Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-30T02:45:17.290Z Has data issue: false hasContentIssue false

26 - RNAi-mediated silencing of viral gene expression and replication

Published online by Cambridge University Press:  31 July 2009

Derek M. Dykxhoorn
Affiliation:
The Center for Blood Research, Harvard Medical School
Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc., Massachusetts
Andrew Fire
Affiliation:
Stanford University, California
Get access

Summary

Introduction

RNA interference (RNAi) is a gene-silencing technique first described by Fire and colleagues in Caenorhabditis elegans (Fire et al., 1998). They found that the introduction of long dsRNA into the nematode C. elegans led to the targeted disruption of the homologous mRNA. RNAi is related to a variety of other gene-silencing phenomena including posttranscriptional gene silencing (PTGS) in plants and quelling in the fungus Neurospora crassa (Jorgensen, 1990; Romano and Macino, 1992). The link between these seemingly divergent processes is the presence of dsRNA homologous to the silenced gene (Bernstein et al., 2001b; Waterhouse et al., 2001).

The addition of long dsRNAs into Drosophila melanogaster embryo extracts was shown to silence gene expression in a sequence-specific manner, recapturing the RNAi reaction in vitro (Tuschl et al., 1999). Although initiated by long dsRNA, the effector molecules that guide the mRNA degradation were found to be small (21- to 23-nt) dsRNA species, termed small interfering (si)RNAs, produced by the cleavage of the long dsRNAs (Zamore et al., 2000). The introduction of chemically synthesized siRNAs into the extracts was found to be sufficient for targeting mRNA degradation (Elbashir et al., 2001a). Similarly, small RNA species were found in vivo in a wide variety of organisms and cells undergoing dsRNA-mediated gene silencing including plants, Drosophila embryos, Drosophila Schneider 2 (S2) cells and C. elegans (Hamilton and Baulcombe, 1999; Hammond et al., 2000; Parrish et al., 2000, Yang et al., 2001).

Type
Chapter
Information
RNA Interference Technology
From Basic Science to Drug Development
, pp. 363 - 383
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abid, K., Quadri, R. and Negro, F. (2000). Hepatitis C virus, the E2 envelope protein, and alpha-interferon resistance. Science, 287, 1555CrossRefGoogle ScholarPubMed
Adelman, Z. N., Sanchez-Vargas, I., Travanty, E. A., Carlson, J. O., Beaty, B. J., Blair, C. D. and Olson, K. E. (2002). RNA silencing of dengue virus type 2 replication in transformed C6/36 mosquito cells transcribing an inverted-repeat RNA derived from the virus genome. Journal of Virology, 76, 12925–12933CrossRefGoogle ScholarPubMed
Alter, M. J., Margolis, H. S., Krawczynski, K., Judson, F. N., Mares, A., Alexander, W. J., Hu, P. Y., Miller, J. K., Gerber, M. A., Sampliner, R. E., et al. (1992). The natural history of community-acquired hepatitis C in the United States. The Sentinel Counties Chronic non-A, non-B Hepatitis Study Team. New England Journal of Medicine, 327, 1899–1905CrossRefGoogle ScholarPubMed
Aravin, A. A., Lagos-Quintana, M., Yalcin, A., Zavolan, M., Marks, D., Snyder, B., Gaasterland, T., Meyer, J. and Tuschl, T. (2003). The small RNA profile during Drosophila melanogaster development. Developmental Cell, 5, 337–350CrossRefGoogle ScholarPubMed
