Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T13:27:21.079Z Has data issue: false hasContentIssue false

Chapter 6 - Infection-related Glomerulonephritis, Membranoproliferative Pattern of Glomerulonephritis, and Nephritic Syndrome

Published online by Cambridge University Press:  01 March 2017

Xin Jin (Joseph) Zhou
Affiliation:
Baylor University Medical Center, Dallas
Zoltan G. Laszik
Affiliation:
University of California, San Francisco
Tibor Nadasdy
Affiliation:
Ohio State University
Vivette D. D'Agati
Affiliation:
Columbia University, New York
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Glassock, RJ, Alvarado, A, Prosek, J, Hebert, C, et al. Staphylococcus-related glomerulonephritis and poststreptococcal glomerulonephritis: Why defining “post” is important in understanding and treating infection-related glomerulonephritis. Am J Kidney Dis 2015;65:826–32.CrossRefGoogle ScholarPubMed
Nasr, SH, Share, DS, Vargas, MT, D’Agati, VD, and Markowitz, GS. Acute poststaphylococcal glomerulonephritis superimposed on diabetic glomerulosclerosis. Kidney Int 2007;71:1317–21.Google Scholar
Nast, CC. Infection-related glomerulonephritis: Changing demographics and outcomes. Adv Chronic Kidney Dis 2012;19:6875.Google Scholar
Nadasdy, T and Hebert, LA. Infection-related glomerulonephritis: Understanding mechanisms. Semin Nephrol 2011; 31:369–75.Google Scholar
Wells, C. Observations on the dropsy which succeeds scarlet fever. Trans Soc Imp Med Chir Knowledge 1812;3:167–86.Google Scholar
Bright, R. Cases and observations illustrative of renal disease accompanied with the secretion of albuminous urine. Guy’s Hosp Rev 1836;1:338.Google Scholar
Volhard, F and Fahr, T. Die Brightsche Nierenkrankheit. 1914; Berlin: Springer.Google Scholar
Dick, GF, Dick, GH. The etiology of scarlet fever. J Am Med Assoc 1924;81:1166.Google Scholar
Dochez, A and Sherman, L. The significance of Streptococcaus hemolyticus in scarlet fever and the preparation of a specific antiscarlatinal serum by immunization of the horse to Streptococcus hemolyticus scarlatinae. J Am Med Assoc 1924;82:542–44.Google Scholar
Eison, T, Ault, B, Jones, D, Chesney, R, and Wyatt, R. Post-streptococcal acute glomerulonephritis in children: Clinical features and pathogenesis. Pediatr Nephrol 2011;26:165–80.Google Scholar
Cunningham, MW. Pathogenesis of group A streptococcal infections. Clin Microbiol Rev 2000;13:470511.Google Scholar
Rammelkamp, CH. Microbiologic aspects of glomerulonephritis. J Chronic Dis 1957;5(1):2833.CrossRefGoogle ScholarPubMed
Dillon, HC, Reeves, MS, and Maxted, WR. Acute glomerulonephritis following skin infection due to streptococci of M-type 2. Lancet 1968;1:543–5.Google Scholar
Yoshizawa, N. Aucte glomerulonephritis. Intern Med 2000;39:687–94.Google Scholar
Satoskar, A, Nadasdy, T, and Silva, F. Acute postinfectious glomerulonephritis and glomerulonephritis caused by persistent bacterial infection. In Hepinstall’s Pathology of the Kidney. Jenette, J.C. et al., eds. 2015, Philadelphia, PA: Lippincott Williams and Wilkins; 367436.Google Scholar
Nadler, H. Group A strep detection. Diagn Clin Test 1989;27: 34.Google Scholar
Jennings, RB and Earle, DP. Poststreptococcal glomerulonephritis: Histopathologic and clinical studies of the acute, subsiding acute and early chronic latent phases. J Clin Invest 1961;40:1525–95.Google Scholar
Lewy, JE, Salinas-Madrigal, L, Herdson, PB, Pirani, CL, and Metcoff, J. Clinico-pathologic correlations in acute poststreptococcal glomerulonephritis. A correlation between renal functions, morphologic damage, and clinical course of 46 children with acute poststreptococcal glomerulonephritis. Medicine (Baltimore) 1971;50:453501.Google Scholar
Raff, A, Hebert, T, Pullman, J, and Coco, M. Crescentic poststreptococcal glomerulonephritis with nephrotic syndrome in the adult: Is aggressive therapy warranted? Clin Nephrol 2005;635:375–80.Google Scholar
