust Statistics. New York: John Wiley & Sons.CrossRefGoogle Scholar
Huenges, E., Engeser, B., Erzinger, J., Kessels, W., Kück, J. and Pusch, G. (1997). The permeable crust: geohydraulic properties down to 9101 m depth. J. Geophys. Res. 102: 18255–18265.CrossRefGoogle Scholar
Hyndman, R. D. and Shearer, P. M. (1989). Water in the lower crust: modelling magnetotelluric and seismic reflection results. Geophys. J. R. Astr. Soc. 98: 343–365.CrossRefGoogle Scholar
Jackson, J. D. (1975). Classical Electrodynamics, 2nd edn. New York: John Wiley & Sons.Google Scholar
Jenkins, G. M. and Watts, D. G. (1968). Spectral Analysis and its Applications. San Francisco: Holden-Day.Google Scholar
Ji, S., Rondenay, S., Mareschal, M. and Senechal, G. (1996). Obliquity between seismic and electrical anisotropies as a potential indicator of movement sense for ductile shear zones in the upper mantle. Geology 24: 1033–1036.2.3.CO;2>CrossRefGoogle Scholar
Jödicke, H. (1992). Water and graphite in the Earth's crust – an approach to interpretation of conductivity models. Surv. Geophys. 13: 381–407.CrossRefGoogle Scholar
Jones, A. G. (1977). Geomagnetic induction studies in southern Scotland. Ph.D. Thesis, University of Edinburgh.
Jones, A. G.(1982). On the electrical crust–mantle structure in Fennoscandia: no Moho, and the asthenosphere revealed?Geophys. J. R. Astr. Soc. 68: 371–388.CrossRefGoogle Scholar
Jones, A. G.(1983). The problem of current channelling: a critical review. Geophysical Surveys 6: 79–122.CrossRefGoogle Scholar
Jones, A. G.(1992). Electrical conductivity of the continental lower crust. In Continental Lower Crust, eds. Fountain, D. M., Arculus, R. J. and Kay, R. W.. Amsterdam: Elsevier, pp. 81–143.Google Scholar
Jones, A. G.(1999). Imaging the continental upper mantle using electromagnetic methods. Lithos 48: 57–80.CrossRefGoogle Scholar
Jones, A. G., Groom, R. W., and Kurtz, R. D. (1993). Decomposition and modelling of the BC87 data set. J. Geomag. Geoelectr. 45: 1127–1150.CrossRefGoogle Scholar
Jones, F. W. and Pascoe, L. J. (1971). A general computer program to determine the perturbation of alternating electric currents in a two-dimensional model of a region of uniform conductivity with an embedded inhomogeneity. Geophys. J. R. Astr. Soc. 24: 3–30.Google Scholar
Jones, F. W. and Pascoe, L. J.(1972). The perturbation of alternating geomagnetic fields by three-dimensional conductivity inhomogeneities. Geophys. J. R. Astr. Soc. 27: 479–485.CrossRefGoogle Scholar
Jones, F. W. and Price, A. T. (1970). The perturbations of alternating geomagnetic fields by conductivity anomalies. Geophys. J. R. Astr. Soc. 20: 317–334.CrossRefGoogle Scholar
Jordan, T. H. (1978). Composition and development of the continental tectosphere. Nature 274: 544–548.CrossRefGoogle Scholar
Junge, A. (1990). A new telluric KCl probe using Filloux's Ag–AgCl electrode. Pure and Applied Geophysics 134: 589–598.CrossRefGoogle Scholar
Junge, A. (1994) Induzierte erdelektrische Felder–neue Beobachtungen in Norddeutschland und im Bramwald. Habilitation Thesis. Göttingen.