Baulcombe, D. (1999). Viruses and gene silencing in plants. Archives in Virology Supplement, 15, 189–201Google ScholarPubMed
Bernstein, E., Caudy, A. A., Hammond, S. M. and Hannon, G. J. (2001a). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 409, 363–366CrossRefGoogle Scholar
Bernstein, E., Denli, A. M. and Hannon, G. J. (2001b). The rest is silence. RNA, 7, 1509–1521Google Scholar
Bradley, D. W. (2000). Studies of non-A, non-B hepatitis and characterization of the hepatitis C virus in chimpanzees. Current Topics in Microbiology and Immunology, 242, 1–23Google ScholarPubMed
Burke, D. S. and Monath, T. P. (2001). Flaviviruses. In Fields' Virology, 4th edn. pp. 1043–1125. Philadelphia, PA; Lippincott, Williams and Wilkins
Caplen, N. J., Zheng, Z., Falgout, B. and Morgan, R. A. (2002). Inhibition of viral gene expression and replication in mosquito cells by dsRNA-triggered RNA interference. Molecular Therapy, 6, 243–251CrossRefGoogle ScholarPubMed
Capodici, J., Kariko, K. and Weissman, D. (2002). Inhibition of HIV-1 infection by small interfering RNA-mediated RNA interference. Journal of Immunology, 169, 5196–5201CrossRefGoogle ScholarPubMed
Chiu, Y. L. and Rana, T. M. (2002). RNAi in human cells: basic structural and functional features of small interfering RNA. Molecular Cell, 10, 549–561CrossRefGoogle ScholarPubMed
Christie, J. M., Chapel, H., Chapman, R. W. and Rosenberg, W. M. (1999). Immune selection and genetic sequence variation in core and envelope regions of hepatitis C virus. Hepatology, 30, 1037–1044CrossRefGoogle ScholarPubMed
Coburn, G. A. and Cullen, B. R. (2002). Potent and specific inhibition of human immunodeficiency virus type 1 replication by RNA interference. Journal of Virology, 76, 9225–9231CrossRefGoogle ScholarPubMed
Dalmay, T., Hamilton, A., Rudd, S., Angell, S. and Baulcombe, D. C. (2000). An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell, 101, 543–553CrossRefGoogle Scholar
Defilippis, V. R. and Villarreal, C. P. (2001). Virus Evolution. In Fields' Virology, 4th edn. pp. 1043–1125. Philadelphia, PA; Lippincott, Williams and Wilkins
Detre, K. M., Belle, S. H. and Lombardero, M. (1996). Liver transplantation for chronic viral hepatitis. Viral Hepatitis Review, 2, 219–228Google Scholar
Djikeng, A., Shi, H., Tschudi, C. and Ullu, E. (2001). RNA interference in Trypanosoma brucei: cloning of small interfering RNAs provides evidence for retroposon-derived 24–26-nucleotide RNAs. RNA, 7, 1522–1530Google ScholarPubMed
Dykxhoorn, D. M., Novina, C. D. and Sharp, P. A. (2003). Killing the messenger: Short RNAs that silence gene expression. Nature Reviews Molecular Cell Biology, 4, 457–467CrossRefGoogle ScholarPubMed
Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K. and Tuschl, T. (2001a). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 411, 494–498CrossRefGoogle Scholar
Elbashir, S. M., Lendeckel, W. and Tuschl, T. (2001b). RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes & Development, 15, 188–200CrossRefGoogle Scholar
Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E. and Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806–811CrossRefGoogle ScholarPubMed
Ganem, D. and Schneider, R. J. (2001). Hepadnaviridae: The viruses and their replication. In Fields' Virology, 4th edn, pp. 2923–2969. Philadelphia, PA; Lippincott, Williams and Wilkins
Ganem, D. and Varmus, H. E. (1987). The molecular biology of the hepatitis B viruses. Annual Reviews of Biochemistry, 56, 651–693CrossRefGoogle ScholarPubMed