Nasr, SH, Markowitz, GS, Stokes, MB, et al. Acute postinfectious glomerulonephritis in the modern era: Experience with 86 adults and review of the literature. Medicine (Baltimore) 2008;871:2132.Google Scholar
Morel-Maroger, L, Kourilsky, O, Mignon, F, and Richet, G. Antitubular basement membrane antibodies in rapidly progressive poststreptococcal glomerulonephritis: Report of a case. Clin Immunol Immunopathol 1974;22:185–94.Google Scholar
Watt, MF, Howe, JS, and Parrish, AE. Renal tubular changes in acute glomerulonephritis. AMA Arch Intern Med 1959;103:690–5.Google Scholar
Bodaghi, E, Kheradpir, KM, and Maddah, M. Vasculitis in acute streptococcal glomerulonephritis. Int J Pediatr Nephrol 1987;8:6974.Google ScholarPubMed
Sorger, K. Postinfectious glomerulonephritis. Subtypes, clinico-pathological correlations, and follow-up studies. Veroff Pathol 1986;125:1105.Google Scholar
Herdson, PB, Jennings, RB, and Earle, DP. Glomerular fine structure in poststreptococcal acute glomerulonephritis. Arch Pathol 1966;812:117–28.Google Scholar
Nasr, SH, Radhakrishnan, J, and D’Agati, VD. Bacterial infection-related glomerulonephritis in adults. Kidney Int 2013;835:792803.Google Scholar
Pickering, MC, D’Agati, VD, Nester, CM, et al. C3 glomerulopathy: Consensus report. Kidney Int 2013;84:1079–89.Google Scholar
Nicolas, C. Vuiblet, V, Baudouin, V, et al. C3 nephritis factor associated with C3 glomerulopathy in children. Pediatr Nephrol 2014;29:8594.Google Scholar
Servais, A, Fremeaux-Bacchi, V, Lequintrec, M, et al. Primary glomerulonephritis with isolated C3 deposits: A new entity which shares common genetic risk factors with haemolytic uraemic syndrome. J Med Genet 2007;44:193–9.Google Scholar
Sethi, S, Fervenza, F, Zhang, Y, et al. Proliferative glomerulonephritis secondary to dysfunction of the alternative pathway of complement. Clin J Am Soc Nephrol 2011;6:1009–17.CrossRefGoogle ScholarPubMed
Cook, HT and Pickering, MC. Histopathology of MPGN and C3 glomerulopathies. Nat Rev Nephrol 2015;11:1422.Google Scholar
Sethi, S, Nasr, SH, De Vriese, AS, and Fervenza, FC. C4d as a diagnostic tool in proliferative GN. J Am Soc Nephrol 2015;26:2852–59.Google Scholar
Rodriguez-Iturbe, B. and Batsford, S. Pathogenesis of post-streptococcal glomerulonephritis a century after Clemens von Pirquet. Kidney Int 2007;71:1094–104.Google Scholar
Oda, T, Yamakami, K, Omasu, F, et al. Glomerular plasmin-like activity in relation to nephritis-associated plasmin receptor in acute poststreptococcal glomerulonephritis. J Am Soc Nephrol 2005;16:247–54.Google Scholar
Kanjanabuch, T, Kittikowit, W, Eiam-Ong, S. An update on acute postinfectious glomerulonephritis worldwide. Nat Rev Nephrol 2009;5:259–69.Google Scholar
Burova, L, Pigarevsky, P, Duplik, N, et al. Immune complex binding Streptococcus pyogenes type M12/emm12 in experimental glomerulonephritis. J Med Microbiol. 2013;62:1272–80Google Scholar
Robinson, JH and Kehoe, M. Group A streptococcal M proteins: Virulence factors and protective antigens. Immunol Today 1992;13:362–67.Google Scholar
Rastaldi, M, Ferrario, F, Yang, L, et al. Adhesion molecules expression in non-crescentic acute poststreptococcal glomerulonephritis. J Am Soc Nephrol 1996;7:2419–27.Google Scholar
Yoshizawa, N, Yamakami, K, Fujino, M, et al. Nephritis-associated plasmin receptor and acute poststreptococcal glomerulonephritis: Characterization of the antigen and associated immune response. J Am Soc Nephrol 2004;15:1785–93.Google Scholar
Parra, G, Rodriguez-Iturbe, B, Batsford, S, et al. Antibody to streptococcal zymogen in the serum of patients with acute glomerulonephritis: A multicentric study. Kidney Int 1998;54:509–17.CrossRefGoogle ScholarPubMed
Stratta, P, Musetti, C, Barreca, A, and Mazzucco, G. New trends of an old disease: The acute post infectious glomerulonephritis at the beginning of the new millenium. J Nephrol 2014;27:229–39.Google Scholar
El-Husseini, AA, Sheashaa, HA, Sabry, AA, Moustafa, FE, and Sobh, MA. Acute postinfectious crescentic glomerulonephritis: clinicopathologic presentation and risk factors. Int Urol Nephrol 2005;37:603–9.Google Scholar