Karato, S. (1990). The role of hydrogen in the electrical conductivity of the upper mantle. Nature 347: 272–273.CrossRefGoogle Scholar
Karato, S. and Jung, H. (2003). Effects of pressure on high-temperature dislocation creep in olivine. Phil. Mag. 83, 401–414.CrossRefGoogle Scholar
Kariya, K. A. and Shankland, T. J. (1983). Electrical conductivity of dry lower crustal rocks. Geophysics 48: 52–61.CrossRefGoogle Scholar
Katsube, T. J. and Mareschal, M. (1993). Petrophysical model of deep electrical conductors: graphite lining as a source and its disconnection during uplift. J. Geophys. Res., 98: 8019–8030.CrossRefGoogle Scholar
Keller, G. V. and Frischknecht, F. C. (1966). Electrical methods in geophysical prospecting. In International Series of Monographs in Electromagnetic Waves, 10, eds. Cullen, A. L., Fock, V. A., and Wait, J. R.. Oxford: Pergammon Press.Google Scholar
Kellet, R. L., Mareschal, M. and Kurtz, R. D. (1992). A model of lower crustal electrical anisotropy for the Pontiac Subprovince of the Canadian Shield. Geophys. J. Int. 111: 141–150.CrossRefGoogle Scholar
Kemmerle, K. (1977). On the influence of local anomalies of conductivity at the Earth's surface on magnetotelluric data. Acta Geodaet., Geophys. et Montanist. Acad. Sci. Hung. 12: 177–181.Google Scholar
Key, K. and Constable, S. C. (2002). Broadband marine MT exploration of the East Pacific Rise at 9°50′N. Geophys. Res. Lett. 29: (22), 2054 doi:10.1029/2002GL016035.CrossRefGoogle Scholar
Keyser, M., Ritter, J. R. R. and Jordan, M. (2002). 3D shear-wave velocity structure of the Eifel plume, Germany. Earth Planet. Sci. Lett. 203: 59–82.CrossRefGoogle Scholar
Kohlstedt, D. L. and Mackwell, S. (1998). Diffusion of hydrogen and intrinsic point defects in olivine. Z. Phys. Chem. 207: 147–162.CrossRefGoogle Scholar
Koslovskaya, E. and Hjelt, S.-E. (2000). Modeling of elastic and electrical properties of solid–liquid rock system with fractal microstructure. Phys. Chem. Earth (A) 25: 195–200.CrossRefGoogle Scholar
Kozlovsky, Y. A. (1984). The world's deepest well. Scientific American, 251: 106–112.CrossRefGoogle Scholar
Kuckes, A. F. (1973). Relations between electrical conductivity of a mantle and fluctuating magnetic fields. Geophys. J. R. Astr. Soc. 32: 119–131.CrossRefGoogle Scholar
Kurtz, R. D., Craven, J. A., Niblett, E. R. and Stevens, R. A. (1993). The conductivity of the crust and mantle beneath the Kapuskasing uplift: electrical anisotropy in the upper mantle. Geophys. J. Int. 113: 483–498.CrossRefGoogle Scholar
Kuvshinov, A. V., Olsen, N., Avdeev, D. B. and Pankratov, O. V. (2002). Electromagnetic induction in the oceans and the anomalous behaviour of coastal C-responses for periods up to 20 days. Geophys. Res. Lett. 29: (12), doi:10.1029/2002GL014409.CrossRefGoogle Scholar
Lahiri, B. N. and Price, A. T. (1939). Electromagnetic induction in non-uniform conductors, and the determination of the conductivity of the Earth from terrestrial magnetic variations. Phil. Trans. Roy. Soc. London (A) 237: 509–540.CrossRefGoogle Scholar
Large, D. J., Christy, A. G. and Fallick, A. E. (1994). Poorly crystalline carbonaceous matter in high grade metasediments: implications for graphitisation and metamorphic fluid compositions. Contrib. Mineral. Petrol. 116: 108–116.CrossRefGoogle Scholar
Larsen, J. C. (1975). Low frequency (0.1–6.0 cpd) electromagnetic study of deep mantle electrical conductivity beneath the Hawaiian islands. Geophys. J. R. Astr. Soc. 43: 17–46.CrossRefGoogle Scholar
Larsen, J. C., Mackie, R. L., Manzella, A., Fiordelisi, A. and Rieven, S. (1996). Robust smooth magnetotelluric transfer functions. Geophys. J. Int. 124: 801–819.CrossRefGoogle Scholar
Lee, C. D., Vine, F. J. and Ross, R. G. (1983). Electrical conductivity models for the continental crust based on high grade metamorphic rocks. Geophys. J. R. Astr. Soc. 72: 353–372.CrossRefGoogle Scholar
Léger, A., Mathez, E. A., Duba, A., Pineau, F. and Ginsberg, S. (1996). Carbonaceous material in metamorphosed carbonate rocks from the Waits River Formation, NE Vermont, and its effect on electrical conductivity. J. Geophys. Res., 101: 22 203–22 214.CrossRefGoogle Scholar
Leibecker, J., Gatzemeier, A., Hönig, M., Kuras, O. and Soyer, W. (2002). Evidence of electrical anisotropic structures in the lower crust and the upper mantle beneath the Rhenish Shield. Earth Planet Sci. Lett. 202: 289–302.CrossRefGoogle Scholar
