Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-15T05:56:24.623Z Has data issue: false hasContentIssue false

5 - Hereditary and Genetic Causes of Stroke

Published online by Cambridge University Press:  06 October 2022

Anita Arsovska
Affiliation:
University of Ss Cyril and Methodius
Derya Uluduz
Affiliation:
Istanbul Üniversitesi
Get access
Type
Chapter
Information
Rare Causes of Stroke
A Handbook
, pp. 199 - 280
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Pope, FM, Nicholls, AC, Jones, PM, et al. EDS IV (acrogeria): New autosomal dominant and recessive types. J R Soc Med. 1980;73(3): 180186.Google Scholar
Pepin, M, Schwarze, U, Superti-Furga, A, Byers, PH. Clinical and genetic features of Ehlers-Danlos syndrome type IV, the vascular type. N Engl J Med. 2000;342(10): 673.CrossRefGoogle ScholarPubMed
Malfait, F, Francomano, C, Byers, P, et al. The 2017 international classification of the Ehlers-Danlos syndromes. Am J Med Genet C Semin Med Genet. 2017;175(1): 826.CrossRefGoogle ScholarPubMed
Byers, PH, Belmont, J, Black, J, et al. Diagnosis, natural history, and management in vascular Ehlers-Danlos syndrome. Am J Med Genet C Semin Med Genet. 2017;175(1): 4047.CrossRefGoogle ScholarPubMed
Bhatt, N, Malik, AM, Chaturvedi, S. Stroke in young adults Five new things. Neurol Clin Pract. 2018;8(6): 501506.CrossRefGoogle ScholarPubMed
Bersano, A, Markus, HS, Quaglini, S, et al. Clinical pregenetic screening for stroke monogenic diseases: Results from Lombardia GENS Registry. Stroke. 2016;47(7): 17021709.CrossRefGoogle ScholarPubMed

References

Meester, JAN, Verstraeten, A, Schepers, D, et al. Differences in manifestations of Marfan syndrome, Ehlers-Danlos syndrome, and Loeys-Dietz syndrome. Ann Cardiothorac Surg. 2017;6(6): 582594.CrossRefGoogle ScholarPubMed
Sakai, LY, Keene, DR, Renard, M, De Backer, J. FBN1: The disease-causing gene for Marfan syndrome and other genetic disorders. Gene. 2016;591(1): 279291.CrossRefGoogle ScholarPubMed
Yuan, S-M, Jing, H. Marfan’s syndrome: an overview. Sao PaoloMed J. 2010;128(6): 360366.CrossRefGoogle ScholarPubMed
Pepe, G, Giusti, B, Sticchi, E, et al. Marfan syndrome: current perspectives. Appl Clin Genet. 2016;9: 5565.Google Scholar
Loeys, BL, Dietz, CH, Braverman, AC, et al. The revised Ghent nosology for the Marfan syndrome. J Med Genet. 2010;47(7): 476485.CrossRefGoogle ScholarPubMed
Kumar, A, Agarwal, S. Marfan syndrome: an eyesight of syndrome. Meta Gene. 2014;2: 96105.CrossRefGoogle ScholarPubMed
vonKodolitsch, Y, De Backer, J, Schüler, H, et al. Perspectives on the revised Ghent criteria for the diagnosis of Marfan syndrome. Appl Clin Genet. 2015;8:137–55.Google Scholar
Tinkle, BT, Saal, HM, and Committee on Genetics. Health supervision for children with Marfan syndrome. Pediatrics. 2013;132(4):e1059–72.Google Scholar
Ozyurt, A, Baykan, A, Argun, M, et al. Early onset Marfan syndrome: Atypical clinical presentation of two cases. Balkan J Med Genet. 2015;18(1): 7176.CrossRefGoogle ScholarPubMed
CSANZ Cardiovascular Genetics Working Group, Ades, L. Guidelines for the diagnosis and management of Marfan syndrome. Heart Lung Circ. 2007;16(1): 2830.Google Scholar
Pyeritz, R. Evaluation of the adolescent or adult with some features of Marfan syndrome. Genet Med. 2012;14(1): 171177.CrossRefGoogle ScholarPubMed
Ha, HI, Seo, JB, Lee, SH, et al. Imaging of Marfan syndrome: Multisystemic manifestations. Radiographics. 2007;27(4): 9891004.Google Scholar