Buzio, C, Allegri, L, Mutti, A, Perazzoli, F, and Bergamaschi, E. Significance of albuminuria in the follow-up of acute poststreptococcal glomerulonephritis. Clin Nephrol 1994;41:259–64.Google Scholar
Roy, S 3rd, Pitcock, JA, and Etteldorf, JN. Prognosis of acute poststreptococcal glomerulonephritis in childhood: Prospective study and review of the literature. Adv Pediatr 1976;23:3569.Google Scholar
Lee, MN, Shaikh, U, and Butani, L. Effect of overweight/obesity on recovery after post-infectious glomerulonephritis. Clin Nephrol 2009;71:632–6.Google Scholar
Kasahara, T, Hayakawa, H, Okubo, S, et al. Prognosis of acute poststreptococcal glomerulonephritis (APSGN) is excellent in children, when adequately diagnosed. Pediatr Int 2001;43:364–7.Google Scholar
Montseny, JJ, Meyrier, A, Kleinknecht, D, Callard, P. The current spectrum of infectious glomerulonephritis. Experience with 76 patients and review of the literature. Medicine (Baltimore) 1995;74:6373.Google Scholar
Moroni, G, Pozzi, C, Quaglini, S, et al. Long-term prognosis of diffuse proliferative glomerulonephritis associated with infection in adults. Nephrol Dial Transplant 2002;17:1204–11.CrossRefGoogle ScholarPubMed
Spector, DA, Millan, J, Zauber, N, and Burton, J. Glomerulonephritis and Staphylococcal aureus infections. Clin Nephrol 1980;14:256–61.Google Scholar
Nasr, SH, Markowitz, GS, Whelan, JD, et al. IgA-dominant acute poststaphylococcal glomerulonephritis complicating diabetic nephropathy. Human Pathol 2003;34:1235–41.Google Scholar
Worawichawong, S, Girard, L, Trpkov, K, et al. Immunoglobulin A-dominant postinfectious glomerulonephritis: Frequent occurrence in nondiabetic patients with Staphylococcus aureus infection. Human Pathol 2011;42:279–84.Google Scholar
Nasr, SN and D’Agati, VD. IgA-dominant postinfectious glomerulonephritis: A new twist on an old disease. Nephron Clin Pract 2011;119:c1825.Google Scholar
Wen, YK and Chen, ML. IgA-dominant postinfectious glomerulonephritis: Not peculiar to staphylococcal infection and diabetic patients. Renal Failure 2011;33:480–5.Google Scholar
Montoliu, J, Miro, JM, Campistol, JM, et al. Henoch–Schonlein purpura complicating staphylococcal endocarditis in a heroin addict. Am J Nephrol 1987;7:137–9.CrossRefGoogle Scholar
Satoskar, AA, Molenda, M, Shim, R, et al. Henoch–Schonlein purpura-like presentation in IgA-dominant Staphylococcus infection-associated glomerulonephritis – A diagnostic pitfall. Clin Nephrol 2013;79:302–12.Google Scholar
Koyama, A, Kobayashi, M, Yamaguchi, N, et al. Glomerulonephritis associated with MRSA infection: A possible role of bacterial superantigen. Kidney Int 1995;47:207–16.Google Scholar
Koyama, A, Sharmin, S, Sakurai, H, et al. Staphylococcus aureus cell envelope antigen is a new candidate for the induction of IgA nephropathy. Kidney Int 2004;66:121–32.Google Scholar
Sharmin, S, Shimizu, Y, Hagiwara, M, Hirayama, K, and Koyama, A. Staphylococcus aureus antigens induce IgA-type glomerulonephritis in Balb/c mice. J Nephrol 2004;17:504–11.Google Scholar
Endo, Y, Kanbayashi, H, and Hara, M. Experimental immunoglobulin A nephropathy induced by Gram-negative bacteria. Nephron 1993;65:196205.Google Scholar
Nasr, SH, Fidler, ME, Valeri, AM, et al. Postinfectious glomerulonephritis in the elderly. J Am Soc Nephrol 2011;22:187–95.CrossRefGoogle ScholarPubMed
Sexton, DJ, and Spelman, D. Current best practices and guidelines. Assessment and managment of complications in infective endocarditis. Cardiol Clin 2003;21:273–82.Google Scholar
Majumdar, A, Chowdhary, S, Ferreira, MA, et al. Renal pathologic findings in infective endocarditis. Nephol Dial Transplant 2000;15:1782–87.Google Scholar
Spies, C, Madison, JR, Schatz, IJ. Infective endocarditis in patients with end-stage renal disease: Clinical presentation and outcome. Arch Intern Med 2004;164:71–5.Google Scholar
Levine, DP, Cushing, RD, Jui, J, and Brown, WJ. Community-acquired methicillin-resistant Staphylococcus aureus endocarditis in the Detroit Medical Center. Ann Intern Med 1982;97:330–8.Google Scholar
