Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-04T17:51:09.663Z Has data issue: false hasContentIssue false

12 - Dendritic growth

Published online by Cambridge University Press:  22 August 2009

Jeff Mumm
Affiliation:
Luminomics, 1508 South Grand Blvd., St. Louis, MO 63104, USA
Christian Lohmann
Affiliation:
Max-Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Planegg-Martinsried, Germany
Evelyne Sernagor
Affiliation:
University of Newcastle upon Tyne
Stephen Eglen
Affiliation:
University of Cambridge
Bill Harris
Affiliation:
University of Cambridge
Rachel Wong
Affiliation:
Washington University, St Louis
Get access

Summary

Introduction

Retinal neuron arbors are organized in relation to three central functions. (1) Outgrowth is regulated in the lateral dimension to delimit receptive-field size, a property linked to spatial acuity. (2) Interactions between individual neuronal subtypes are coordinated with respect to neuritic overlap to promote complete coverage, or tiling, of the retina, thus assuring that distinct functions have representation over the entire area of the retina (see Chapter 10). (3) Interactions between pre- and postsynaptic partners are organized in the vertical dimension such that functionally discrete circuits are physically isolated within the synaptic neuropil. For instance, during development of the inner plexiform layer (IPL) connections between subsets of bipolar, amacrine and retinal ganglion cells come to be arranged in a laminar fashion, sometimes occupying single strata within a multilayered array of concentric circuits (Figure 12.1).

In this chapter the current state of understanding regarding the structural development of retinal neuron arbors is discussed: from mechanisms that impact individual neuronal morphologies to those that orchestrate interactions between synaptic partners. In the first section, issues concerning initial neurite extension are discussed. These include establishing cellular polarity and compartmentalization of neurites into the axon and dendrites. Section two focuses on the establishment of dendritic territory and interactions that influence receptive-field size. The last section deals with the process of sublamination, whereby individual neuritic arbors resolve into monostratified, multistratified, or diffuse (non-stratified) configurations within the IPL.

Type
Chapter
Information
Retinal Development , pp. 242 - 264
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akerman, C. J., Smyth, D. and Thompson, I. D. (2002). Visual experience before eye-opening and the development of the retinogeniculate pathway. Neuron, 36, 869–79CrossRefGoogle ScholarPubMed
Ammermuller, J. and Kolb, H. (1995). The organization of the turtle retina. I. ON- and OFF-center pathways. J. Comp. Neurol., 358, 1–34CrossRefGoogle ScholarPubMed
Bansal, A., Singer, J. H., Hwang, B. J.et al. (2000). Mice lacking specific nicotinic acetylcholine receptor subunits exhibit dramatically altered spontaneous activity patterns and reveal a limited role for retinal waves in forming ON and OFF circuits in the inner retina. J. Neurosci., 20, 7672–81CrossRefGoogle ScholarPubMed
Bauch, H., Stier, H. and Schlosshauer, B. (1998). Axonal versus dendritic outgrowth is differentially affected by radial glia in discrete layers of the retina. J. Neurosci., 18, 1774–85CrossRefGoogle ScholarPubMed
Berezovska, O., McLean, P., Knowles, R.et al. (1999). Notch1 inhibits neurite outgrowth in post-mitotic primary neurons. Neuroscience, 93, 433–9CrossRefGoogle Scholar