Ge, Q., McManus, M. T., Nguyen, T., Shen, C. H., Sharp, P. A., Eisen, H. N. and Chen, J. (2003). RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proceedings of the National Academy of Sciences USA, 100, 2718–2723CrossRefGoogle ScholarPubMed
Gitlin, L., Karelsky, S. and Andino, R. (2002). Short interfering RNA confers intracellular antiviral immunity in human cells. Nature, 418:430–434CrossRefGoogle ScholarPubMed
Griffin, D. (2001). Alphaviruses. In Fields' Virology, 4th edn. pp. 917–962. Philadelphia, PA; Lippincott, Williams and Wilkins
Hacien-Bay-Abina, S., Kalle, C., Schmidt, M. and LeDeist, F. (2003). A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. New England Journal of Medicine, 348, 255–256CrossRefGoogle Scholar
Hall, A. H. S. and Alexander, K. A. (2003). RNA interference of human papillomavirus type 18 E6 and E7 induces senescence in HeLa cells. Journal of Virology, 77, 6066–6069CrossRefGoogle ScholarPubMed
Hamasaki, K., Nakao, K., Matsumoto, K., Ichikawa, T., Ishikawa, H. and Eguchi, K. (2003). Short interfering RNA-directed inhibition of hepatitis B virus replication. Federation of European Biochemical Society Letters, 543, 51–54CrossRefGoogle ScholarPubMed
Hamilton, A. J. and Baulcombe, D. C. (1999). A species of small antisense RNA in posttranscriptional gene silencing in plants. Science, 286, 950–952CrossRefGoogle ScholarPubMed
Hammond, S. M., Bernstein, E., Beach, D. and Hannon, G. J. (2000). An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature, 404, 293–296CrossRefGoogle ScholarPubMed
Hannon, G. J. (2002). RNA interference. Nature, 418, 244–251CrossRefGoogle ScholarPubMed
Houbaviy, H. B., Murray, M. F. and Sharp, P. A. (2003). Embryonic stem cell-specific MicroRNAs. Developmental Cell, 5, 351–358CrossRefGoogle ScholarPubMed
Howley, P. M. and Lowy, D. R. (2001). Papillomaviruses and their replication. In Fields' Virology, 4th edn. pp. 2197–2229. Philadelphia, PA; Lippincott, Williams and Wilkins
Hütvagner, G. and Zamore, P. D. (2002). A micro RNA in a multiple turnover RNAi enzyme complex. Science, 297, 2056–2060CrossRefGoogle Scholar
Jacque, J. M., Triques, K. and Stevenson, M. (2002). Modulation of HIV-1 replication by RNA interference. Nature, 418, 435–438CrossRefGoogle ScholarPubMed
Jiang, M. and Milner, J. (2002). Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference. Oncogene, 21, 6041–6048CrossRefGoogle ScholarPubMed
Jorgensen, R. (1990). Altered gene expression in plants due to trans interactions between homologous genes. Trends in Biotechnology, 8, 340–344CrossRefGoogle ScholarPubMed
Kao, J. H. and Chen, D. S. (2002). Global control of hepatitis B virus infection. Lancet Infectious Diseases, 2, 395–403CrossRefGoogle ScholarPubMed
Kapadia, S. B., Brideau-Andersen, A. and Chisari, F. V. (2003) Interference of hepatitis C virus RNA replication by short interfering RNAs. Proceedings of the National Academy of Sciences USA, 100, 2014–2018CrossRefGoogle ScholarPubMed
Kennerdell, J. R. and Carthew, R. W. (1998). Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell, 95, 1017–1026CrossRefGoogle ScholarPubMed
Lamb, R. A. and Krug, R. M. (2001). Orthomyxoviridae: The viruses and their replication. In Fields' Virology, 4th edn. pp. 1487–1531. Philadelphia, PA; Lippincott, Williams and Wilkins
Lanford, R. E. and Bigger, C. (2002). Advances in model systems for hepatitis C virus research. Virology, 293, 1–9CrossRefGoogle ScholarPubMed