Wang, A, Wang, Y, Wang, G, Zhou, Z, and Yang, X. Infective endocarditis associated with acute renal failure: Repeat renal biopsy and successful recovery. Exp Ther Med 2010;1:433–6.Google Scholar
Neugarten, J, and Baldwin, DS. Glomerulonephritis in bacterial endocarditis. Am J Med 1984;77:297304.Google Scholar
Pelletier, LL, and Petersdorf, RG. Infective endocarditis: A review of 125 cases from the University of Washington Hospitals, 1962–1972. Medicine (Baltimore) 1977;56:287313.Google Scholar
Eknoyan, G, Lister, BJ, Kim, HS, and Greenberg, SD. Renal complications of bacterial endocarditis. Am J Nephrol 1985;5:457–69.Google Scholar
Boils, CL, Nasr, SH, Walker, PD, Couser, WG, and Larsen, CP. Update on endocarditis-associated glomerulonephritis. Kidney Int 2015;87:1241–9.Google Scholar
Peng, H, Chen, W, Wu, C, et al. Culture-negative subacute bacterial endocarditis masquerades as granulomatosis with polyangiitis (Wegener’s granulomatosis) involving both the kidney and lung. BMC Nephrol 2012;13:15.Google Scholar
Majumdar, A, Chowdhary, S, Ferreira, MA, et al. Renal pathological findings in infective endocarditis. Nephrol Dial Transplant 2000;15:1782–7.Google Scholar
Khalighi, MA, Nguen, S, Wiedeman, JA, Diaz, MF. Bartonella. Endocarditis-associated glomerulonephritis: A case report and review of the literature. Am J Kidney Dis 2014;63:1060–5.Google Scholar
Lee, LC, Lam, KK, Lee, CT, et al. “Full house” proliferative glomeruloneprhitis: An unreported presentation of subacute infective endocarditis. J Nephrol 2007;20:745–9.Google Scholar
Kirkpantur, A, Altinbas, A, Arici, M, et al. Enterococcal endocarditis associated with crescentic glomerulonephritis. Clin Exp Nephrol 2007;11:321–5.Google Scholar
Uh, M, McCormick, IA, Kelsall, JT. Positive cytoplasmic antineutrophil cytoplasmic antigen with PR3 specificity glomerulonephritis in a patient with subacute bacterial endocarditis. J Rheumatol 2011;38:1527–8.Google Scholar
Daimon, S, Mizuno, Y, Fujii, S, et al. Infective endocarditis-induced crescentic glomerulonephritis dramatically improved by plasmapheresis. Am J Kidney Dis 1998;32:309–13.Google Scholar
Koya, D, Shibuya, K, Kikkawa, R, and Haneda, M. Successful recovery of infective endocarditis-induced rapidly progressive glomerulonephritis by steroid therapy combined with antibiotics: A case report. BMC Nephrol 2004;5:15.Google Scholar
Le Moing, V, Lacassin, F, Delahousse, M, et al. Use of corticosteroids in glomerulonephritis related to infective endocarditis: Three cases and review. Clin Infect Dis 1999;28:1057–61.Google Scholar
Black, J, Challacombe, D, and Ockenden, B. Nephrotic syndrome associated with bacteremia after shunt operations for hydrocephalus. Lancet 1965;2:921–4.Google Scholar
Legoupil, N, Ronco, P, and Berenjbaum, F. Arthritis-related shunt nephritis in an adult. Rheumatology (Oxford) 2003;42:698–9.Google Scholar
Haffner, D, Schindera, F, Aschoff, A, et al. The clinical spectrum of shunt nephritis. Nephrol Dial Transplant 1997;12:1143–8.Google Scholar
Vella, J, Carmody, M, Campbell, E, et al. Glomerulonephritis after ventriculo-atrial shunt. Q J Med 1995;88:911–8.Google Scholar
Ohara, S, Kawasaki, Y, Takano, K, et al. Glomeruloneprhitis associated with chronic infection from long-term central venous catherization. Pediatr Nephrol 2006;21:427–9.Google Scholar
Kusaba, T, Nakayama, M, Kato, H, et al. Crescentic glomerulonephritis associated with totally implantable central venous catheter-related Staphylococcus epidermis infection. Clinical Nephrol 2008;70:54–8.Google Scholar
Yared, G, Seidner, DL, Steiger, E, Hall, PM, and Nally, JV. Tunneled right atrial catheter infection presenting as renal failure. J Parenter Enteral Nutr 1999;23:363–5.Google Scholar
Iwata, Y, Ohta, S, Kawai, K, et al. Shunt nephritis with positive titers for ANCA specific for proteinase 3. Am J Kidney Dis 2004;43:e11–6.Google Scholar