Bisti, S., Gargini, C. and Chalupa, L. M. (1998). Blockade of glutamate-mediated activity in the developing retina perturbs the functional segregation of ON and OFF pathways. J. Neurosci., 18, 5019–25CrossRefGoogle ScholarPubMed
Bodnarenko, S. R. and Chalupa, L. M. (1993). Stratification of ON and OFF ganglion cell dendrites depends on glutamate-mediated afferent activity in the developing retina. Nature, 364, 144–6CrossRefGoogle Scholar
Bodnarenko, S. R., Jeyarasasingam, G. and Chalupa, L. M. (1995). Development and regulation of dendritic stratification in retinal ganglion cells by glutamate-mediated afferent activity. J. Neurosci., 15, 7037–45CrossRefGoogle ScholarPubMed
Bodnarenko, S. R., Yeung, G., Thomas, L. and McCarthy, M. (1999). The development of retinal ganglion cell dendritic stratification in ferrets. NeuroReport, 10, 2955–9CrossRefGoogle ScholarPubMed
Bytyqi, A. H., Lockridge, O., Duysen, E.et al. (2004). Impaired formation of the inner retina in an AChE knock-out mouse results in degeneration of all photoreceptors. Eur. J. Neurosci., 20, 2953–62CrossRefGoogle Scholar
Cajal, S. R. (1972). The Structure of the Retina, ed. S. A. Thorpe, and Glickstein, M.. Springfield: Charles C Thomas, pp. 17–132Google Scholar
Crooks, J., Okada, M. and Hendrickson, A. E. (1995). Quantitative analysis of synaptogenesis in the inner plexiform layer of macaque monkey fovea. J. Comp. Neurol., 360, 349–62CrossRefGoogle ScholarPubMed
Dailey, M. E. and Smith, S. J. (1996). The dynamics of dendritic structure in developing hippocampal slices. J. Neurosci., 16, 2983–94CrossRefGoogle ScholarPubMed
Dann, J. F., Buhl, E. H. and Peichl, L. (1988). Postnatal dendritic maturation of alpha and beta ganglion cells in cat retina. J. Neurosci., 8, 1485–99CrossRefGoogle ScholarPubMed
Deplano, S., Ratto, G. M. and Bisti, S. (1994). Interplay between the dendritic trees of alpha and beta ganglion cells during the development of the cat retina. J. Comp. Neurol., 342, 152–60CrossRefGoogle ScholarPubMed
Deplano, S., Gargini, C., Maccarone, R., Chalupa, L. M. and Bisti, S. (2004). Long-term treatment of the developing retina with the metabotropic glutamate agonist APB induces long-term changes in the stratification of retinal ganglion cell dendrites. Dev. Neurosci., 26, 396–405CrossRefGoogle ScholarPubMed
Dhingra, A., Lyubarsky, A., Jiang, M.et al. (2000). The light response of ON bipolar neurons requires Gαo. J. Neurosci., 20, 9053–8CrossRefGoogle Scholar
Drenhaus, U., Morino, P. and Veh, R. W. (2003). On the development of the stratification of the inner plexiform layer in the chick retina. J. Comp. Neurol., 460, 1–12CrossRefGoogle ScholarPubMed
Drenhaus, U., Morino, P. and Rager, G. (2004). Expression of axonin-1 in developing amacrine cells in the chick retina. J. Comp. Neurol., 468, 496–508CrossRefGoogle ScholarPubMed
Dubin, M. W., Stark, L. A. and Archer, S. M. (1986). A role for action-potential activity in the development of neural connections in the kitten retinogeniculate pathway. J. Neurosci., 6, 1021–36CrossRefGoogle ScholarPubMed
Eglen, S. J., Ooyen, A. and Willshaw, D. J. (2000). Lateral cell movement driven by dendritic interactions is sufficient to form retinal mosaics. Network: Comput. Neural Syst., 11, 103–18CrossRefGoogle ScholarPubMed
Erdmann, B., Kirsch, F. P., Rathjen, F. G. and More, M. I. (2003). N-cadherin is essential for retinal lamination in the zebrafish. Dev. Dyn., 226, 570–7CrossRefGoogle ScholarPubMed
