Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T12:34:33.663Z Has data issue: false hasContentIssue false

10 - Molecular Aspects of Malignant Mesothelioma and Other Tumors of the Pleura and Peritoneum

Published online by Cambridge University Press:  16 March 2018

Alberto M. Marchevsky
Affiliation:
Cedars Sinai Medical Center, Los Angeles
Aliya N. Husain
Affiliation:
University of Chicago
Françoise Galateau-Sallé
Affiliation:
MESOPATH National Reference Center & Cancer Center Leon Berard
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Krismann, M, Muller, KM, Jaworska, M, Johnen, G. Molecular cytogenetic differences between histological subtypes of malignant mesotheliomas: DNA cytometry and comparative genomic hybridization of 90 cases. J Pathol. 2002;197(3):363–71.CrossRefGoogle ScholarPubMed
Lindholm, PM, Salmenkivi, K, Vauhkonen, H, Nicholson, AG, Anttila, S, Kinnula, VL, et al. Gene copy number analysis in malignant pleural mesothelioma using oligonucleotide array CGH. Cytogenet Genome Res. 2007;119(1–2):4652.Google Scholar
Musti, M, Kettunen, E, Dragonieri, S, Lindholm, P, Cavone, D, Serio, G, et al. Cytogenetic and molecular genetic changes in malignant mesothelioma. Cancer Genet Cytogenet. 2006;170(1):915.CrossRefGoogle ScholarPubMed
Borczuk, AC, Pei, J, Taub, RN, Levy, B, Nahum, O, Chen, J, et al. Genome-wide analysis of abdominal and pleural malignant mesothelioma with DNA arrays reveals both common and distinct regions of copy number alteration. Cancer Biol Ther. 2016;17(3):328–35.CrossRefGoogle ScholarPubMed
Hirao, T, Bueno, R, Chen, CJ, Gordon, GJ, Heilig, E, Kelsey, KT. Alterations of the p16(INK4) locus in human malignant mesothelial tumors. Carcinogenesis. 2002;23(7):1127–30.CrossRefGoogle ScholarPubMed
Illei, PB, Rusch, VW, Zakowski, MF, Ladanyi, M. Homozygous deletion of CDKN2A and codeletion of the methylthioadenosine phosphorylase gene in the majority of pleural mesotheliomas. Clin Cancer Res. 2003;9(6):2108–13.Google Scholar
Xio, S, Li, D, Vijg, J, Sugarbaker, DJ, Corson, JM, Fletcher, JA. Codeletion of p15 and p16 in primary malignant mesothelioma. Oncogene. 1995;11(3):511–15.Google ScholarPubMed
Bianchi, AB, Mitsunaga, SI, Cheng, JQ, Klein, WM, Jhanwar, SC, Seizinger, B, et al. High frequency of inactivating mutations in the neurofibromatosis type 2 gene (NF2) in primary malignant mesotheliomas. Proc Natl Acad Sci U S A. 1995;92(24):10854–58.Google Scholar
Hamaratoglu, F, Willecke, M, Kango-Singh, M, Nolo, R, Hyun, E, Tao, C, et al. The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat Cell Biol. 2006;8(1):2736.CrossRefGoogle ScholarPubMed
Sekido, Y, Pass, HI, Bader, S, Mew, DJ, Christman, MF, Gazdar, AF, et al. Neurofibromatosis type 2 (NF2) gene is somatically mutated in mesothelioma but not in lung cancer. Cancer Res. 1995;55(6):1227–31.Google Scholar
Bott, M, Brevet, M, Taylor, BS, Shimizu, S, Ito, T, Wang, L, et al. The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma. Nat Genet. 2011;43(7):668–72.CrossRefGoogle ScholarPubMed
Testa, JR, Cheung, M, Pei, J, Below, JE, Tan, Y, Sementino, E, et al. Germline BAP1 mutations predispose to malignant mesothelioma. Nat Genet. 2011;43(10):1022–25.Google Scholar