Li, S., Unsworth, M., Booker, J. R., Wie, W., Tan, H. and Jones, A. G. (2003). Partial melt or aqueous fluid in the mid-crust of Southern Tibet? Constraints from INDEPTH magnetotelluric data. Geophys. J. Int. 153: 289–304.CrossRefGoogle Scholar
Lines, L. R. and Jones, F. W. (1973). The perturbation of alternating geomagnetic fields by three-dimensional island structures. Geophys. J. R. Astr. Soc. 32: 133–154.CrossRefGoogle Scholar
Lizzaralde, D., Chave, A., Hirth, G. and Schultz, A. (1995). Northeastern Pacific mantle conductivity profile from long-period magnetotelluric sounding using Hawaii-to-California submarine cable data. J. Geophys. Res. 100: 17837–17854.CrossRefGoogle Scholar
Mackie, R. L., Bennett, B. R. and Madden, T. R. (1988). Long-period MT measurements near the central California coast: a land-locked view of the conductivity structure under the Pacific ocean. J. Geophys. Res. 95: 181–194.Google Scholar
Mackie, R. L. and Madden, T. R. (1993). Conjugate direction relaxation solutions for 3D magnetotelluric modelling. Geophysics 58: 1052–1057.CrossRefGoogle Scholar
Mackie, R. L., Madden, T. R. and Wannamaker, P. E. (1993). Three-dimensional magnetotelluric modeling using difference equations – Theory and comparisons to integral equation solutions. Geophysics 58: 215–226.CrossRefGoogle Scholar
Mackie, R. L., Rieven, S. and Rodi, W. (1997). Users Manual and Software Documentation for Two-Dimensional Inversion of Magnetotelluric Data. San Francisco: GSY-USA Inc.Google Scholar
Mackwell, S. J. and Kohlstedt, D. L. (1990). Diffusion of hydrogen in olivine: implications for water in the mantle. J. Geophys. Res. 95: 5079–5088.CrossRefGoogle Scholar
Madden, T. R. (1976). Random networks and mixing laws. Geophysics, 41: 1104–1125.CrossRefGoogle Scholar
Madden, T. and Nelson, P. (1964, reprinted 1986). A defence of Cagniard's magnetotelluric method. In Society of Exploration Geophysicists, Geophysics Reprint Series, No. 5., ed. Vozoff, K..Google Scholar
Manoj, C. and Nagarajan, N. (2003). The application of artificial neural networks to magnetotelluric time-series analysis. Geophys. J. Int. 153: 409–423.CrossRefGoogle Scholar
Mareschal, M. (1986). Modelling of natural sources of magnetospheric origin in the interpretation of regional studies: a review. Surv. Geophys. 8: 261–300.CrossRefGoogle Scholar
Mareschal, M., Fyfe, W. S., Percival, J. and Chan, T. (1992). Grain-boundary graphite in Kapuskasing gneisses and implication for lower crustal conductivity. Nature 357: 674–676.CrossRefGoogle Scholar
Mareschal, M., Kellett, R. L., Kurtz, R. D., Ludden, J. N. and Bailey, R. C. (1995). Archean cratonic roots, mantle shear zones and deep electrical anisotropy. Nature 375: 134–137.CrossRefGoogle Scholar
Mareschal, M., Kurtz, R. D., Chouteau, M. and Chakridi, R. (1991). A magnetotelluric survey on Manitoulin Island and Bruce Peninsula along GLIMPCE seismic line J: black shales mask the Grenville Front. Geophys. J. Int. 105: 173–183.CrossRefGoogle Scholar
Masero, W., Fischer, G. and Schnegg, P.-A. (1997). Electrical conductivity and crustal deformation from magnetotelluric results in the region of the Araguainha impact, Brazil. Phys. Earth Planet. Inter. 101: 271–289.CrossRefGoogle Scholar
Mathez, E. A., Duba, A. G., Peach, C. L., Léger, A., Shankland, T. J. and Plafker, G. (1995). Electrical conductivity and carbon in metamorphic rocks of the Yukon-Tanana Terrane, Alaska. J. Geophys. Res., 196: 10187–10196.CrossRefGoogle Scholar
Mathur, S. P. (1983). Deep crustal reflection results from the central Eromanga Basin, Australia. Tectonophysics 100: 163–173.CrossRefGoogle Scholar
Matsumoto, T., Honda, M., McDougall, I., Yatsevich, I. and O'Reilly, S. (1997). Plume-like neon in a metasomatic apatite from the Australian lithospheric mantle. Nature 388: 162–164.CrossRefGoogle Scholar
McKenzie, D. (1979). Finite deformation during fluid flow. Geophys. J. R. Astr. Soc. 58: 689–715.CrossRefGoogle Scholar
Meju, M. A. (1996). Joint inversion of TEM and distorted MT soundings: some effective practical considerations. Geophysics 61: 56–65.CrossRefGoogle Scholar
Meju, M. A.(2002). Geoelectromagnetic exploration for natural resources: models, case studies and challenges. Surv. Geophys. 23: 133–206.CrossRefGoogle Scholar