Larder, B. and Kemp, S. (1989). Multiple mutations in HIV-1 reverse transcriptase confer high-level resistance to zidovudine (AZT). Science, 246, 1155–1158CrossRefGoogle Scholar
Lee, N. S., Dohjima, T., Bauer, G., Li, H., Li, M. J., Ehsani, A., Salvaterra, P., and Rossi, J. (2002). Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nature Biotechnology, 20, 500–505CrossRefGoogle ScholarPubMed
Lewis, D. L., Hagstrom, J. E., Loomis, A. G., Wolff, J. A. and Herweijer, H. (2002). Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nature Genetics, 32, 107–108CrossRefGoogle ScholarPubMed
Lim, L. P., Glasner, M. E., Yekta, S., Burge, C. B. and Bartel, D. P. (2003a). Vertebrate micro RNA genes. Science, 299, 1540CrossRefGoogle Scholar
Lim, L. P., Lau, N. C., Weinstein, E. G., Abdelhakim, A., Yekta, S., Rhoades, M. W., Burge, C. B. and Bartel, D. P. (2003b). The microRNAs of Caenorhabditis elegans. Genes & Development, 17, 991–1008CrossRefGoogle Scholar
Lindenbach, B. D. and Rice, C. M. (2001). Flaviviridae: the viruses and their replication. In Fields' Virology, 4th edn. pp. 999–1041. Philadelphia, PA; Lippincott, Williams and Wilkins
Liu, F., Song, Y. and Liu, D. (1999). Hydrodynamic-based transfection in animals by systemic administration of plasmid DNA. Gene Therapy, 6, 1258–1266CrossRefGoogle Scholar
Lohmann, V., Korner, F., Koch, J., Herian, sU.Theilmann, L. and Bartenschlager, R. (1999). Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science, 285, 110–113CrossRefGoogle Scholar
Lowy, D. R. and Howley, P. M. (2001). Papillomaviruses. In Fields' Virology, 4th edn. pp. 2231–2264. Philadelphia, PA; Lippincott, Williams and Wilkins
Marshall, E. (2003). Gene therapy: Second child in French trial is found to have leukemia. Science, 299, 320CrossRefGoogle ScholarPubMed
Martinez, M. A., Gutierrez, A., Armand-Ugon, M., Blanco, J., Parera, M., Gomez, J., Clotet, B. and Este, J. A. (2002). Suppression of chemokine receptor expression by RNA interference allows for inhibition of HIV-1 replication. AIDS, 16, 2385–2390CrossRefGoogle ScholarPubMed
McCaffrey, A. P., Nakai, H., Pandey, K., Huang, Z., Salazar, F. H., Xu, H., Wieland, S. F., Marion, P. L. and Kay, M. A. (2003). Inhibition of hepatitis B virus in mice by RNA interference. Nature Biotechnology, 21, 639–644CrossRefGoogle ScholarPubMed
McCaffrey, A. P., Ohashi, K., Meuse, L., Shen, S., Lancaster, A. M., Lukavsky, P. J., Sarnow, P. and Kay, M. A. (2002). Determinants of hepatitis C translational initiation in vitro, in cultured cells and mice. Molecular Therapy, 5, 676–684CrossRefGoogle ScholarPubMed
McHutchison, J. G., Gordon, S. C., Schiff, E. R., Shiffman, M. L., Lee, W. M., Rustgi, V. K., Goodman, Z. D., Ling, M. H., Cort, S. and Albrecht, J. K. (1998). Interferon alfa-2b alone or in combination with ribavirin as initial treatment for chronic hepatitis C. Hepatitis Interventional Therapy Group. New England Journal of Medicine, 339, 1485–1492CrossRefGoogle ScholarPubMed
McManus, M. T. and Sharp, P. A. (2002). Gene silencing in mammals by small interfering RNAs. Nature Reviews Genetics, 3, 737–747CrossRefGoogle ScholarPubMed
Morris, T. J. and Dodds, J. A. (1979). Isolation and analysis of double stranded RNA from virus infected plant and fungal tissue. Phytopathology, 69, 854–858CrossRefGoogle Scholar