Arze, RS, Rahid, H, Morley, R, Wark, MK, and Kerr, DN. Shunt nephritis: Report of two cases and review of the literature. Clin Nephrol 1983;19:4853.Google Scholar
Wakabayashi, Y, Kobayashi, Y, and Shigematsu, H. Shunt nephritis: Histological dynamics following removal of the shunt. Nephron 1985;40:111–7.Google Scholar
Fukuda, Y, Ohtomo, Y, Kaneko, K, and Yabuta, K. Pathologic and laboratory dynamics following the removal of the shunt in shunt nephritis. Am J Nephrol 1993;13:7882.Google Scholar
Beaufils, M. Glomerular disease complicating abdominal sepsis. Kidney Int 1981;19:609–18.Google Scholar
Beaufils, M, Morel-Maroger, L, Sraer, JD, et al. Acute renal failure of glomerular origin during visceral abscesses. N Engl J Med 1976;295:185–9.Google Scholar
Kilincer, C, Hamamcioglu, MK, Simsek, O, et al. Nocardial brain abscess: Review of clinical management. J Clin Neurosci 2006;13:481–5.Google Scholar
Jones, JM and Davison, AM. Persistent infection as a cause of renal disease in patients submitted to renal biopsy: A report from the Glomerulonephritis Registry of the United Kingdom MRC. Q J Med 1986;58:123–32.Google Scholar
Chung, J, Habib, RK, and White, RH. Pathology of the nephrotic syndrome in children: A report for the International Study of Kidney Disease in Children. Lancet 1970;760:1299–302.Google Scholar
Rennke, HG. Secondary membranoproliferative glomerulonephritis. Kidney Int 1995;47:643–56.Google Scholar
Zhou, XJ, and Silva, F. Membranoproliferative glomerulonephritis. In Hepinstall’s Pathology of the Kidney, Jennette, J.C. et al., eds. 2015. Wolters Kluwer: Philadelphia, PA; 301–40.Google Scholar
Burkholder, PM, Marchand, A, and Krueger, RP. Mixed membranous and proliferative glomerulonephritis. A correlative light, immunofluorescence, and electron microscopic study. Lab Invest 1970;23:459–79.Google Scholar
Strife, CF, McEnery, PT, McAdamas, AJ, and West, CD. Membranoproliferative glomerulonephritis with disruption of the glomerular basement membrane. Clin Nephrol 1977;7:6572.Google Scholar
Anders, D, Agricola, B, Sippel, M, and Thoenes, W. Basement membrane changes in membranoproliferative glomerulonephritis. II. Characterization of a third type by silver impregnation of ultra thin sections. Virchows Arch A Pathol Anat Histol 1977;376:119.Google Scholar
Masani, N, Jhaveri, KD, and Fishbane, S. Update on membranoproliferative GN. Clin J Am Soc Nephrol 2014;9:600–8.Google Scholar
Sethi, S, and Fervenza, FC. Membranoproliferative glomerulonephritis – A new look at an old entity. N Engl J Med 2012;366:1119–31.Google Scholar
Servais, A, Noel, LH, Roumenina, LT, et al. Acquired and genetic complement abnormalities play a critical role in dense deposit disease and other C3 glomerulopathies. Kidney Int 2012;82:454–64.Google Scholar
Johnson, SA, Wong, EK, and Taylor, CM. Making sense of the spectrum of glomerular disease associated with complement dysregulation. Pediatric Nephrol 2014;29:1883–94.Google Scholar
Noris, M and Remuzzi, G. Glomerular diseases dependent on complement activation, including atypical hemolytic uremic syndrome, membranoproliferative glomerulonephritis, and C3 glomerulopathy: Core curriculum 2015. Am J Kidney Dis 2015;66:359–75.Google Scholar
Strife, CF, Jackson, EC, and McAdams, AJ. Type III membranoproliferative glomerulonephritis: Long-term clinical and morphologic evaluation. Clin Nephrol 1984; 21:323–34.Google Scholar
Miller, EC, Chase, NM, Densen, P, et al. Autoantibody stabilization of the classical pathway C3 convertase leading to C3 deficiency and Neisserial sepsis: C4 nephritic factor revisited. Clin Immunol 2012;145:241–50.Google Scholar
West, CD. Idiopathic membranoproliferative glomerulonephritis in children. Pediatr Nephrol 1992;6:96103.Google Scholar
Radhakrishnan, J, and Cattran, DC. The KDIGO Clinical Practice Guideline for Glomerulonephritis: Reading between the (guide)lines – Application to the individual patient. Kidney Int 2012;82:850–56.Google Scholar
Dillon, JJ, Hladunewich, M, Haley, WE, et al. Rituximab therapy for Type I membranoproliferative glomerulonephritis. Clin Nephrol 2012;77:290–5.Google Scholar