References

Olin, JW, Gornik, HL, Bacharach, JM, et al. Fibromuscular dysplasia: State of the science and critical unanswered questions. A scientific statement from the American Heart Association. Circulation. 2014;129: 10481078.Google Scholar
Gornik, HL, Persu, A, Adlam, D, et al. First international consensus on the diagnosis and management of fibromuscular dysplasia. Vasc Med. 2019;24(2): 164189.CrossRefGoogle ScholarPubMed
Touze, E, Oppenheim, C, Trystram, D, et al. Fibromuscular dysplasia of cervical and intracranial arteries. Int J Stroke. 2010;5: 296305.CrossRefGoogle ScholarPubMed
Harriott, AM, Zimmerman, E, Singhal, AB, et al. Cerebrovascular fibromuscular dysplasia. Neurol Clin Pract. 2017;7: 225236.CrossRefGoogle ScholarPubMed
Varennes, L, Tahon, F, Kastler, A, et al. Fibromuscular dysplasia: What the radiologist should know. A pictorial review. Insights Imaging. 2015;6: 295307.Google Scholar

References

Pina-Garza, JE, James, KC. Psychomotor Retardation and Regression (Chapter 5). In: Pina-Garza, JE, James, KC. (Eds). Fenichel’s Clinical Pediatric Neurology, 8th Edn. Philedelphia: Elsevier; 2019. 134137.Google Scholar
Gutmann, DH, Aylsworth, A, Carey, JC, et al. The diagnostic evaluation and multidisciplinary management of neurofibromatosis 1 and neurofibromatosis 2. J Am Med Assoc. 1997;278: 5157.CrossRefGoogle ScholarPubMed
Thiele, EA, Korf, BR. Phakomatoses and allied conditions (Chapter 45). In: Swaiman, KF, Aschwal, S, Ferriero, DM, et al. (Eds). Swaiman’s Pediatric Neurology. China: Elsevier; 2017. 362372.CrossRefGoogle Scholar
Rukavina, K, Töpper, R, Kunze, A, et al. Early-onset stroke in two siblings with neurofibromatosis type 1. Eur J Med Genet. 2019;62: 103710.Google Scholar
Santoro, C, Giugliano, T, Kraemer, M, et al.Whole exome sequencing identifies MRVI1 as a susceptibility gene for moyamoya syndrome in neurofibromatosis type 1. Am J Med Genet A. 2017;17: 15211530.Google Scholar
Kaas, B, Huisman, TAGM, Tekes, A, et al. Spectrum and prevalence of vasculopathy in pediatric neurofibromatosis type 1. J Child Neurol. 2013;28: 561569.CrossRefGoogle ScholarPubMed
Koss, MK, Scott, RM, Irons, MB, Smith, ER, Ullrich, NJ. Moyamoya syndrome associated with neurofibromatosis type 1: Perioperative and long-term outcome after surgical revascularization. J Neurosurg Pediatr. 2013;11: 417425.Google Scholar

References

Shovlin, CL, Buscarini, E, Kjeldsen, AD, et al. European Reference Network for Rare Vascular Diseases (VASCERN) outcome measures for hereditary haemorrhagic telangiectasias (HHT). Orphanet J Rare Dis. 2018;13: 136.Google Scholar
Faughnan, ME, Mager, JJ, Hetts, SW, et al. Second international guidelines for the diagnosis and management of hereditary hemorrhagic telangiectasia. Ann Intern Med. 2020;173(12): 9891001.CrossRefGoogle ScholarPubMed
Giordano, P, Lenato, GM, Suppressa, P, et al. Hereditary hemorrhagic telangiectasia: Arteriovenous malformation in children. J Pediatr. 2013;163: 179.CrossRefGoogle ScholarPubMed