Nansen, A., Christensen, J. P., Andreasen, S. O., Bartholdy, C., Christensen, J. E. and Thomsen, A. R. (2002). The role of CC chemokine receptor 5 in antiviral immunity. Blood, 99 1237–1245CrossRefGoogle ScholarPubMed
Nathanson, N. (2001). Epidemiology. In Fields' Virology, 4th edn. pp. 371–392. Philadelphia, PA; Lippincott, Williams and Wilkins
Novina, C. D., Murray, M. F., Dykxhoorn, D. M., Beresford, P. J., Riess, J., Lee, S. K., Collman, R. G., Lieberman, J., Shankar, P. and Sharp, P. A. (2002) siRNA-directed inhibition of HIV-1 infection. Nature Medicine, 8, 681–686CrossRefGoogle ScholarPubMed
Paddison, P. J., Caudy, A. A., Bernstein, E., Hannon, G. J. and Conklin, D. S. (2002). Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes & Development, 16, 948–958CrossRefGoogle ScholarPubMed
Pallansch, M. A. and Roos, R. P. (2001). Enteroviruses: Polioviruses, Coxsackie viruses and newer enteroviruses. In Fields' Virology, 4th edn. pp. 723–775. Philadelphia, PA; Lippincott, Williams and Wilkins
Parrish, S., Fleenor, J., Xu, S., Mello, C. and Fire, A. (2000). Functional anatomy of a dsRNA trigger: Differential requirement for the two trigger strands in RNA interference. Molecular Cell, 6, 1077–1087CrossRefGoogle ScholarPubMed
Pasquinelli, A. E. (2002). MicroRNAs: Deviants no longer. Trends in Genetics, 18, 171–173CrossRefGoogle ScholarPubMed
Pasquinelli, A. E. and Ruvkun, G. (2002). Control of developmental timing by microRNAs and their targets. Annual Reviews of Cell and Developmental Biology, 18, 495–513CrossRefGoogle ScholarPubMed
Qin, X. F., An, D. S., Chen, I. S. and Baltimore, D. (2003). Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proceeding of the National Academy of Sciences USA, 100, 183–188CrossRefGoogle Scholar
Romano, N. and Macino, G. (1992). Quelling: Transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Molecular Microbiology, 6, 3343–3353CrossRefGoogle ScholarPubMed
Schramke, V. and Allshire, R. (2003). Hairpin RNAs and retrotransposon LTRs effect RNAi and chromatin-based gene silencing. Science, 301, 1069–1074CrossRefGoogle ScholarPubMed
Sells, M. A., Chen, M. L. and Acs, G. (1987). Production of hepatitis B virus particles in Hep G2 cells transfected with cloned hepatitis B virus DNA. Proceedings of the National Academy of Sciences USA, 84, 1005–1009CrossRefGoogle ScholarPubMed
Sharp, P. A. (2001). RNA interference – 2001. Genes & Development, 15, 485–490CrossRefGoogle ScholarPubMed
Shlomai, A. and Shaul, Y. 2003. Inhibition of Hepatitis B virus expression and replication by RNA interference. Hepatology, 37, 764–770CrossRefGoogle ScholarPubMed
Sijen, T., Fleenor, J., Simmer, F., Thijssen, K. L., Parrish, S., Timmons, L., Plasterk, R. H. and Fire, A. (2001). On the role of RNA amplification in dsRNA-triggered gene silencing. Cell, 107, 465–476CrossRefGoogle ScholarPubMed
Song, E., Lee, S. K., Dykxhoorn, D. M., Novina, C., Zhang, D., Crawford, K., Cerny, J., Sharp, P. A., Lieberman, J., Manjunath, N. and Shankar, P. (2003a). Sustained small interfering RNA-mediated human immunodeficiency virus type 1 inhibition in primary macrophages. Journal of Virology, 77, 7174–7181CrossRefGoogle Scholar
Song, E., Lee, S. K., Wang, J., Ince, N., Ouyang, N., Min, J., Chen, J., Shankar, P. and Lieberman, J. (2003b). RNA interference targeting Fas protects mice from fulminant hepatitis. Nature Medicine, 9, 347–351CrossRefGoogle Scholar