Ozkok, A, and Yildiz, A. Hepatitis C virus associated glomerulopathies. World J Gastroenterol 2014;20:7544–54.Google Scholar
Ali, A, and Zein, NN. Hepatitis C infection: A systemic disease with extrahepatic manifestations. Cleve Clin J Med 2005;72:1005–8, 1010–4, 1016 passim.Google Scholar
Catanese, MT, Uryu, K, Kopp, M, et al. Ultrastructural analysis of hepatitis C virus particles. Proc Natl Acad Sci U S A 2013;110:9505–10.Google Scholar
Zhu, YZ, Qian, XJ, Zhao, P, Qi, ZT. How hepatitis C virus invades hepatocytes: The mystery of viral entry. World J Gastroenterol 2014;20:3457–67.Google Scholar
Pawlotsky, JM. Hepatitis C virus: Standard-of-care treatment. Adv Pharmacol 2013;67:169215.Google Scholar
Barsoum, RS. Hepatitis C virus: From entry to renal injury. Facts and potentials. Nephrol Dial Transplant 2007;22:1840–8.Google Scholar
Wornle, M, Schmid, H, Banas, B, et al. Novel role of toll-like receptor 3 in hepatitis C-associated glomerulonephritis. Am J Pathol 2006;168:370–85.Google Scholar
European Association for the Study of the Liver. EASL Recommendations on Treatment of Hepatitis C 2015. J Hepatol, 2015;63:199236.Google Scholar
Roth, D, Nelson, DR, Bruchfeld, A, et al. Grazoprevir plus elbasvir in treatment-naive and treatment-experienced patients with hepatitis C virus genotype 1 infection and stage 4–5 chronic kidney disease (the C-SURFER study): A combination phase 3 study. Lancet 2015;386:1537–45.Google Scholar
Basse, G, Ribes, D, Kamar, N, et al. Rituximab therapy for de novo mixed cryoglobulinemia in renal-transplant patients. Transplantation 2005;80:1560–4.Google Scholar
Combes, BJ, Shorey, J, Barrera, A, et al. Glomerulonephritis with deposition of Australia antigen–antibody complexes in glomerular basement membrane. Lancet 1971;2:234–7.Google Scholar
Zhen, J, Zhang, L, Pan, J, et al. AIM2 mediates inflammation-associated renal damage in hepatitis B virus-associated glomerulonephritis by regulating caspase-1, IL-1B, and IL-18. Mediators Inflamm 2014;2014:190860.Google Scholar
Zhou, Y, Zhu, N, Wang, X, et al. The role of the toll-like receptor TLR4 in hepatitis B virus-associated glomerulonephritis. Arch Virol 2013;158:425–33.Google Scholar
Zheng, XY, Wei, RB, Tang, L, Li, P, and Zheng, XD. Meta-analysis of combined therapy for adult hepatitis B virus-associated glomerulonephritis. World J Gastroenterol 2012;18:821–2.Google Scholar
Bhimma, R, and Coovadia, H. Hepatitis B virus-associated nephropathy. Am J Nephrol 2004;24:198211.Google Scholar
Fabrizi, F, Dixit, V, and Martin, P. Meta-analysis: Anti-viral therapy of hepatitis B virus-associated glomerulonephritis. Aliment Pharmacol Ther 2006;24:781–8.Google Scholar
Han, SH. Extrahepatic manifestations of chronic hepatitis B. Clin Liver Dis 2004;8:403–18.Google Scholar
Mason, A. Role of viral replication in extrahepatic syndromes related to hepatitis B virus infection. Minerva Gastroenterol Dietol 2006;52:5366.Google Scholar
Ozdamar, SO, Gucer, S, and Tinaztepe, K. Hepatitis-B virus associated nephropathies: A clinicopathological study in 14 children. Pediatr Nephrol 2003;18:23–8.Google Scholar
Lai, KN, Li, PK, Lui, SF, et al. Membranous nephropathy related to hepatitis B virus in adults. N Engl J Med 1991;324:1457–63.Google Scholar
Lai, KN, and Lai, FM. Clinical features and the natural course of hepatitis B virus-related glomerulopathy in adults. Kidney Int Suppl 1991;35:S405.Google Scholar
Elewa, U, Sandri, AM, Kim, WR, and Fervenza, FC. Treatment of hepatitis B virus-associated nephropathy. Nephron Clin Pract 2011;119:c419.Google Scholar
Gilbert, RD, and Wiggelinkhuizen, J. The clinical course of hepatitis B virus-associated nephropathy. Pediatr Nephrol 1994;8:11–4.Google Scholar
Farrell, GC, and Teoh, NC. Management of chronic hepatitis B virus infection: A new era of disease control. Intern Med J 2006;36:100–13.Google Scholar
Bridoux, F, Leung, N, Hutchison, CA, et al. Diagnosis of monoclonal gammopathy of renal significance. Kidney Int 2015;87:698711.Google Scholar