Meju, M. A.Fontes, S. L., Oliveira, M. F. B., Lima, J. P. R., Ulugergerli, E. U. and Carrasquilla, A. A. (1999). Regional aquifer mapping using combined VES-TEM-AMT / EMAP methods in the semiarid eastern margin of Parnaiba Basin, Brazil. Geophysics 64: 337–356.CrossRefGoogle Scholar
Merzer, A. M. and Klemperer, S. L. (1992). High electrical conductivity in a model lower crust with unconnected, conductive, seismically reflective layers. Geophys. J. Int. 108: 895–905.CrossRefGoogle Scholar
Morris, J. D., Leeman, W. P. and Tera, F. (1990). The subducted component in island arc lavas: constraints from Be isotopes and B–Be systematics. Nature 344: 31–36.CrossRefGoogle ScholarPubMed
Nelson, K. D. (1991). A unified view of craton evolution motivated by recent deep seismic reflection and refraction results. Geophys. J. Int. 105: 25–35.CrossRefGoogle Scholar
Nesbitt, B. E. (1993). Electrical resistivities of crustal fluids. J. Geophys. Res. 98: 4301–4310.CrossRefGoogle Scholar
Newton, R. C., Smith, J. V. and Windley, B. F. (1980). Carbonic metamorphism, granulites and crustal growth. Nature 288: 45–50.CrossRefGoogle Scholar
Nolasco, R., Tarits, P., Filloux, J. H. and Chave, A. D. (1998). Magnetotelluric imaging of the Society Island hotspot. J. Geophys. Res. 103: 30287–30309.CrossRefGoogle Scholar
Oettinger, G., Haak, V. and Larsen, J. C. (2001). Noise reduction in magnetotelluric time-series with a new signal-noise separation method and its application to a field experiment in the Saxonian Granulite Massif. Geophys. J. Int. 146: 659–669.CrossRefGoogle Scholar
Ogawa, Y. and Uchida, T. (1996). A two-dimensional magnetotelluric inversion assuming Gaussian static shift. Geophys. J. Int. 126: 69–76.CrossRefGoogle Scholar
Ogunade, S. O. (1995). Analysis of geomagnetic variations in south-western Nigeria. Geophys. J. Int. 121: 162–172.CrossRefGoogle Scholar
Olsen, N. (1998). The electrical conductivity of the mantle beneath Europe derived from C-responses from 3 to 720 hr. Geophys. J. Int. 133: 298–308.CrossRefGoogle Scholar
Olsen, N.(1999). Induction studies with satellite data. Surv. Geophys. 20: 309–340.CrossRefGoogle Scholar
Osipova, I. L., Hjelt, S. -E. and Vanyan, L. L. (1989). Source field problems in northern parts of the Baltic Shield. Phys. Earth Planet. Inter. 53: 337–342.CrossRefGoogle Scholar
Otnes, R. K. and Enochson, L. (1972). Digital Time Series Analysis. New York: John Wiley & Sons.Google Scholar
Padovani, E. and Carter, J. (1977). Aspects of the deep crustal evolution beneath south central New Mexico. In The Earth's Crust: Its Nature and Physical Properties, ed. Heacock, J. G., Amer. Geophys. Union Monogr. Series, 20: 19–55.
Pádua, M. B., Padilha, A. L. and Vitorello, Í. (2002). Disturbances on magnetotelluric data due to DC electrified railway: a case study from southeastern Brazil. Earth, Planets and Space 54: 591–596.CrossRefGoogle Scholar
Park, S. K. (1985). Distortion of magnetotelluric sounding curves by three-dimensional structures. Geophysics 50: 785–797.CrossRefGoogle Scholar
Parker, E. N. (1958). Dynamics of the interplanetary gas and magnetic field. Astrophys. J. 128: 664–676.CrossRefGoogle Scholar
Parker, R. L. (1980). The inverse problem of electromagnetic induction: existence and construction of solutions based on incomplete data. J. Geophys. Res. 85: 4421–4428.CrossRefGoogle Scholar
Parker, R. L. and Whaler, K. A. (1981). Numerical methods for establishing solutions to the inverse problem of electromagnetic induction. J. Geophys. Res. 86: 9574–9584.CrossRefGoogle Scholar
Parkinson, W. (1959). Directions of rapid geomagnetic variations. Geophys. J. R. Astr. Soc. 2: 1–14.CrossRefGoogle Scholar
Parkinson, W. (1971). An analysis of the geomagnetic diurnal variation during the IGY. Gerlands Beitr. Geophys. 80: 199–232.Google Scholar
Parzen, E. (1961). Mathematical considerations in the estimation of spectra: comments on the discussion of Messers, Tukey and Goodman. Technometrics 3: 167–190, 232–234.CrossRefGoogle Scholar
Parzen, E. (1992). Modern Probability Theory and its Applications. New York: John Wiley & Sons.Google Scholar
Pek, J. and Verner, T. (1997). Finite-difference modelling of magnetotelluric fields in two-dimensional anisotropic media. Geophys. J. Int. 128: 505–521.CrossRefGoogle Scholar
Petiau, G. and Dupis, A. (1980). Noise, temperature coefficient and long time stability of electrodes for telluric observations. Geophys. Prosp. 28: 792–804.CrossRefGoogle Scholar