Stark, G. R., Kerr, I. M., Williams, B. R., Silverman, R. H. and Schreiber, R. D. (1998). How cells respond to interferons. Annual Reviews of Biochemistry, 67, 227–264CrossRefGoogle ScholarPubMed
Stein, P., Svoboda, P., Anger, M. and Schultz, R. M. (2003). RNAi: Mammalian oocytes do it without RNA-dependent RNA polymerase. RNA, 9, 187–192CrossRefGoogle ScholarPubMed
Svoboda, P., Stein, P., Hayashi, H. and Schultz, R. M. (2000). Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference. Development, 127, 4147–4156Google ScholarPubMed
Tabara, H., Sarkissian, M., Kelly, W. G., Fleenor, J., Grishok, A., Timmons, L., Fire, A. and Mello, C. C. (1999). The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell, 99, 123–132CrossRefGoogle ScholarPubMed
Taylor, D. R., Shi, S. T., Romano, P. R., Barber, G. N. and Lai, M. M. (1999). Inhibition of the interferon-inducible protein kinase PKR by HCV E2 protein. Science, 285, 107–110CrossRefGoogle ScholarPubMed
Thompson, W. W., Shay, D. K., Weintraub, E., Brammer, L., Cox, N., Anderson, L. J. and Fukuda, K. (2003). Mortality associated with influenza and respiratory syncytial virus in the United States. Journal of the American Medical Association, 289, 179–186CrossRefGoogle ScholarPubMed
Tuschl, T., Zamore, P. D., Lehmann, R., Bartel, D. P. and Sharp, P. A. (1999). Targeted mRNA degradation by double-stranded RNA in vitro. Genes & Development, 13, 3191–3197CrossRefGoogle ScholarPubMed
Waterhouse, P. M., Wang, M. B. and Lough, T. (2001). Gene silencing as an adaptive defence against viruses. Nature, 411, 834–842CrossRefGoogle ScholarPubMed
Wianny, F. and Zernicka-Goetz, M. (2000). Specific interference with gene function by double-stranded RNA in early mouse development. Nature Cell Biology, 2, 70–75CrossRefGoogle ScholarPubMed
Wilson, J. A., Jayasena, S., Khvorova, A., Sabatinos, S., Rodrigue-Gervais, I. G., Arya, S., Sarangi, F., Harris-Brandts, M., Beaulieu, S. and Richardson, C. D. (2003). RNA interference blocks gene expression and RNA synthesis from hepatitis C replicons propagated in human liver cells. Proceedings of the National Academy of Sciences USA, 100, 2783–2788CrossRefGoogle ScholarPubMed
Yang, D., Lu, H. and Erickson, J. W. (2001). Evidence that processed small dsRNAs may mediate sequence-specific mRNA degradation during RNAi in Drosophila embryos. Current Biology, 10, 1191–1200CrossRefGoogle Scholar
Yang, P. L., Althage, A., Chung, J., Chisari, F. V. (2002). Hydrodynamic injection of viral DNA: A mouse model of acute hepatitis B virus infection. Proceedings of the National Academy of Sciences USA, 99, 13825–13830CrossRefGoogle ScholarPubMed
Yokota, T., Sakamoto, N., Enomoto, N., Tanabe, Y., Miyagishi, M., Maekawa, S., Yi, L., Kurosaki, M., Taira, K., Watanabe, M. and Mizusawa, H. (2003). Inhibition of intracellular hepatitis C virus replication by synthetic and vector-derived small interfering RNAs. European Molecular Biology Organization Reports, 4, 602–608Google ScholarPubMed
Zamore, P. D., Tuschl, T., Sharp, P. A. and Bartel, D. P. (2000). RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 101, 25–33CrossRefGoogle ScholarPubMed
Zamore, P. D. (2002). Ancient pathways programmed by small RNAs. Science, 296, 1265–1269CrossRefGoogle ScholarPubMed
Zhang, G., Budker, V., Williams, P., Subbotin, V. and Wolff, J. A. (2001). Efficient expression of naked DNA delivered intraarterially to limb muscles of nonhuman primates. Human Gene Therapy, 12, 427–438CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×