References

Petty, GW, Brown, RD Jr, Whisnant, JP, et al. Ischemic stroke subtypes: a population-based study of incidence and risk factors. Stroke. 1999;30(12): 25132516.Google Scholar
Søndergaard, CB, Nielsen, JE, Hansen, CK, Christensen, H. Hereditary cerebral small vessel disease and stroke. Clin Neurol Neurosurg. 2017;155: 4557.Google Scholar
Dong, Y, Hassan, A, Zhang, Z, et al. Yield of screening for CADASIL mutations in lacunar stroke and leukoaraiosis. Stroke. 2003;34(1): 203205.CrossRefGoogle ScholarPubMed
Di Donato, I, Bianchi, S, De Stefano, N, et al. Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) as a model of small vessel disease: Update on clinical, diagnostic, and management aspects. BMC Med. 2017;15(1): 41.Google Scholar
Dichgans, M, Ludwig, H, Müller-Höcker, J, et al. Small in-frame deletions and missense mutations in CADASIL: 3D models predict misfolding of Notch3 EGF-like repeat domains. Eur J Hum Genet. 2000;8(4): 280285.CrossRefGoogle ScholarPubMed
Joutel, A, Monet, M, Domenga, V, Riant, F, et al. Pathogenic mutations associated with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy differently affect Jagged1 binding and Notch3 activity via the RBP/JK signaling Pathway. Am J Hum Genet. 2004;74(2): 338347.CrossRefGoogle ScholarPubMed
Tikka, S, Baumann, M, Siitonen, M, et al. CADASIL and CARASIL. Brain Pathol. 2014;24(5): 525544.CrossRefGoogle ScholarPubMed
Opherk, C, Peters, N, Herzog, J, et al. Long-term prognosis and causes of death in CADASIL: a retrospective study in 411 patients. Brain. 2004;127(Pt 11): 25332539.CrossRefGoogle ScholarPubMed
Rufa, A, De Stefano, N, Dotti, MT, et al. Acute unilateral visual loss as the first symptom of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Arch Neurol. 2004;61(4): 577580.CrossRefGoogle Scholar
Dichgans, M, Petersen, D. Angiographic complications in CADASIL. Lancet. 1997;349(9054): 776777.Google Scholar
Oluwole, OJ, Ibrahim, H, Garozzo, D, et al. Cerebral small vessel disease due to a unique heterozygous HTRA1 mutation in an African man. Neurol Genet. 2019;6(1): e382.Google Scholar
Yu, Z, Cao, S, Wu, A, et al. Genetically confirmed CARASIL: Case report with novel HTRA1 mutation and literature review. World Neurosurg. 2020;143: 121128.CrossRefGoogle ScholarPubMed
Nozaki, H, Nishizawa, M, Onodera, O. Features of cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke. 2014;45(11): 34473453.CrossRefGoogle ScholarPubMed
Fukutake, T. Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL): From discovery to gene identification. J Stroke Cerebrovasc Dis. 2011;20(2): 8593.Google Scholar
Nozaki, H, Sekine, Y, Fukutake, T, et al. Characteristic features and progression of abnormalities on MRI for CARASIL. Neurology. 2015;85(5): 459463.CrossRefGoogle ScholarPubMed

References

Pelzer, N, Hoogeveen, ES, Haan, J, et al.Systemic features of retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations: a monogenic small vessel disease. J Intern Med. 2019;285: 317332.CrossRefGoogle ScholarPubMed
Richards, A, Van Den Maagdenberg, AMJM, Jen, JC, et al. C-terminal truncations in human 3′-5′ DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy. Nat Genet. 2007;39: 10681070.Google Scholar
Stam, AH, Kothari, PH, Shaikh, A, et al. Retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations. Brain. 2016;139: 29092922.CrossRefGoogle ScholarPubMed
Mancuso, M, Arnold, M, Bersano, A, et al. Monogenic cerebral small‐vessel diseases: Diagnosis and therapy. Consensus recommendations of the European Academy of Neurology. Eur J Neurol. 2020;27: 909927.CrossRefGoogle ScholarPubMed
de Boer, I, Pelzer, N, Terwindt, G. Retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations. Sep 19 2019: In GeneReviews® [Internet] (Adam, MP, Ardinger, HH, Pagon, RA, et al., Eds): Seattle (WA): University of Washington, Seattle, 1993–2020.Google Scholar