Pous, J., Heise, W., Schnegg, P. -A., Munoz, G., Marti, J. and Soriano, C. (2002). Magnetotelluric study of Las Cañadas caldera (Tenerife, Canary Islands): structural and hydrogeological implications. Earth Planet. Sci. Lett. 204: 249–263.CrossRefGoogle Scholar
Prácser, E. and Szarka, L. (1999). A correction to Bahr's ‘phase deviation’ method for tensor decomposition. Earth, Planets and Space 51: 1019–1022.CrossRefGoogle Scholar
Praus, O., Pecova, J., Petr, V, Babuska, V. and Plomerova, J. (1990). Magnetotelluric and seismological determination of the lithosphere–asthenosphere transition in Central Europe. Phys. Earth Planet. Inter. 60: 212–228.CrossRefGoogle Scholar
Presnall, D. C., Simmons, C. L.Porath, H. (1972). Changes in electriacal conductivitty of a syenthetic basalt during melting. J. Geophys. Res. 77: 5665–5672.CrossRefGoogle Scholar
Price, A. T. (1962). The theory of magnetotelluric fields when the source field is considered. J. Geophys. Res. 67: 1907–1918.CrossRefGoogle Scholar
Primdahl, F. (1979). The fluxgate magnetometer. J. Phys. E: Sci. Instrum. 12: 241–253.CrossRefGoogle Scholar
Raiche, A. P. (1974). An integral equation approach to three-dimensional modelling. Geophys. J. R. Astr. Soc. 36: 363–376.CrossRefGoogle Scholar
Ranganayaki, R. P. (1984). An interpretative analysis of magnetotelluric data. Geophysics 49: 1730–1748.CrossRefGoogle Scholar
Ranganayaki, R. P. and Madden, T. R. (1980). Generalized thin sheet analysis in magnetotellurics: an extension of Price's analysis. Geophys. J. R. Astr. Soc. 60: 445–457.CrossRefGoogle Scholar
Rangarajan, G. K. (1989). Indices of geomagnetic activity. In Geomagnetism, Volume 3, ed. Jacobs, J. A.. London: Academic Press, pp. 323–384.Google Scholar
Rauen, A. and Laštovičková, M. (1995). Investigation of electrical anisotropy in the deep borehole KTB. Surv. Geophys. 16: 37–46CrossRefGoogle Scholar
Reddy, I. K., Rankin, D. and Phillips, R. J. (1977). Three-dimensional modelling in magnetotelluric and magnetic variational sounding. Geophys. J. R. Astr. Soc. 51: 313–325.Google Scholar
Reynolds, J. M. (1997). An Introduction to Applied and Environmental Geophysics. New York: John Wiley & Sons.Google Scholar
Ribe, N. M. (1989). Seismic anisotropy and mantle flow. J. Geophys. Res. 94: 4213–4223.CrossRefGoogle Scholar
Ritter, P. and Banks, R. J. (1998). Separation of local and regional information in distorted GDS response functions by hypothetical event analysis. Geophys. J. Int. 135: 923–942.CrossRefGoogle Scholar
Ritter, J. R. R., Jordan, M., Christensen, U. R. and Achauer, U. (2001). A mantle plume below the Eifel volcanic fields, Germany. Earth Planet. Sci. Lett. 186: 7–14.CrossRefGoogle Scholar
Roberts, J. J., Duba, A. G., Mathez, E. A., Shankland, T. J. and Kinsler, R. (1999). Carbon-enhanced electrical conductivity during fracture of rocks. J. Geophys. Res. 104: 737–747.CrossRefGoogle Scholar
Roberts, J. J. and Tyburczy, J. A. (1991). Frequency-dependent electrical properties of polycrystalline olivine compacts. J. Geophys. Res. 96: 16205–16222.CrossRefGoogle Scholar
Roberts, J. J. and Tyburczy, J. A. (1999). Partial-melt electrical conductivity: influence of melt-composition. J. Geophys. Res. 104: 7055–7065.CrossRefGoogle Scholar
Ross, J. V. and Bustin, R. M. (1990). The role of strain energy in creep graphitisation of anthracite. Nature 343: 58–60.CrossRefGoogle Scholar
Rumble, D. R. and Hoering, T. C. (1986). Carbon isotope geochemistry of graphite vein deposits from New Hampshire, U.S.A. Geochim. Cosmochim. Acta 50: 1239–1247.CrossRefGoogle Scholar
Schilling, F. R., Partzsch, G. M., Brasse, H. and Schwarz, G. (1997). Partial melting below the magmatic arc in the central Andes deduced from geoelectromagnetic field experiments and laboratory data. Phys. Earth Planet. Inter. 103: 17–31.CrossRefGoogle Scholar
Schmeling, H. (1985). Numerical models on the influence of partial melt on elastic, anelastic and electrical properties of rocks. Part I: elasticity and anelasticity. Phys. Earth Planet. Inter. 41: 105–110.CrossRefGoogle Scholar
Schmeling, H.(1986). Numerical models on the influence of partial melt on elastic, anelastic and electrical properties of rocks. Part II: electrical conductivity. Phys. Earth Planet. Inter. 43: 123–136.CrossRefGoogle Scholar
Schmucker, U. (1970). Anomalies of geomagnetic variations in the Southwestern United States. Bull. Scripps Inst. Ocean., University of California, 13.