Sethi, S, Zand, L, Leung, N, et al. Membranoproliferative glomerulonephritis secondary to monoclonal gammopathy. Clin J Am Soc Nephrol 2010;5:770–82.Google Scholar
Nasr, SH, Markowitz, GS, Stokes, MB, et al. Proliferative glomerulonephritis with monoclonal IgG deposits: A distinct entity mimicking immune-complex glomerulonephritis. Kidney Int 2004;65:8596.Google Scholar
Nasr, SH, Satoskar, A, Markowitz, GS, et al. Proliferative glomerulonephritis with monoclonal IgG deposits. J Am Soc Nephrol 2009;20:2055–64.Google Scholar
Bridoux, F, Desport, E, Fremeaux-Bacchi, V, et al. Glomerulonephritis with isolated C3 deposits and monoclonal gammopathy: A fortuitous association? Clin J Am Soc Nephrol 2011;6:2165–74.Google Scholar
Hou, J, Markowitz, GS, Bomback, AS, et al. Toward a working definition of C3 glomerulopathy by immunofluorescence. Kidney Int 2014;85:450–6.Google Scholar
Berger, J, and Galle, P. Deposs denses au sein des membranes basales du rein: Etudes en microscopies optique et electronique. Presse Med 1963:71:2351–4.Google Scholar
Habib, R, Gubler, MC, Loirat, C, Maiz, HB, and Levy, M. Dense deposit disease: A variant of membranoproliferative glomerulonephritis. Kidney Int 1975;7:204–15.Google Scholar
Walker, PD, Ferrario, F, Joh, K, and Bonsib, SM. Dense deposit disease is not a membranoproliferative glomerulonephritis. Mod Pathol 2007;20:605–16.Google Scholar
Sethi, S, Gamez, JD, Vrana, JA, et al. Glomeruli of dense deposit disease contain components of the alternative and terminal complement pathway. Kidney Int 2009;75:952–60.Google Scholar
Lu, D-F, Moon, M, Lanning, LD, McCarthy, AM, and Smith, RJH. Clinical features and outcomes of 98 children and adults with dense deposit disease. Pediatr Nephrol 2012;27:773–81.Google Scholar
Nasr, SH, Valeri, AM, Appel, GB, et al. Dense deposit disease: Clinicopathologic study of 32 pediatric and adult patients. Clin J Am Soc Nephrol 2009;4:2232.Google Scholar
Sethi, S, Sukov, WR, Zhang, Y, et al. Dense deposit disease associated with monoclonal gammopathy of undetermined significance. Am J Kidney Dis 2010;56:977–82.Google Scholar
Smith, RJ, Alexander, J, Barlow, PN, et al. New approaches to the treatment of dense deposit disease. J Am Soc Nephrol 2007;18:2447–56.Google Scholar
SPNSG. Dense deposit disease in children: Prognostic value of clinical and pathologic indicators. The Southwest Pediatric Nephrology Study Group. Am J Kidney Dis 1985;6:161–9.Google Scholar
Braun, MC, Stablein, DM, Hamiwka, LA, et al. Recurrence of membranoproliferative glomerulonephritis type II in renal allografts: The North American Pediatric Renal Transplant Cooperative Study experience. J Am Soc Nephrol 2005;16:2225–33.Google Scholar
Andresdottir, MB, Assmann, KJ, Hoitsma, AJ, Koena, RA, and Wetzels, JF. Renal transplantation in patients with dense deposit disease: Morphological characteristics of recurrent disease and clinical outcome. Nephrol Dial Transplant 1999;14:1723–31.Google Scholar
McCaughan, JA, O’Rourke, DM, and Courtney, AE. Recurrent dense deposit disease after renal transplantation: An emerging role for complementary therapies. Am J Transplant 2012;12:1046–51.Google Scholar
Bomback, AS, Smith, RJ, Barile, GR, et al. Eculizumab for dense deposit disease and C3 glomerulonephritis. Clin J Am Soc Nephrol 2012;7:748–56.Google Scholar
Herlitz, LC, Bomback, AS, Markowitz, GS, et al. Pathology after eculizumab in dense deposit disease and C3 GN. J Am Soc Nephrol 2012;23:1229–37.Google Scholar
Sethi, S, Fervenza, FC, Zhang, Y, et al. C3 glomerulonephritis: Clinicopathological findings, complement abnormalities, glomerular proteomic profile, treatment, and follow-up. Kidney Int 2012;82:465–73.Google Scholar
Xiao, X, Pickering, MC, and Smith, RJ. C3 glomerulopathy: The genetic and clinical findings in dense deposit disease and C3 glomerulonephritis. Semin Thromb Hemost 2014;40:465–71.Google Scholar