Bueno, R, Stawiski, EW, Goldstein, LD, Durinck, S, De Rienzo, A, Modrusan, Z, et al. Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations. Nat Genet. 2016;48(4):407–16.Google Scholar
Nasu, M, Emi, M, Pastorino, S, Tanji, M, Powers, A, Luk, H, et al. High incidence of somatic BAP1 alterations in sporadic malignant mesothelioma. J Thorac Oncol. 2015;10(4):565–76.Google Scholar
Guo, G, Chmielecki, J, Goparaju, C, Heguy, A, Dolgalev, I, Carbone, M, et al. Whole-exome sequencing reveals frequent genetic alterations in BAP1, NF2, CDKN2A, and CUL1 in malignant pleural mesothelioma. Cancer Res. 2015;75(2):264–69.Google Scholar
Lo Iacono, M, Monica, V, Righi, L, Grosso, F, Libener, R, Vatrano, S, et al. Targeted next-generation sequencing of cancer genes in advanced stage malignant pleural mesothelioma: a retrospective study. J Thorac Oncol. 2015;10(3):492–99.Google Scholar
Shukuya, T, Serizawa, M, Watanabe, M, Akamatsu, H, Abe, M, Imai, H, et al. Identification of actionable mutations in malignant pleural mesothelioma. Lung Cancer. 2014;86(1):3540.Google Scholar
Lopez-Rios, F, Chuai, S, Flores, R, Shimizu, S, Ohno, T, Wakahara, K, et al. Global gene expression profiling of pleural mesotheliomas: overexpression of aurora kinases and P16/CDKN2A deletion as prognostic factors and critical evaluation of microarray-based prognostic prediction. Cancer Res. 2006;66(6):2970–79.Google Scholar
Krasinskas, AM, Bartlett, DL, Cieply, K, Dacic, S. CDKN2A and MTAP deletions in peritoneal mesotheliomas are correlated with loss of p16 protein expression and poor survival. Mod Pathol. 2010;23(4):531–38.Google Scholar
Chiosea, S, Krasinskas, A, Cagle, PT, Mitchell, KA, Zander, DS, Dacic, S. Diagnostic importance of 9p21 homozygous deletion in malignant mesotheliomas. Mod Pathol. 2008;21(6):742–47.CrossRefGoogle ScholarPubMed
Monaco, SE, Shuai, Y, Bansal, M, Krasinskas, AM, Dacic, S. The diagnostic utility of p16 FISH and GLUT-1 immunohistochemical analysis in mesothelial proliferations. Am J Clin Pathol. 2011;135(4):619–27.Google Scholar
Hida, T, Matsumoto, S, Hamasaki, M, Kawahara, K, Tsujimura, T, Hiroshima, K, et al. Deletion status of p16 in effusion smear preparation correlates with that of underlying malignant pleural mesothelioma tissue. Cancer Sci. 2015;106(11):1635–41.Google Scholar
Churg, A, Sheffield, BS, Galateau-Sallé, F. New Markers for Separating Benign From Malignant Mesothelial Proliferations: Are We There Yet? Arch Pathol Lab Med. 2016;140(4):318–21.Google Scholar
Wu, D, Hiroshima, K, Matsumoto, S, Nabeshima, K, Yusa, T, Ozaki, D, et al. Diagnostic usefulness of p16/CDKN2A FISH in distinguishing between sarcomatoid mesothelioma and fibrous pleuritis. Am J Clin Pathol. 2013;139(1):3946.CrossRefGoogle ScholarPubMed
Savic, S, Franco, N, Grilli, B, Barascud Ade, V, Herzog, M, Bode, B, et al. Fluorescence in situ hybridization in the definitive diagnosis of malignant mesothelioma in effusion cytology. Chest. 2010;138(1):137–44.Google Scholar
Tochigi, N, Attanoos, R, Chirieac, LR, Allen, TC, Cagle, PT, Dacic, S. p16 Deletion in sarcomatoid tumors of the lung and pleura. Arch Pathol Lab Med. 2013;137(5):632–36.CrossRefGoogle ScholarPubMed
Dacic, S, Kothmaier, H, Land, S, Shuai, Y, Halbwedl, I, Morbini, P, et al. Prognostic significance of p16/cdkn2a loss in pleural malignant mesotheliomas. Virchows Arch. 2008;453(6):627–35.Google Scholar