Eysel, U. T., Peichl, L. and Wassle, H. (1985). Dendritic plasticity in the early postnatal feline retina: quantitative characteristics and sensitive period. J. Comp. Neurol., 242, 134–45CrossRefGoogle ScholarPubMed
Famiglietti, E. V. Jr and Kolb, H. (1976). Structural basis for ON- and OFF-center responses in retinal ganglion cells. Science, 194, 193–5CrossRefGoogle ScholarPubMed
Famiglietti, E. V. Jr, Kaneko, A. and Tachibana, M. (1977). Neuronal architecture of on and off pathways to ganglion cells in carp retina. Science, 198, 1267–1269CrossRefGoogle Scholar
Farajian, R., Raven, M. A., Cusato, K. and Reese, B. E. (2004). Cellular positioning and dendritic field size of cholinergic amacrine cells are impervious to early ablation of neighboring cells in the mouse retina. Vis. Neurosci., 21, 13–22CrossRefGoogle ScholarPubMed
Fiala, J. C., Feinberg, M., Popov, V. and Harris, K. M. (1998). Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. J. Neurosci., 18, 8900–11CrossRefGoogle ScholarPubMed
Galli-Resta, L., Novelli, E. and Viegi, A. (2002). Dynamic microtubule-dependent interactions position homotypic neurones in regular monolayered arrays during retinal development. Development, 129, 3803–14Google ScholarPubMed
Gao, F. B., Kohwi, M., Brenman, J. E., Jan, L. Y. and Jan, Y. N. (2000). Control of dendritic field formation in Drosophila: the roles of flamingo and competition between homologous neurons. Neuron, 28, 91–101CrossRefGoogle ScholarPubMed
Goldberg, J. L., Espinosa, J. S., Xu, Y.et al. (2002a). Retinal ganglion cells do not extend axons by default: promotion by neurotrophic signaling and electrical activity. Neuron, 33, 689–702CrossRefGoogle Scholar
Goldberg, J. L., Klassen, M. P., Hua, Y. and Barres, B. (2002b). Amacrine-signaled loss of intrinsic axon growth ability by retinal ganglion cells. Science, 296, 1860–4CrossRefGoogle Scholar
Gunhan, E., Choudary, P. V., Landerholm, T. E. and Chalupa, L. M. (2002). Depletion of cholinergic amacrine cells by a novel immunotoxin does not perturb the formation of segregated on and off cone bipolar cell projections. J. Neurosci., 22, 2265–73CrossRefGoogle Scholar
Gunhan-Agar, E., Kahn, D. and Chalupa, L. M. (2000). Segregation of on and off bipolar cell axonal arbors in the absence of retinal ganglion cells. J. Neurosci., 20, 306–14CrossRefGoogle Scholar
Hartline, H. K. (1938). The response of single optic nerve fibers of the vertebrate eye to illumination of the retina. Am. J. Physiol., 121, 400–15Google Scholar
Hartline, H. K. (1940). The receptive fields of optic nerve fibers. Am. J. Physiol., 130, 690–9Google Scholar
Hayashi, T. and Carthew, R. W. (2004). Surface mechanics mediate pattern formation in the developing retina. Nature, 431, 647–52CrossRefGoogle ScholarPubMed
Hinds, J. W. and Hinds, P. L. (1974). Early ganglion cell differentiation in the mouse retina: an electron microscopic analysis utilizing serial sections. Dev. Biol., 37, 381–416CrossRefGoogle ScholarPubMed
Hinds, J. W. and Hinds, P. L. (1978). Early development of amacrine cells in the mouse retina: an electron microscopic serial section analysis. J. Comp. Neurol., 179, 277–300CrossRefGoogle ScholarPubMed
Hinds, J. W. and Hinds, P. L. (1983). Development of retinal amacrine cells in the mouse embryo: evidence for two modes of formation. J. Comp. Neurol., 213, 1–23CrossRefGoogle ScholarPubMed
Honjo, M., Tanihara, H., Suzuki, S.et al. (2000). Differential expression of cadherin adhesion receptors in neural retina of the postnatal mouse. Invest. Opthamol. Vis. Sci., 41, 546–51Google ScholarPubMed
