Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-16T15:48:13.710Z Has data issue: false hasContentIssue false

359. On the General Problem of Photographic Reproduction, with suggestions for enhancing Gradation originally Invisible

Published online by Cambridge University Press:  05 July 2011

Get access

Summary

In copying a subject by photography the procedure usually involves two distinct steps. The first yields a so-called negative, from which, by the same or another process, a second operation gives the desired positive. Since ordinary photography affords pictures in monochrome, the reproduction can be complete only when the original is of the same colour. We may suppose, for simplicity of statement, that the original is itself a transparency, e.g. a lantern-slide.

The character of the original is regarded as given by specifying the transparency (t) at every point, i.e. the ratio of light transmitted to light incident. But here an ambiguity should be noticed. It may be a question of the place at which the transmitted light is observed. When light penetrates a stained glass, or a layer of coloured liquid contained in a tank, the direction of propagation is unaltered. If the incident rays are normal, so also are the rays transmitted. The action of the photographic image, constituted by an imperfectly aggregated deposit, differs somewhat. Rays incident normally are more or less diffused after transmission. The effective transparency in the half-tones of a negative used for contact printing may thus be sensibly greater than when a camera and lens is employed. In the first case all the transmitted light is effective; in the second most of that diffused through a finite angle fails to reach the lens. In defining t—the transparency at any place—account must in strictness be taken of the manner in which the picture is to be viewed. There is also another point to be considered. The transparency may not be the same for different kinds of light.

Type
Chapter
Information
Scientific Papers , pp. 65 - 70
Publisher: Cambridge University Press
Print publication year: 2009
First published in: 1920

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×