Singhi, AD, Krasinskas, AM, Choudry, HA, Bartlett, DL, Pingpank, JF, Zeh, HJ, et al. The prognostic significance of BAP1, NF2, and CDKN2A in malignant peritoneal mesothelioma. Mod Pathol. 2016;29(1):1424.CrossRefGoogle ScholarPubMed
Mizuno, T, Murakami, H, Fujii, M, Ishiguro, F, Tanaka, I, Kondo, Y, et al. YAP induces malignant mesothelioma cell proliferation by upregulating transcription of cell cycle-promoting genes. Oncogene. 2012;31(49):5117–22.CrossRefGoogle ScholarPubMed
Thurneysen, C, Opitz, I, Kurtz, S, Weder, W, Stahel, RA, Felley-Bosco, E. Functional inactivation of NF2/merlin in human mesothelioma. Lung Cancer. 2009;64(2):140–47.CrossRefGoogle ScholarPubMed
Hassan, R, Schweizer, C, Lu, KF, Schuler, B, Remaley, AT, Weil, SC, et al. Inhibition of mesothelin–CA-125 interaction in patients with mesothelioma by the anti-mesothelin monoclonal antibody MORAb-009: implications for cancer therapy. Lung Cancer. 2010;68(3):455–59.Google Scholar
Hassan, R, Cohen, SJ, Phillips, M, Pastan, I, Sharon, E, Kelly, RJ, et al. Phase I clinical trial of the chimeric anti-mesothelin monoclonal antibody MORAb-009 in patients with mesothelin-expressing cancers. Clin Cancer Res. 2010;16(24):6132–38.Google Scholar
Kelly, RJ, Sharon, E, Pastan, I, Hassan, R. Mesothelin-targeted agents in clinical trials and in preclinical development. Mol Cancer Ther. 2012;11(3):517–25.Google Scholar
Hassan, R, Miller, AC, Sharon, E, Thomas, A, Reynolds, JC, Ling, A, et al. Major cancer regressions in mesothelioma after treatment with an anti-mesothelin immunotoxin and immune suppression. Sci Transl Med. 2013;5(208):208ra147.Google Scholar
Ou, SH, Moon, J, Garland, LL, Mack, PC, Testa, JR, Tsao, AS, et al. SWOG S0722: phase II study of mTOR inhibitor everolimus (RAD001) in advanced malignant pleural mesothelioma (MPM). J Thorac Oncol. 2015;10(2):387–91.Google Scholar
Dolly, SO, Wagner, AJ, Bendell, JC, Kindler, HL, Krug, LM, Seiwert, TY, et al. Phase I study of Apitolisib (GDC-0980), dual phosphatidylinositol-3-kinase and mammalian target of rapamycin kinase inhibitor, in patients with advanced solid tumors. Clin Cancer Res. 2016;22(12):2874–84.Google Scholar
Emi, M, Yoshikawa, Y, Sato, C, Sato, A, Sato, H, Kato, T, et al. Frequent genomic rearrangements of BRCA1 associated protein-1 (BAP1) gene in Japanese malignant mesothelioma-characterization of deletions at exon level. J Hum Genet. 2015;60(10):647–49.Google Scholar
Wiesner, T, Obenauf, AC, Murali, R, Fried, I, Griewank, KG, Ulz, P, et al. Germline mutations in BAP1 predispose to melanocytic tumors. Nat Genet. 2011;43(10):1018–21.CrossRefGoogle ScholarPubMed
Harbour, JW, Onken, MD, Roberson, ED, Duan, S, Cao, L, Worley, LA, et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science. 2010;330(6009):1410–13.CrossRefGoogle ScholarPubMed
Carbone, M, Ferris, LK, Baumann, F, Napolitano, A, Lum, CA, Flores, EG, et al. BAP1 cancer syndrome: malignant mesothelioma, uveal and cutaneous melanoma, and MBAITs. J Transl Med. 2012;10:179.CrossRefGoogle ScholarPubMed
Pena-Llopis, S, Vega-Rubin-de-Celis, S, Liao, A, Leng, N, Pavia-Jimenez, A, Wang, S, et al. BAP1 loss defines a new class of renal cell carcinoma. Nat Genet. 2012;44(7):751–59.Google Scholar