Horne-Badovinac, S., Lin, D., Waldron, S. (2001). Positional cloning of heart and soul reveals multiple roles for PKC lambda in zebrafish organogenesis. Curr. Biol., 11, 1492–502CrossRefGoogle ScholarPubMed
Horton, A. C. and Ehlers, M. D. (2003). Neuronal polarity and trafficking. Neuron, 40, 277–95CrossRefGoogle ScholarPubMed
Inuzuka, H., Miyatani, S. and Takeichi, M. (1991). R-cadherin: a novel Ca(2+)-dependent cell–cell adhesion molecule expressed in the retina. Neuron, 7, 69–79CrossRefGoogle ScholarPubMed
Jiang, H., Guo, W., Liang, X. and Rao, Y (2005). Both the establishment and the maintenance of neuronal polarity require active mechanisms: critical roles of GSK-3beta and its upstream regulators. Cell, 120, 123–35Google ScholarPubMed
Katyal, S. and Godbout, R. (2004). Alternative splicing modulates Disabled-1 (Dab1) function in the developing chick retina. EMBO J., 23, 1878–88CrossRefGoogle ScholarPubMed
Kay, J. N., Roeser, T., Mumm, J. S.et al. (2004). Transient requirement for ganglion cells during assembly of retinal synaptic layers. Development, 131, 1331–42CrossRefGoogle ScholarPubMed
Kerrison, J. B., Lewis, R. N., Otteson, D. C. and Zack, D. J. (2005). Bone morphogenetic proteins promote neurite outgrowth in retinal ganglion cells. Mol. Vis., 11, 208–15Google ScholarPubMed
Kirby, M. A. and Steineke, T. C. (1991). Early dendritic outgrowth of primate retinal ganglion cells. Vis. Neurosci., 7, 513–30CrossRefGoogle ScholarPubMed
Kuffler, S. W. (1953). Discharge patterns and functional organization of mammalian retina. J. Neurophysiol., 16, 37–68CrossRefGoogle ScholarPubMed
Lettvin, J. Y., Maturana, H. R., McCulloch, W. S. and Pitts, W. H. (1959). What the frog's eye tells the frog's brain. Proc. Inst. Radio Engr., 47, 1940–51Google Scholar
Lin, B., Wang, S. W. and Masland, R. H. (2004). Retinal ganglion cell type, size, and spacing can be specified independent of homotypic dendritic contacts. Neuron, 43, 475–85CrossRefGoogle ScholarPubMed
Lohmann, C. and Wong, R. O. L. (2001). Cell-type specific dendritic contacts between retinal ganglion cells during development. J. Neurobiol., 48, 150–62CrossRefGoogle ScholarPubMed
Lohmann, C., Myhr, K. L. and Wong, R. O. (2002). Transmitter-evoked local calcium release stabilizes developing dendrites. Nature, 418, 177–81CrossRefGoogle ScholarPubMed
Lom, B. and Cohen-Cory, S. (1999). Brain-derived neurotrophic factor differentially regulates retinal ganglion cell dendritic and axonal arborization in vivo. J. Neurosci., 19, 9928–38CrossRefGoogle ScholarPubMed
Lom, B., Cogen, J., Sanchez, A. L., Vu, T. and Cohen-Cory, S. (2002). Local and target-derived brain-derived neurotrophic factor exert opposing effects on the dendritic arborization of retinal ganglion cells in vivo. J. Neurosci., 22, 7639–49CrossRefGoogle ScholarPubMed
Malicki, J., Jo, H. and Pujic, Z. (2003). Zebrafish N-cadherin, encoded by the glass onion locus, plays an essential role in retinal patterning. Dev. Biol., 259, 95–108CrossRefGoogle ScholarPubMed
Mangrum, W. I., Dowling, J. E. and Cohen, E. D. (2002). A morphological classification of ganglion cells in the zebrafish retina. Vis. Neurosci., 19, 767–79CrossRefGoogle ScholarPubMed
Masai, I., Lele, Z., Yamaguchi, M.et al. (2003). N-cadherin mediates retinal lamination, maintenance of forebrain compartments and patterning of retinal neurites. Development, 130, 2479–94CrossRefGoogle ScholarPubMed