Gurkan, S, Fyfe, B, Weiss, L, et al. Eculizumab and recurrent C3 glomerulonephritis. Pediatr Nephrol 2013;28:1975–81.Google Scholar
Kerns, E, Rozansky, D, and Troxell, ML. Evolution of immunoglobulin deposition in C3-dominant membranoproliferative glomerulopathy. Pediatr Nephrol 2013;28:2227–31.Google Scholar
Sethi, S, Vrana, JA, Theis, JD, and Dogan, A. Mass spectrometry based proteomics in the diagnosis of kidney disease. Curr Opin Nephrol Hypertens 2013;22:273–80.Google Scholar
Sandhu, G, Bansal, A, Ranade, A, et al. C3 Glomerulopathy masquerading as acute postinfectious glomerulonephritis. Am J Kidney Dis 2012;60:1039–43.Google Scholar
Medjeral-Thomas, NR, O’Shaughnessy, MM, O’Regan, JA, et al. C3 glomerulopathy: clinicopathologic features and predictors of outcome. Clin J Am Soc Nephrol 2014;9:4653.Google Scholar
Bomback, AS, and Appel, GB. Pathogenesis of the C3 glomerulopathies and reclassification of MPGN. Nature Rev Nephrol 2012;8:634–42.Google Scholar
Le Quintrec, M, Lionet, A, Kandel, C, et al. Eculizumab for treatment of rapidly progressive C3 glomerulopathy. Am J Kidney Dis 2015;65,484–9.Google Scholar
Chen, Q, Manzke, M, Hartmann, A, et al. Complement factor H-related 5-hybrid proteins anchor properdin and activate complement at self-surfaces. J Am Soc Nephrol 2016;27:1413–25.Google Scholar
De Vriese, AS, Sethi, S, Praet, JV, Nath, KA, and Fervenza, FC. Kidney disease caused by dysregulation of the complement alternative pathway: An etiologic approach. J Am Soc Nephrol 2015;26:9717–29.Google Scholar
Pickering, M, Warren, J, Rose, KL, et al. Prevention of C5 activation ameliorates spontaneous and experimental glomerulonephritis in factor H-deficient mice. Pro Natl Acad Sci U S A 2006;103:9649–54.Google Scholar
Janssen van Doorn, K, Dirinck, E, Verpooten, GA, and Courttenye, MM. Complement factor H mutation associated with membranoproliferative glomerulonephritis with transformation to atypical haemolytic uraemic syndrome. Clin Kidney J 2013;6:216–9.Google Scholar
West, CD, Witte, DP, and McAdams, AJ. Composition of nephritis factor-generated glomerular deposits in membranoproliferative glomerulonephritis type 2. Am J Kidney Dis 2001;37:1120–30.Google Scholar
Chen, Q, Müller, D, Rudolph, B, et al. Combined C3b and factor B autoantibodies and MPGN type II. N Engl J Med 2011;365:2340–2.Google Scholar
Levy, M, Halbwachs-Mecarelli, L, Gubler, MC, et al. H deficiency in two brothers with atypical dense intramembranous deposit disease. Kidney Int 1986;30:949–56.Google Scholar
Licht, C, Heinen, S, Jozsi, M, et al. Deletion of Lys224 in regulatory domain 4 of Factor H reveals a novel pathomechanism for dense deposit disease (MPGN II). Kidney Int 2006;70:4250.Google Scholar
Athanasiou, Y, Voskarides, K, Gale, DP, et al. Familial C3 glomerulopathy associated with CFHR5 mutations: Clinical characteristics of 91 patients in 16 pedigrees. Clin J Am Soc Nephrol 2011;6:1436–46.Google Scholar
Zipfel, PF, Skerka, C, Chen, Q, et al. The role of complement in C3 glomerulopathy. Mol Immunol 2015;67:2130.Google Scholar
Gale, DP, de Jorge, EG, Cook, HT, et al. Identification of a mutation in complement factor H-related protein 5 in patients of Cypriot origin with glomerulonephritis. Lancet 2010;376:794801.Google Scholar
Gale, DP, and Maxwell, PH. C3 glomerulonephritis and CFHR5 nephropathy. Nephrol Dial Transplant 2013;28:282–8.Google Scholar
Medjeral-Thomas, N, Malik, TH, Patel, MP, et al. A novel CFHR5 fusion protein causes C3 glomerulopathy in a family without Cypriot ancestry. Kidney Int 2014;85:933–7.Google Scholar
Levidiotis, V, Freeman, C, Tikellis, C, Cooper, ME, and Power, DA. Heparanase is involved in the pathogenesis of proteinuria as a result of glomerulonephritis. J Am Soc Nephrol 2004;15:6878.Google Scholar
Levidiotis, V, Freeman, C, Tikellis, C, Cooper, ME, and Power, DA. Heparanase inhibition reduces proteinuria in a model of accelerated anti-glomerular basement membrane antibody disease. Nephrology (Carlton) 2005;10:167–73.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×