Abdel-Rahman, MH, Pilarski, R, Cebulla, CM, Massengill, JB, Christopher, BN, Boru, G, et al. Germline BAP1 mutation predisposes to uveal melanoma, lung adenocarcinoma, meningioma, and other cancers. J Med Genet. 2011;48(12):856–59.Google Scholar
Wadt, KA, Aoude, LG, Johansson, P, Solinas, A, Pritchard, A, Crainic, O, et al. A recurrent germline BAP1 mutation and extension of the BAP1 tumor predisposition spectrum to include basal cell carcinoma. Clin Genet. 2015;88(3):267–72.Google Scholar
Zauderer, MG, Bott, M, McMillan, R, Sima, CS, Rusch, V, Krug, LM, et al. Clinical characteristics of patients with malignant pleural mesothelioma harboring somatic BAP1 mutations. J Thorac Oncol. 2013;8(11):1430–33.CrossRefGoogle ScholarPubMed
Yoshikawa, Y, Sato, A, Tsujimura, T, Emi, M, Morinaga, T, Fukuoka, K, et al. Frequent inactivation of the BAP1 gene in epithelioid-type malignant mesothelioma. Cancer Sci. 2012;103(5):868–74.CrossRefGoogle ScholarPubMed
Baumann, F, Flores, E, Napolitano, A, Kanodia, S, Taioli, E, Pass, H, et al. Mesothelioma patients with germline BAP1 mutations have 7-fold improved long-term survival. Carcinogenesis. 2015;36(1):7681.Google Scholar
Farzin, M, Toon, CW, Clarkson, A, Sioson, L, Watson, N, Andrici, J, et al. Loss of expression of BAP1 predicts longer survival in mesothelioma. Pathology. 2015;47(4):302–07.Google Scholar
Hwang, HC, Sheffield, BS, Rodriguez, S, Thompson, K, Tse, CH, Gown, AM, et al. Utility of BAP1 immunohistochemistry and p16 (CDKN2A) FISH in the diagnosis of malignant mesothelioma in effusion cytology specimens. Am J Surg Pathol. 2016;40(1):120–26.Google ScholarPubMed
McGregor, SM, Dunning, R, Hyjek, E, Vigneswaran, W, Husain, AN, Krausz, T. BAP1 facilitates diagnostic objectivity, classification, and prognostication in malignant pleural mesothelioma. Hum Pathol. 2015;46(11):1670–78.Google Scholar
Andrici, J, Sheen, A, Sioson, L, Wardell, K, Clarkson, A, Watson, N, et al. Loss of expression of BAP1 is a useful adjunct, which strongly supports the diagnosis of mesothelioma in effusion cytology. Mod Pathol. 2015;28(10):1360–68.Google Scholar
Cigognetti, M, Lonardi, S, Fisogni, S, Balzarini, P, Pellegrini, V, Tironi, A, et al. BAP1 (BRCA1-associated protein 1) is a highly specific marker for differentiating mesothelioma from reactive mesothelial proliferations. Mod Pathol. 2015;28(8):1043–57.Google Scholar
Walts, AE, Hiroshima, K, McGregor, SM, Wu, D, Husain, AN, Marchevsky, AM. BAP1 immunostain and CDKN2A (p16) FISH analysis: clinical applicability for the diagnosis of malignant mesothelioma in effusions. Diagn Cytopathol. 2016;44(7):599606.Google Scholar
LaFave, LM, Beguelin, W, Koche, R, Teater, M, Spitzer, B, Chramiec, A, et al. Loss of BAP1 function leads to EZH2-dependent transformation. Nat Med. 2015;21(11):1344–49.Google Scholar
Murakami, H, Mizuno, T, Taniguchi, T, Fujii, M, Ishiguro, F, Fukui, T, et al. LATS2 is a tumor suppressor gene of malignant mesothelioma. Cancer Res. 2011;71(3):873–83.CrossRefGoogle ScholarPubMed
Carbone, M, Gaudino, G, Yang, H. Recent insights emerging from malignant mesothelioma genome sequencing. J Thorac Oncol. 2015;10(3):409–11.Google Scholar