Maslim, J. and Stone, S. (1988). Time course of stratification of the dendritic fields of ganglion cells in the retina of the cat. Dev. Brain Res., 44, 87–93CrossRefGoogle ScholarPubMed
Maslim, J., Webster, M. and Stone, J. (1986). Stages in the structural differentiation of retinal ganglion cells. J. Comp. Neurol., 254, 382–402CrossRefGoogle ScholarPubMed
Matsunaga, M., Hatta, K. and Takeichi, M. (1988). Role of N-cadherin cell adhesion molecules in the histogenesis of neural retina. Neuron, 1, 289–95CrossRefGoogle ScholarPubMed
Megason, S. G. and Fraser, S. E. (2003). Digitizing life at the level of the cell: high-performance laser-scanning microscopy and image analysis for in toto imaging of development. Mech. Dev., 120, 1407–20CrossRefGoogle ScholarPubMed
Morgan, J., Huckfeldt, R. and Wong, R. O. L. (2005). Imaging techniques in retinal research. Exp. Eye Res., 80, 297–306CrossRefGoogle ScholarPubMed
Mumm, J. S., Godinho, L., Morgan, J. L.et al. (2005). Laminar circuit formation in the vertebrate retina. Prog. Brain Res., 147, 155–69CrossRefGoogle ScholarPubMed
Naito, J. and Chen, Y. (2004). Morphological features of chick retinal ganglion cells. Anat. Sci. Int., 79, 213–25CrossRefGoogle ScholarPubMed
Nelson, R., Famigletti, E. V. J. and Kolb, H. (1978). Intracellular staining reveals different levels of stratification for on- and off-center ganglion cells in the cat retina. J. Neurophysiol. 41, 472–83CrossRefGoogle ScholarPubMed
Ohta, K., Takagi, S., Asou, H. and Fujisawa, H. (1992). Involvement of neuronal cell surface molecule B2 in the formation of retinal plexiform layers. Neuron, 9, 151–61CrossRefGoogle ScholarPubMed
Okada, M., Erickson, A. and Hendrickson, A. (1994). Light and electron microscopic analysis of synaptic development in Macaca monkey retina as detected by immunocytochemical labeling for the synaptic vesicle protein SV2. J. Comp. Neurol., 339, 535–58CrossRefGoogle ScholarPubMed
Pang, J.-J., Gao, F. and Wu, S. M. (2002). Segregation and integration of visual channels: layer-by-layer computation of ON–OFF signals by amacrine cell dendrites. J. Neurosci., 22, 4693–701CrossRefGoogle ScholarPubMed
Pang, J.-J., Gao, F. and Wu, S. M. (2004). Stratum-by-stratum projection of light response attributes by retinal bipolar cells of Ambystoma. J. Physiol., 558, 249–62CrossRefGoogle ScholarPubMed
Penn, A. A., Wong, R. O. and Shatz, C. J. (1994). Neuronal coupling in the developing mammalian retina. J. Neurosci., 14, 3805–15CrossRefGoogle ScholarPubMed
Perry, V. H. and Linden, R. (1982). Evidence for dendritic competition in the developing retina. Nature, 297, 683–5CrossRefGoogle ScholarPubMed
Prada, C., Puelles, L., Genis-Galvez, J. M. and Ramirez, G. (1987). Two modes of free migration of amacrine cell neuroblasts in the chick retina. Anat. Embryol., 175, 281–7CrossRefGoogle ScholarPubMed
Redmond, L., Oh, S. R., Hicks, C., Weinmaster, G. and Ghosh, A. (2000). Nuclear Notch1 signaling and the regulation of dendritic development. Nat. Neurosci., 3, 30–40CrossRefGoogle ScholarPubMed
Reese, B. E., Raven, M. A., Giannotti, K. A. and Johnson, P. T. (2001). Development of cholinergic amacrine cell stratification in the ferret retina and the effects of early excitotoxic ablation. Vis. Neurosci., 18, 559–70CrossRefGoogle ScholarPubMed
Reese, B. E., Raven, M. A. and Stagg, S. B. (2005). Afferents and homotypic neighbors regulate horizontal cell morphology, connectivity, and retinal coverage. J. Neurosci., 25, 2167–75CrossRefGoogle ScholarPubMed