References

Desnick, RJ, et al. α-Galactosidase A deficiency: Fabry disease. In: Scriver, CR, Beaudet, AL, Sly, WS, Valle, D. (Eds). The Metabolic and Molecular Basis of Inherited Disease, 8th Edn. New York: McGraw-Hill; 2001. 37333774.Google Scholar
Zarate, YA, Hopkin, RJ. Fabry’s disease. Lancet. 2008;372: 127135.CrossRefGoogle ScholarPubMed
Vincent, T. Fabry disease: Why stroke neurologists should care. Eur Neurol Rev. 2006;2: 9496.Google Scholar
Kolodny, E, Fellgiebel, A, Hilz, MJ, et al. Cerebrovascular involvement in Fabry disease. Stroke. 2015;46: 302313.Google Scholar
Resende de Jesus, PM, Martins, AM, Chiacchio, ND, Aranda, CS. Genital angiokeratoma in a woman with Fabry disease: the dermatologist’s role. An Bras Dermatol. 2018;93(3): 426428.Google Scholar
Gündoğdu, AA, Kotan, D, Alemdar, M, Ayas, . Fabry disease diagnosis in a young stroke patient: A case report. Noro Psikiyatr Ars. 2018;55(3): 291292.Google Scholar
Sims, K, Politei, J, Banikazemi, M, Lee, P. Stroke in Fabry disease frequently occurs before diagnosis and in the absence of other clinical events: natural history data from the Fabry Registry. Stroke. 2009;40: 788794.CrossRefGoogle ScholarPubMed
Fancellu, L, Borsini, W, Romani, I. Exploratory screening for Fabry’s disease in young adults with cerebrovascular disorders in northern Sardinia. BMC Neurol. 2015;15: 256.Google Scholar
Rolfs, A, Böttcher, T, Zschiesche, M, et al. Prevalence of Fabry disease in patients with cryptogenic stroke: A prospective study. Lancet. 2005;366(9499): 17941796.CrossRefGoogle ScholarPubMed
Zhang, Y-N, Guo, ZN, Zhou, HW, et al. Fabry disease with acute cerebral infarction onset in a young patient. Chin Med J. 2019;132(4): 477479.CrossRefGoogle ScholarPubMed
Qiao, Y, Steinman, DA, Qin, Q, et al. Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 Tesla. J Magn Reson Imaging. 2011;34(1):2230.CrossRefGoogle ScholarPubMed
Ortiz, A, Germain, DP, Desnick, RJ, et al. Fabry disease revisited: Management and treatment recommendations for adult patients. Mol Genet Metab. 2018;123(4): 416427.CrossRefGoogle ScholarPubMed
Sheng, S, Wu, L, Nalleballe, K, et al. Fabry’s disease and stroke: Effectiveness of enzyme replacement therapy (ERT) in stroke prevention, a review with meta-analysis. J Clin Neurosci. 2019;65: 8386.CrossRefGoogle ScholarPubMed
Kargiotis, O, Psychogios, K, Safouris, A, et al. Intravenous thrombolysis for acute ischemic stroke in Fabry disease. Neurologist. 2019;24(5): 146149.CrossRefGoogle ScholarPubMed
Saarinen, JT, Sillanpää, N, Kantola, I, et al. A male Fabry disease patient treated with intravenous thrombolysis for acute ischemic stroke. J Clin Neurosci. 2015;22(2): 423425.CrossRefGoogle ScholarPubMed
Liu, D, Hu, K, Schmidt, M, et al. Value of the CHA2DS2-VASc score and Fabry-specific score for predicting new-onset or recurrent stroke/TIA in Fabry disease patients without atrial fibrillation. Clin Res Cardiol. 2018;107(12): 11111121.Google Scholar
Kang, E, Kim, Y-M, Kim, D-H, et al. Life-threatening bleeding from gastric mucosal angiokeratomas during anticoagulation: A case report of Fabry disease. Medicine (Baltimore). 2017;96(6): e6063.Google Scholar
Laney, DA, Bennett, RL, Clarke, V, et al. Fabry disease practice guidelines: Recommendations of the National Society of Genetic Counselors. J Genet Couns. 2013;22(5): 555564.CrossRefGoogle ScholarPubMed
Wu, L-C, Chiang, C-T, Lee, K-F, et al. A case of Fabry disease presenting with young stroke and fever. Acta Neurol Taiwan. 2019;28: 5256.Google Scholar

