Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-04-30T18:33:23.889Z Has data issue: false hasContentIssue false

15 - Applications of laser technology and laser spectroscopy in studies of the ocean microlayer

Published online by Cambridge University Press:  24 September 2009

Peter S. Liss
Affiliation:
University of East Anglia
Robert A. Duce
Affiliation:
Texas A & M University
Get access

Summary

Abstract

Laser spectroscopy and laser probes now provide previously unobtainable information on the physico-chemical structure and processes of the ocean microlayer. Methods range from laboratory techniques to in situ ocean microlayer probes.

In the laboratory, laser-induced fluorescence from water-soluble dye molecules is used to track aqueous layer interfacial movement. With these techniques, researchers infer turbulence in the upper several millimetres of a water surface. It is also possible to measure timescales of interfacial layer concentration fluctuations and interfacial layer penetration depths thus providing estimates of gas transfer velocities. Laser induced fluorescence methods are presently limited to laboratory studies.

Two-dimensional scanning laser slope gauges provide in situ measurement of ocean slope. Ocean slope is measured from the refraction of a vertical laser beam upon passing from the ocean into the air. By rapid scanning of the laser beam through a geometric pattern on the ocean surface, the researcher determines ocean wave slope at a variety of surface positions. This measurement is performed on a timescale during which the ocean surface is essentially frozen in time. From the set of slopes, an estimate is obtained of the two-dimensional capillary–gravity wave spectrum for a given instant of time and a given region of ocean surface.

Nonlinear spectroscopic processes such as reflected second harmonic generation and reflected sum frequency generation provide non-intrusive in situ spectroscopic probes of the ocean surface.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×