Andujar, P, Pairon, JC, Renier, A, Descatha, A, Hysi, I, Abd-Alsamad, I, et al. Differential mutation profiles and similar intronic TP53 polymorphisms in asbestos-related lung cancer and pleural mesothelioma. Mutagenesis. 2013;28(3):323–31.Google Scholar
Christensen, BC, Marsit, CJ, Houseman, EA, Godleski, JJ, Longacker, JL, Zheng, S, et al. Differentiation of lung adenocarcinoma, pleural mesothelioma, and nonmalignant pulmonary tissues using DNA methylation profiles. Cancer Res. 2009;69(15):6315–21.CrossRefGoogle ScholarPubMed
Toyooka, S, Pass, HI, Shivapurkar, N, Fukuyama, Y, Maruyama, R, Toyooka, KO, et al. Aberrant methylation and simian virus 40 tag sequences in malignant mesothelioma. Cancer Res. 2001;61(15):5727–30.Google ScholarPubMed
Shivapurkar, N, Toyooka, S, Toyooka, KO, Reddy, J, Miyajima, K, Suzuki, M, et al. Aberrant methylation of trail decoy receptor genes is frequent in multiple tumor types. Int J Cancer. 2004;109(5):786–92.CrossRefGoogle Scholar
Fujii, M, Fujimoto, N, Hiraki, A, Gemba, K, Aoe, K, Umemura, S, et al. Aberrant DNA methylation profile in pleural fluid for differential diagnosis of malignant pleural mesothelioma. Cancer Sci. 2012;103(3):510–14.Google Scholar
Goto, Y, Shinjo, K, Kondo, Y, Shen, L, Toyota, M, Suzuki, H, et al. Epigenetic profiles distinguish malignant pleural mesothelioma from lung adenocarcinoma. Cancer Res. 2009;69(23):9073–82.CrossRefGoogle ScholarPubMed
Christensen, BC, Houseman, EA, Godleski, JJ, Marsit, CJ, Longacker, JL, Roelofs, CR, et al. Epigenetic profiles distinguish pleural mesothelioma from normal pleura and predict lung asbestos burden and clinical outcome. Cancer Res. 2009;69(1):227–34.Google Scholar
Romagnoli, S, Fasoli, E, Vaira, V, Falleni, M, Pellegrini, C, Catania, A, et al. Identification of potential therapeutic targets in malignant mesothelioma using cell-cycle gene expression analysis. Am J Pathol. 2009;174(3):762–70.Google Scholar
Gordon, GJ, Rockwell, GN, Jensen, RV, Rheinwald, JG, Glickman, JN, Aronson, JP, et al. Identification of novel candidate oncogenes and tumor suppressors in malignant pleural mesothelioma using large-scale transcriptional profiling. Am J Pathol. 2005;166(6):1827–40.Google Scholar
Gordon, GJ, Jensen, RV, Hsiao, LL, Gullans, SR, Blumenstock, JE, Ramaswamy, S, et al. Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Res. 2002;62(17):4963–67.Google Scholar
Gordon, GJ, Jensen, RV, Hsiao, LL, Gullans, SR, Blumenstock, JE, Richards, WG, et al. Using gene expression ratios to predict outcome among patients with mesothelioma. J Natl Cancer Inst. 2003;95(8):598605.Google Scholar
Pass, HI, Liu, Z, Wali, A, Bueno, R, Land, S, Lott, D, et al. Gene expression profiles predict survival and progression of pleural mesothelioma. Clin Cancer Res. 2004;10(3):849–59.Google Scholar
Crispi, S, Fagliarone, C, Biroccio, A, D'Angelo, C, Galati, R, Sacchi, A, et al. Antiproliferative effect of Aurora kinase targeting in mesothelioma. Lung Cancer. 2010;70(3):271–79.CrossRefGoogle ScholarPubMed
Busacca, S, Germano, S, De Cecco, L, Rinaldi, M, Comoglio, F, Favero, F, et al. MicroRNA signature of malignant mesothelioma with potential diagnostic and prognostic implications. Am J Respir Cell Mol Biol. 2010;42(3):312–19.CrossRefGoogle ScholarPubMed