Schmucker, U.(1973). Regional induction studies: a review of methods and results. Phys. Earth Planet. Inter. 7: 365–378.CrossRefGoogle Scholar
Schmucker, U.(1978). Auswertungsverfahren Göttingen. In Protokoll Kolloquium Elektromagnetische Tiefenforschung, eds. Haak, V. and Homilius, J.. Free University Berlin, pp. 163–189.Google Scholar
Schmucker, U.(1987). Substitute conductors for electromagnetic response estimates. Pure and Appl. Geophys. 125: 341–367.CrossRefGoogle Scholar
Schmucker, U.(1995). Electromagnetic induction in thin sheets: integral equations and model studies in two dimensions. Geophys. J. Int. 121: 173–190.CrossRefGoogle Scholar
Schultz, A., Kurtz, R. D., Chave, A. D. and Jones, A. G. (1993). Conductivity discontinuities in the upper mantle beneath a stable craton. Geophys. Res. Lett. 20: 2941–2944.CrossRefGoogle Scholar
Schuster, A. (1889). The diurnal variation of terrestrial magnetism. Phil. Trans. Roy. Soc. London A210: 467–518.CrossRefGoogle Scholar
Sénéchal, R., Rondenay, G. S., Mareschal, M., Guilbert, J. and Poupinet, G. (1996). Seismic and electrical anisotropies in the lithosphere across the Grenville Front, Canada. Geophys. Res. Lett. 23: 2255–2258.CrossRefGoogle Scholar
Shankland, T. J. and Ander, M. E. (1983). Electrical conductivity, temperatures, and fluids in the lower crust. J. Geophys. Res. 88: 9475–9484.CrossRefGoogle Scholar
Shankland, T. J., Duba, A., Mathez, E. A. and Peach, C. L. (1997). Increase of electrical conductivity with pressure as an indication of conduction through a solid phase in mid-crustal rocks. J. Geophys. Res. 102: 14741–14750.CrossRefGoogle Scholar
Shankland, T. J., Peyronneau, J. and Poirier, J. -P. (1993). Electrical conductivity of the Earth's lower mantle. Nature 366: 453–455.CrossRefGoogle Scholar
Shankland, T. J. and Waff, H. S. (1977). Partial melting and electrical conductivity anomalies in the upper mantle. J. Geophys. Res. 82: 5409–5417.CrossRefGoogle Scholar
Siegesmund, S., Vollbrecht, A. and Nover, G. (1991). Anisotropy of compressional wave velocities, complex electrical resistivity and magnetic susceptibility of mylonites from the deeper crust and their relation to the rock fabric. Earth Planet. Sci. Lett. 105: 247–259.CrossRefGoogle Scholar
Siemon, B. (1997). An interpretation technique for superimposed induction anomalies. Geophys. J. Int. 130: 73–88.CrossRefGoogle Scholar
Simpson, F. (1999). Stress and seismicity in the lower continental crust: a challenge to simple ductility and implications for electrical conductivity mechanisms. Surveys in Geophysics 20: 201–227.CrossRefGoogle Scholar
Simpson, F.(2000). A three-dimensional electromagnetic model of the southern Kenya Rift: departure from two-dimensionality as a possible consequence of a rotating stress field. J. Geophys. Res. 105: 19321–19334.CrossRefGoogle Scholar
Simpson, F.(2001a). Fluid trapping at the brittle–ductile transition re-examined. Geofluids 1: 123–136.CrossRefGoogle Scholar
Simpson, F.(2001b). Resistance to mantle flow inferred from the electromagnetic strike of the Australian upper mantle. Nature 412: 632–635.CrossRefGoogle Scholar
Simpson, F.(2002a). Intensity and direction of lattice-preferred orientation of olivine: are electrical and seismic anisotropies of the Australian mantle reconcilable? Earth Planet Sci. Lett. 203: 535–547.CrossRefGoogle Scholar
Simpson, F.(2002b). A comparison of electromagnetic distortion and resolution of upper mantle conductivities beneath continental Europe and the Mediterranean using islands as windows. Phys. Earth Planet. Inter. 129: 117–130.CrossRefGoogle Scholar
Simpson, F. and Warner, M. (1998). Coincident magnetotelluric, P-wave and S-wave images of the deep continental crust beneath the Weardale granite, NE England: seismic layering, low conductance and implications against the fluids paradigm. Geophys. J. Int. 133: 419–434.CrossRefGoogle Scholar
Sims, W. E., Bostick, F. X. Jr. and Smith, H. W. (1971). The estimation of magnetotelluric impedance tensor elements from measured data. Geophysics 36: 938–942.CrossRefGoogle Scholar
Smith, T. and Booker, J. (1988). Magnetotelluric inversion for minimum structure. Geophysics 53: 1565–1576.CrossRefGoogle Scholar
Smith, T. and Booker, J.(1991). Rapid inversion of two- and three-dimensional magnetotelluric data. J. Geophys. Res., 96: 3905–3922.CrossRefGoogle Scholar
Soyer, W. and Brasse, H. (2001). A magneto-variation array study in the central Andes of N Chile and SW Bolivia. Geophys. Res. Lett. 28: 3023–3026.CrossRefGoogle Scholar
Spitzer, K. (1993). Observations of geomagnetic pulsations and variations with a new borehole magnetometer down to depths of 3000 m. Geophys. J. Int. 115: 839–848.CrossRefGoogle Scholar
Spitzer, K.(1995). A 3-D finite difference algorithm for dc resistivity modelling using conjugate gradient methods. Geophys. J. Int. 123: 903–914.CrossRefGoogle Scholar
Srivastava, S. P. (1965). Methods of interpretation of magnetotelluric data when the source field is considered. J. Geophys. Res. 70: 945–954.CrossRefGoogle Scholar
Stacey, F. D. (1992). Physics of the Earth. Brisbane: Brookfield Press.Google Scholar
Stalder, R. and Skogby, H. (2003). Hydrogen diffusion in natural and synthetic orthopyroxene. Phys. Chem. Minerals 30: 12–19.CrossRefGoogle Scholar
Stanley, W. D. (1989). Comparison of geoelectrical/tectonic models for suture zones in the western U.S.A. and eastern Europe: are black shales a possible source of high conductivities? Phys. Earth Planet. Inter. 53: 228–238.CrossRefGoogle Scholar
Stauffer, D. and Aharony, A. (1992). Introduction to Percolation Theory, 2nd edn. London: Taylor and Francis.Google Scholar
Sternberg, B. K., Washburne, J. C. and Pellerin, L. (1988). Correction for the static shift in magnetotellurics using transient electromagnetic soundings. Geophysics 53: 1459–1468.CrossRefGoogle Scholar
Stesky, R. M. and Brace, W. F. (1973). Electrical conductivity of serpentinized rocks to 6 kilobars. J. Geophys. Res. 78: 7614–7621.CrossRefGoogle Scholar
Stoerzel, A. (1996). Estimation of geomagnetic transfer functions from non-uniform magnetic fields induced by the equatorial electrojet: a method to determine static shifts in magnetotelluric data. J. Geophys. Res. 101: 917–927.CrossRefGoogle Scholar
Strack, K. M. (1992). Exploration with Deep Transient Electromagnetics. Amsterdam: Elsevier.Google Scholar
Swift, C. M. (1967). A magnetotelluric investigation of an electrical conductivity anomaly in the South Western United States. Ph.D. Thesis, M.I.T., Cambridge, Mass.