Riehl, R., Johnson, K., Bradley, R.et al. (1996). Cadherin function is required for axon outgrowth in retinal ganglion cells in vivo. Neuron, 17, 837–48CrossRefGoogle ScholarPubMed
Roska, B. and Werblin, F. (2001). Vertical interactions across ten parallel, stacked representations in the mammalian retina. Nature, 410, 583–7CrossRefGoogle ScholarPubMed
Sanes, J. R. and Yamagata, M. (1999). Formation of lamina-specific synaptic connections. Curr. Opin. Neurobiol., 9, 79–87CrossRefGoogle ScholarPubMed
Sestan, N., Artavanis-Tsakonas, S. and Rakic, P. (1999). Contact-dependent inhibition of cortical neurite growth mediated by notch signaling. Science, 286, 741–6CrossRefGoogle ScholarPubMed
Sherry, D. M., Wang, M. M., Bates, J. and Frishman, L. J. (2003). Expression of vesicular glutamate transporter 1 in the mouse retina reveals temporal ordering in development of rod vs. cone and ON vs OFF circuits. J. Comp. Neurol., 465, 480–98CrossRefGoogle ScholarPubMed
Shi, S. H., Cheng, T.Jan, L. Y. and Jan, Y. N. (2004). APC and GSK-3beta are involved in mPar3 targeting to the nascent axon and establishment of neuronal polarity. Curr. Biol., 14, 2025–32CrossRefGoogle ScholarPubMed
Stacy, R. C. and Wong, R. O. L. (2003). Developmental relationship between cholinergic amacrine cell processes and ganglion cell dendrites of the mouse retina. J. Comp. Neurol., 456, 154–66CrossRefGoogle ScholarPubMed
Stell, W. K., Ishida, A. T. and Lightfoot, D. O. (1977). Structural basis for On- and Off-center responses in retinal bipolar cells. Science, 198, 1269–71CrossRefGoogle ScholarPubMed
Stier, H. and Schlosshauer, B. (1998). Different cell surface areas of polarized radial glia having opposite effects on axonal outgrowth. Eur. J. Neurosci., 10, 1000–10CrossRefGoogle ScholarPubMed
Tagawa, Y., Sawai, H., Ueda, Y., Tauchi, M. and Nakanishi, S. (1999). Immunohistological studies of metabotropic glutamate receptor subtype 6-deficient mice show no abnormality of retinal cell organization and ganglion cell maturation. J. Neurosci., 19, 2568–79CrossRefGoogle ScholarPubMed
Tian, N. and Copenhagen, D. R. (2001). Visual deprivation alters development of synaptic function in inner retina after eye-opening. Neuron, 32, 439–49CrossRefGoogle ScholarPubMed
Tian, N. and Copenhagen, D. R. (2003). Visual stimulation is required for refinement of ON and OFF pathways in postnatal retina. Neuron, 39, 85–96CrossRefGoogle Scholar
Tootle, J. S. (1993). Early postnatal development of visual function in ganglion cells of the cat retina. J. Neurophysiol., 69, 1645–60CrossRefGoogle ScholarPubMed
Troilo, D., Xiong, M., Crowley, J. C. and Finlay, B. L. (1996). Factors controlling the dendritic arborization of retinal ganglion cells. Vis. Neurosci., 13, 721–33CrossRefGoogle ScholarPubMed
Vaney, D. I. (1990). Patterns of neuronal coupling in the retina. Prog. Retin. Eye Res., 13, 301–55CrossRefGoogle Scholar
Wang, G. Y., Liets, L. C. and Chalupa, L. M. (2001). Unique functional properties of on and off pathways in the developing mammalian retina. J. Neurosci., 21, 4310–17CrossRefGoogle Scholar
Wässle, H., Peichl, L. and Boycott, B. B. (1981). Dendritic territories of cat retinal ganglion cells. Nature, 292, 344–5CrossRefGoogle ScholarPubMed
Wei, X. and Malicki, J. (2002). Nagie oko, encoding a MAGUK-family protein, is essential for cellular patterning of the retina. Nat. Genet., 31, 150–7CrossRefGoogle ScholarPubMed
Williams, R. R., Cusato, K., Raven, M. A. and Reese, B. E. (2001). Organization of the inner retina following early elimination of the retina ganglion cell population: effects on cell numbers and stratification patterns. Vis. Neurosci., 18, 233–44CrossRefGoogle ScholarPubMed