References

El-Hattab, AW, Adesina, AM, Jones, J, Scaglia, F. MELAS syndrome: Clinical manifestations, pathogenesis, and treatment options. Mol Genet Metab. 2015;116: 412.CrossRefGoogle ScholarPubMed
Finsterer, J, Wakil, SM. Stroke-like episodes, peri-episodic seizures, and MELAS mutations. Eur J Paediatr Neurol. 2016;30: 16.Google Scholar
Hirano, M, Ricci, E, Koenigsberger, MR, et al. MELAS: An original case and clinical criteria for diagnosis. Neuromuscul Dis. 1992;2(2): 125135.CrossRefGoogle ScholarPubMed
Hsu, YHR, Yogasundara, H, Parajuli, N, et al. MELAS Syndrome and cardiomyopathy: Linking mitochondrial function to heart failure pathogenesis. Heart Fail Rev. 2016;21(1): 103116.Google Scholar
Ito, H, Mori, K, Kagami, S. Neuroimaging of stroke-like episodes in MELAS. Brain Dev. 2011;33: 283288.CrossRefGoogle ScholarPubMed
Koening, MK, Emrick, L, Karaa, A, et al. Recommendations for the management of strokelike episodes in patients with mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes. JAMA Neurol. 2016;73(5): 591594.Google Scholar
Lee, S, Oh, DA, Bae, EK. Fixation-off sensitivity in mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome. Seizure. 2019;64: 67.CrossRefGoogle ScholarPubMed
Rimiano, G, Vollono, C, Dono, F, Servidei, S. Drug-resistant epilepsy in MELAS: Safety and potential efficacy of lacosamide. Epilepsy Res. 2018;139: 135136.CrossRefGoogle Scholar
Santa, KM. Treatment options for mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome. Pharmacotherapy. 2010;30(11): 11791196.CrossRefGoogle ScholarPubMed
Yatsuga, S, Povalko, N, Nishioka, J, et al. MELAS: A nationwide prospective cohort study of 96 patients in Japan. Biochim Biophys Acta. 2012;1820(5): 619624.CrossRefGoogle Scholar
Hovsepain, DA, Galat, A, Chong, RA, et al. MELAS: Monitoring treatment with magnetic resonance spectroscopy. Acta Neurol Scand. 2019;139(1): 8285.Google Scholar
Malhotra, K, Liebeskind, DS. Imaging of MELAS. Curr Pain Headache Rep. 2016;20: 54.Google Scholar
Muramatsu, D, Yamaguchi, H, Iwasa, K, Yamada, M. Cerebellar hyperintensity lesions on diffusion-weighted MRI in MELAS. Intern Med. 2019;58(12): 17971798.Google Scholar
Santamarina, E, Alpuente, A, Maisterra, O, et al. Perampanel: A therapeutic alternative in refractory status epilepticus associated with MELAS syndrome. Epilepsy Behav Case Rep. 2019;11: 9295.Google Scholar