Gee, GV, Koestler, DC, Christensen, BC, Sugarbaker, DJ, Ugolini, D, Ivaldi, GP, et al. Downregulated microRNAs in the differential diagnosis of malignant pleural mesothelioma. Int J Cancer. 2010;127(12):2859–69.Google Scholar
Matsumoto, S, Nabeshima, K, Hamasaki, M, Shibuta, T, Umemura, T. Upregulation of microRNA-31 associates with a poor prognosis of malignant pleural mesothelioma with sarcomatoid component. Med Oncol. 2014;31(12):303.CrossRefGoogle ScholarPubMed
Jean, D, Daubriac, J, Le Pimpec-Barthes, F, Galateau-Sallé, F, Jaurand, MC. Molecular changes in mesothelioma with an impact on prognosis and treatment. Arch Pathol Lab Med. 2012;136(3):277–93.CrossRefGoogle ScholarPubMed
Brevet, M, Shimizu, S, Bott, MJ, Shukla, N, Zhou, Q, Olshen, AB, et al. Coactivation of receptor tyrosine kinases in malignant mesothelioma as a rationale for combination targeted therapy. J Thorac Oncol. 2011;6(5):864–74.Google Scholar
Kalra, N, Ashai, A, Xi, L, Zhang, J, Avital, I, Raffeld, M, et al. Patients with peritoneal mesothelioma lack epidermal growth factor receptor tyrosine kinase mutations that would make them sensitive to tyrosine kinase inhibitors. Oncol Rep. 2012;27(6):1794–800.Google Scholar
Foster, JM, Radhakrishna, U, Govindarajan, V, Carreau, JH, Gatalica, Z, Sharma, P, et al. Clinical implications of novel activating EGFR mutations in malignant peritoneal mesothelioma. World J Surg Oncol. 2010;8:88.Google Scholar
Schildgen, V, Pabst, O, Tillmann, RL, Lusebrink, J, Schildgen, O, Ludwig, C, et al. Low frequency of EGFR mutations in pleural mesothelioma patients, Cologne, Germany. Appl Immunohistochem Molec Morphol. 2015;23(2):118–25.Google Scholar
Velcheti, V, Kasai, Y, Viswanathan, AK, Ritter, J, Govindan, R. Absence of mutations in the epidermal growth factor receptor (EGFR) kinase domain in patients with mesothelioma. J Thorac Oncol. 2009;4(4):559.CrossRefGoogle ScholarPubMed
Cortese, JF, Gowda, AL, Wali, A, Eliason, JF, Pass, HI, Everson, RB. Common EGFR mutations conferring sensitivity to gefitinib in lung adenocarcinoma are not prevalent in human malignant mesothelioma. Int J Cancer. 2006;118(2):521–22.Google Scholar
Astoul, P, Roca, E, Galateau-Sallé, F, Scherpereel, A. Malignant pleural mesothelioma: from the bench to the bedside. Respiration. 2012;83(6):481–93.CrossRefGoogle Scholar
Mansfield, AS, Roden, AC, Peikert, T, Sheinin, YM, Harrington, SM, Krco, CJ, et al. B7-H1 expression in malignant pleural mesothelioma is associated with sarcomatoid histology and poor prognosis. J Thorac Oncol. 2014;9(7):1036–40.Google Scholar
Combaz-Lair, C, Galateau-Sallé, F, McLeer-Florin, A, Le Stang, N, David-Boudet, L, Duruisseaux, M, et al. Immune biomarkers PD-1/PD-L1 and TLR3 in malignant pleural mesotheliomas. Hum Pathol. 2016;52:918.Google Scholar
Currie, AJ, Prosser, A, McDonnell, A, Cleaver, AL, Robinson, BW, Freeman, GJ, et al. Dual control of antitumor CD8 T cells through the programmed death-1/programmed death-ligand 1 pathway and immunosuppressive CD4 T cells: regulation and counterregulation. J Immunol. 2009;183(12):7898–908.Google Scholar
Marcq, E, Pauwels, P, van Meerbeeck, JP, Smits, EL. Targeting immune checkpoints: new opportunity for mesothelioma treatment? Cancer Treat Rev. 2015;41(10):914–24.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×