Wodarz, A. (2002). Establishing cell polarity in development. Nat. Cell Biol., 4, E39–E44CrossRefGoogle ScholarPubMed
Wohrn, J. C. P., Puelles, L., Nakagma, S., Takeichi, M. and Redies, C. (1998). Cadherin expression in the retina and retinofugal pathways of the chicken embryo. J. Comp. Neurol., 396, 20–383.0.CO;2-K>CrossRefGoogle ScholarPubMed
Wong, W. T. and Wong, R. O. (2000). Rapid dendritic movements during synapse formation and rearrangement. Curr. Opin. Neurobiol., 10, 118–24CrossRefGoogle ScholarPubMed
Wong, W. T. and Wong, R. O. (2001). Changing specificity of neurotransmitter regulation of rapid dendritic re-modeling during synaptogenesis. Nat. Neurosci., 4, 351–2CrossRefGoogle Scholar
Wong, W. T., Faulkner-Jones, B. E., Sanes, J. R. and Wong, R. O. (2000). Rapid dendritic re-modeling in the developing retina: dependence on neurotransmission and reciprocal regulation by Rac and Rho. J. Neurosci., 20, 5024–36CrossRefGoogle Scholar
Wu, S. M., Gao, F. and Maple, B. R. (2000). Functional architecture of synapses in the inner retina: segregation of visual signals by stratification of bipolar cell axon terminals. J. Neurosci., 20, 4462–70CrossRefGoogle ScholarPubMed
Yamagata, M., Weiner, J. A. and Sanes, J. R. (2002). Sidekicks: synaptic adhesion molecules that promote lamina-specific connectivity in the retina. Cell, 110, 649–60CrossRefGoogle ScholarPubMed
Yazulla, S. and Studholme, K. M. (2001). Neurochemical anatomy of the zebrafish retina as determined by immunocytochemistry. J. Neurocytol., 30, 551–92CrossRefGoogle ScholarPubMed
Yoshimura, T., Kawano, Y., Arimura, N.et al. (2005). GSK-3beta regulates phosphorylation of CRMP-2 and neuronal polarity. Cell, 120, 137–49CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Dendritic growth
    • By Jeff Mumm, Luminomics, 1508 South Grand Blvd., St. Louis, MO 63104, USA, Christian Lohmann, Max-Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Planegg-Martinsried, Germany
  • Edited by Evelyne Sernagor, University of Newcastle upon Tyne, Stephen Eglen, University of Cambridge, Bill Harris, University of Cambridge, Rachel Wong, Washington University, St Louis
  • Book: Retinal Development
  • Online publication: 22 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541629.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Dendritic growth
    • By Jeff Mumm, Luminomics, 1508 South Grand Blvd., St. Louis, MO 63104, USA, Christian Lohmann, Max-Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Planegg-Martinsried, Germany
  • Edited by Evelyne Sernagor, University of Newcastle upon Tyne, Stephen Eglen, University of Cambridge, Bill Harris, University of Cambridge, Rachel Wong, Washington University, St Louis
  • Book: Retinal Development
  • Online publication: 22 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541629.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Dendritic growth
    • By Jeff Mumm, Luminomics, 1508 South Grand Blvd., St. Louis, MO 63104, USA, Christian Lohmann, Max-Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Planegg-Martinsried, Germany
  • Edited by Evelyne Sernagor, University of Newcastle upon Tyne, Stephen Eglen, University of Cambridge, Bill Harris, University of Cambridge, Rachel Wong, Washington University, St Louis
  • Book: Retinal Development
  • Online publication: 22 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541629.014
Available formats
×