Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-14T22:12:08.651Z Has data issue: false hasContentIssue false

17 - The space of cosmological models

from Part 4 - Anisotropic and inhomogeneous models

Published online by Cambridge University Press:  05 April 2012

George F. R. Ellis
Affiliation:
University of Cape Town
Roy Maartens
Affiliation:
University of Portsmouth and The University of the Western Cape
Malcolm A. H. MacCallum
Affiliation:
University of Bristol
Get access

Summary

Although the observations appear to be well fitted by perturbed FLRW models, as described above, more general models need to be considered. One major reason is that the appropriateness of the perturbed FLRW models cannot be said to have been tested unless the consequences of alternatives have been calculated and compared with observation. In particular, there could be drastic changes to the models for the very early universe, since what may now be small and decaying perturbations in the standard picture would have been non-negligible earlier, and could give very different dynamics. Local observations can bound, but could not be sure to detect, such perturbations, so their testable consequences, if any, must arise from effects in the early universe.

We also need to consider the possibility of large-scale anisotropies, for example arising from a cosmic magnetic field aligned on a supergalactic scale, and of large-scale inhomogeneities (advanced as a possible explanation, which we discussed in Chapter 15, of the apparent acceleration seen in the supernova data).

This chapter considers the space of all models and the definition of classes of cosmological models wider than the FLRW models (compare e.g. Ellis (2005)). There are many ways of classifying spacetimes, of which the most common are by symmetry and by Petrov type (see Stephani et al. (2003)). In the cosmological case, symmetries are the more relevant and we consider that here. (Some models characterized by other covariant properties are described in Sections 19.6 and 19.7.)

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×