References

Tümer, Z, Moller, LB. Menkes disease. Eur J Human Genetics 2010;18: 511518.CrossRefGoogle ScholarPubMed
Hsich, GE, Robertson, RL, Irons, M, Soul, JS, du Plessis, AJ. Cerebral infarction in Menkes’ disease. Pediatr Neurol. 2000;23: 425428.Google Scholar
Kobayashi, S, Yokoi, K, Kamioka, N, et al. A severe case of Menkes disease with repeated bone fracture during the neonatal period, followed by multiple arterial occlusion. Brain Dev. 2019;41: 878882.CrossRefGoogle ScholarPubMed
Rangarh, P, Kohli, N. Neuroimaging findings in Menkes disease: A rare neurodegenerative disorder. BMJ Case Rep. 2018;2018: bcr2017223858.CrossRefGoogle ScholarPubMed
Lehwald, LM, Menkes, JH. Menkes disease. In: Caplan, L, Biller, J. (Eds). Uncommon Causes of Stroke. Cambridge: Cambridge University Press; 2018. 250254.CrossRefGoogle Scholar
Kaler, SG, Holmes, CS, Goldstein, DS, et al. Neonatal diagnosis and treatment of Menkes disease. N Engl J Med. 2008;358: 605614.Google Scholar
Manara, R, Rocco, MC, D’agata, L, et al. Neuroimaging changes in Menkes disease, part 2. Am J Neuroradiol. 2017;38: 18581865.CrossRefGoogle ScholarPubMed

References

Burnett, JR, Hooper, AJ, McCormick, SPA, et al. Tangier disease. 2019 Nov 21. In: GeneReviews®[Internet]. (Adam, MP, Ardinger, HH, Pagon, RA, et al., Eds): Seattle (WA): University of Washington, Seattle, 1993–2020.Google Scholar
Hooper, AJ, Hegele, RA, Burnett, JR. Tangier disease: Update for 2020. Curr Opin Lipidol. 2020;31: 8084.Google Scholar
Serfaty-Lacrosniere, C, Civeira, F, Lanzberg, A, et al. Homozygous Tangier disease and cardiovascular disease. Atherosclerosis. 1994;107: 8598.CrossRefGoogle ScholarPubMed
Sechi, A, Dardis, A, Zampieri, S, et al. Effects of miglustat treatment in a patient affected by an atypical form of Tangier disease. Orphanet J Rare Dis. 2014;9: 143.CrossRefGoogle Scholar

References

Villani, GR, Gallo, G, Scolamiero, E, Salvatore, F, Ruoppolo, M. Classical organic acidurias: Diagnosis and pathogenesis. Clin Exp Med. 2017;17(3): 305323.Google Scholar
Manoli, I, Venditti, CP. Disorders of branched chain amino acid metabolism. Transl Sci Rare Dis. 2016;1(2): 91110.Google ScholarPubMed
Clarke, SL, Bowron, A, Gonzalez, IL, et al. Barth syndrome. Orphanet J Rare Dis. 2013;8: 23.Google Scholar
Kolker, S, Christensen, E, Leonard, JV, et al. Diagnosis and management of glutaric aciduria type I–revised recommendations. J Inherit Metab Dis. 2011;34(3): 677694.Google Scholar
Hoffmann, GF, Trefz, FK, Barth, PG, et al. Macrocephaly: an important indication for organic acid analysis. J Inherit Metab Dis. 1991;14(3): 329332.CrossRefGoogle ScholarPubMed
Zinnanti, WJ, Lazovic, J, Housman, C, et al. Mechanism of metabolic stroke and spontaneous cerebral hemorrhage in glutaric aciduria type I. Acta Neuropathol Commun. 2014;2: 13.Google Scholar
Nishino, H, Czurko, A, Fukuda, A, et al. Pathophysiological process after transient ischemia of the middle cerebral artery in the rat. Brain Res Bull. 1994;35(1): 5156.CrossRefGoogle ScholarPubMed
Isasi, E, Barbeito, L, Olivera-Bravo, S. Increased blood-brain barrier permeability and alterations in perivascular astrocytes and pericytes induced by intracisternal glutaric acid. Fluids Barriers CNS. 2014;11: 15.CrossRefGoogle ScholarPubMed
Keyfi, F, Talebi, S, Varasteh, AR. Methylmalonic acidemia diagnosis by laboratory methods. Rep Biochem Mol Biol. 2016;5(1): 114.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×