Swift, C. M.(1986). A magnetotelluric investigation of an electrical conductivity anomaly in the South Western United States. In Magnetotelluric Methods, ed. Vozoff, K.. Tulsa: Society of Exploration Geophysicists, pp. 156–166.Google Scholar
Tikhonov, A. N. (1950). The determination of the electrical properties of deep layers of the Earth's crust. Dokl. Acad. Nauk. SSR 73: 295–297 (in Russian).Google Scholar
Tikhonov, A. N.(1986). On determining electrical characteristics of the deep layers of the Earth's crust. In Magnetotelluric Methods, ed. Vozoff, K.. Tulsa: Society of Exploration Geophysicists, pp. 2–3.Google Scholar
Ting, S. C. and Hohmann, G. W. (1981). Integral equation modeling of three-dimensional magnetotelluric response. Geophysics 46: 182–197.CrossRefGoogle Scholar
Tipler, P. A. (1991). Physics for Scientists and Engineers. New York: Worth Publishers.Google Scholar
Torres-Verdin, C. and Bostick, F. X. (1992). Principles of spatial surface electric field filtering in magnetotellurics: electromagnetic array profiling (EMAP). Geophysics 57: 603–622.CrossRefGoogle Scholar
Touret, J. (1986). Fluid inclusions in rocks from the lower continental crust. In The Nature of the Lower Continental Crust, eds. Dawson, J. B., Carswell, D. A., Hall, J. and Wedepohl, K. H.. Geological Society Special Publication24: 161–172. Oxford: Blackwell Scientific Publications.Google Scholar
Tyburczy, J. A. and Waff, H. S. (1983). Electrical conductivity of molten basalt and andersite to 25 kilobars pressure: geophysical significance and implications for charge transport and melt structure. J. Geophys. Res. 88: 2413–2430.CrossRefGoogle Scholar
Valdivia, J. A., Sharma, A. S. and Papadopoulos, K. (1996). Prediction of magnetic storms by nonlinear models. Geophys. Res. Lett. 23: 2899–2902.CrossRefGoogle Scholar
Vanyan, L. L. and Gliko, A. O. (1999). Seismic and electromagnetic evidence of dehydration as a free water source in the reactivated crust. Geophys. J. Int. 137: 159–162.CrossRefGoogle Scholar
Vasseur, G. and Weidelt, P. (1977). Bimodal electromagnetic induction in non-uniform thin sheets with an application to the northern Pyrenean induction anomaly. Geophys. J. R. Astr. Soc. 51: 669–690.CrossRefGoogle Scholar
Vozoff, K. (1972). The magnetotelluric method in the exploration of sedimentary basins. Geophysics 37: 98–141.CrossRefGoogle Scholar
Waff, H. S. (1974). Theoretical considerations on electrical conductivity in a partially molten mantle and implications for geothermometry. J. Geophys. Res. 79: 4003–4010.CrossRefGoogle Scholar
Wait, J. R. (1954). On the relation between telluric currents and the Earth's magnetic field. Geophysics 19: 281–289.CrossRefGoogle Scholar
Wang, L. J. and Lilley, F. E. M. (1999). Inversion of magnetometer array data by thin-sheet modelling. Geophys. J. Int. 137: 128–138.CrossRefGoogle Scholar
Wang, L., Zhang, Y. and Essene, E. (1996). Diffusion of the hydrous component in pyrope. Amer. Mineral. 81: 706–718.CrossRefGoogle Scholar
Wannamaker, P. E., Hohmann, G. W. and Ward, S. H. (1984a). Magnetotelluric responses of three-dimensional bodies in layered Earths. Geophysics 49: 1517–1533.CrossRefGoogle Scholar
Wannamaker, P. E., Hohmann, G. W. and San Filipo, W. A. (1984b). Electromagnetic modelling of three-dimensional bodies in layered Earths using integral equations. Geophysics 48: 1402–1405.Google Scholar
Wannamaker, P. E., Stodt, J. A. and Rijo, L. (1986). A stable finite element solution for two-dimensional magnetotelluric modelling. Geophys. J. R. Astr. Soc. 88: 277–296.CrossRefGoogle Scholar
Wannamaker, P. E. (2000). Comment on ‘The petrological case for a dry lower crust’ by Bruce W. D. Yardley and John W. Valley. J. Geophys. Res. 105: 6057–6064.CrossRefGoogle Scholar
Weaver, J. T. (1994). Mathematical Methods for Geo-Electromagnetic Induction. Taunton, Somerset, UK: Research Studies Press Ltd.Google Scholar
Wei, W., Unsworth, M., Jones, A. G.et al. (2001). Detection of widespread fluids in the Tibetan crust by magnetotelluric studies. Science 292: 716–718.CrossRefGoogle ScholarPubMed
Weidelt, P. (1972). The inverse problem of geomagnetic induction. Z. Geophys. 38: 257–289.Google Scholar
Weidelt, P.(1975). Electromagnetic induction in three-dimensional structures. J. Geophys. Res. 41: 85–109.Google Scholar
Weidelt, P.(1985). Construction of conductance bounds from magnetotelluric impedances. J. Geophys. 57: 191–206.Google Scholar
Wiese, H. (1962). Geomagnetische tiefensondierung. Teil II: Die Streichrichtung der Untergrundstrukturen des elektrischen Widerstandes, erschlossen aus geomagnetischen variationen. Geofis. Pura et Appl. 52: 83–103.CrossRefGoogle Scholar
Winch, D. E. (1981). Spherical harmonic analysis of geomagnetic tides, 1964–1965. Phil. Trans. Roy. Soc. Lond. A303: 1–104.CrossRefGoogle Scholar
Woods, S. C., Mackwell, S. and Dyar, D. (2000). Hydrogen in diopside: diffusion profiles. Amer. Mineral. 85: 480–487.CrossRefGoogle Scholar
Xu, Y., Poe, B. T., Shankland, T. J. and Rubie, D. C. (1998). Electrical conductivity of olivine, wadsleyite, and ringwoodite under upper-mantle conditions. Science 280: 1415–1418.CrossRefGoogle ScholarPubMed
Xu, Y. and Shankland, T. J. (1999). Electrical conductivity of orthopyroxene and its high pressure phases. Geophys. Res. Lett. 26: 2645–2648.CrossRefGoogle Scholar
Xu, Y., Shankland, T. J. and Poe, B. T. (2000). Laboratory-based electrical conductivity in the Earth's mantle. J. Geophys. Res. 105: 27865–27875.CrossRefGoogle Scholar
Yardley, B. W. D. (1986). Is there water in the deep continental crust? Nature 323: 111.CrossRefGoogle Scholar
Yardley, B. W. D. and Valley, J. W. (1997). The petrological case for a dry lower crust. J. Geophys. Res. 102: 12173–12185.CrossRefGoogle Scholar
Yardley, B. W. D. and Valley, J. W. (2000). Reply to Wannamaker (2000) “Comment on ‘The petrological case for a dry lower crust’”J. Geophys. Res. 105: 6065–6068.CrossRefGoogle Scholar
Zhdanov, M. S., Varentsov, I. M., Weaver, J. T., Golubev, N. G. and Krylov, V. A. (1997). Methods for modelling electromagnetic fields. Results from COMMEMI – the international project on the comparison of modelling methods for electromagnetic induction. J. Appl. Geophys. 37: 133–271.CrossRefGoogle Scholar
Zhang, P., Pedersen, L. B., Mareschal, M. and Chouteau, M. (1993). Channelling contribution to tipper vectors: a magnetic equivalent to electrical distortion. Geophys. J. Int. 113: 693–700.CrossRefGoogle Scholar
Zonge, K. L. and Hughes, L. H. (1991). Controlled-source audio-frequency magnetotellurics. In Electromagnetic Methods in Applied Geophysics. Volume 2: Applications, Part B., ed. Nabighian, M. C.. Tulsa: Society of Exploration Geophysicists, pp. 713–809.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Fiona Simpson, Georg-August-Universität, Göttingen, Germany, Karsten Bahr, Georg-August-Universität, Göttingen, Germany
  • Book: Practical Magnetotellurics
  • Online publication: 03 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511614095.019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Fiona Simpson, Georg-August-Universität, Göttingen, Germany, Karsten Bahr, Georg-August-Universität, Göttingen, Germany
  • Book: Practical Magnetotellurics
  • Online publication: 03 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511614095.019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Fiona Simpson, Georg-August-Universität, Göttingen, Germany, Karsten Bahr, Georg-August-Universität, Göttingen, Germany
  • Book: Practical Magnetotellurics
  • Online publication: 03 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511614095.019
Available formats
×