Skip to main content
Source Mechanisms of Earthquakes
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 14
  • Cited by
    This book has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Klejment, Piotr Dębski, Wojciech and Hénaff, G. 2018. Crack nucleation in solid materials under external load - simulations with the Discrete Element Method. MATEC Web of Conferences, Vol. 165, Issue. , p. 22019.

    Zhou, Xiaoping Ma, Wen Yang, Luhao Bi, Jing and Cheng, Hao 2018. Experimental Study of Stick-Slip Failure Processes and Effect of Physical Properties on Stick-Slip Behavior. Journal of Geophysical Research: Solid Earth, Vol. 123, Issue. 1, p. 653.

    Dębski, Wojciech 2018. Dynamic Stress Drop for Selected Seismic Events at Rudna Copper Mine, Poland. Pure and Applied Geophysics,

    Wang, Ding Li, Cong Yan, Chaoxiong Xu, Jun and Kong, Fan 2018. An Evolutionary Spectrum Model of Nonstationary Seismic Ground Motions Considering Extended Source Effect for Engineering Purposes. Journal of Earthquake Engineering, p. 1.

    2017. Microseismic Monitoring. p. 409.

    Franczyk, Anna Leśniak, Andrzej and Gwiżdż, Damian 2017. Time reversal seismic source imaging using peak average power ratio (PAPR) parameter. Acta Geophysica, Vol. 65, Issue. 2, p. 299.

    Wojtecki, Łukasz Konicek, Petr Mendecki, Maciej J. and Zuberek, Wacław M. 2017. Application of Seismic Parameters for Estimation of Destress Blasting Effectiveness. Procedia Engineering, Vol. 191, Issue. , p. 750.

    Huang*, Junwei Garrett, Devin Usher, Philip and Maxwell, Shawn 2017. Microseismic Network Performance for Induced Seismicity Monitoring. p. 35.

    Selvadurai, P. A. Parker, J. M. and Glaser, S. D. 2017. Numerical Modeling Describing the Effects of Heterogeneous Distributions of Asperities on the Quasi-static Evolution of Frictional Slip. Rock Mechanics and Rock Engineering, Vol. 50, Issue. 12, p. 3323.

    Wojtecki, Ł. Mendecki, M. J. and Zuberek, W. M. 2016. The seismic source parameters of tremors provoked by destress blastings in coal seam. Journal of Mining Science, Vol. 52, Issue. 2, p. 258.

    Fukuyama, Eiichi Xu, Shiqing Yamashita, Futoshi and Mizoguchi, Kazuo 2016. Cohesive zone length of metagabbro at supershear rupture velocity. Journal of Seismology, Vol. 20, Issue. 4, p. 1207.

    Grechka, Vladimir Li, Zhao Howell, Bo and Vavryčuk, Václav 2016. Single-well moment tensor inversion of tensile microseismic events. GEOPHYSICS, Vol. 81, Issue. 6, p. KS219.

    Schmittbuhl, J. Karabulut, H. Lengliné, O. and Bouchon, M. 2016. Long-lasting seismic repeaters in the Central Basin of the Main Marmara Fault. Geophysical Research Letters, Vol. 43, Issue. 18, p. 9527.

    Berngardt, O. I. Perevalova, N. P. Dobrynina, A. A. Kutelev, K. A. Shestakov, N. V. Bakhtiarov, V. F. Kusonsky, O. A. Zagretdinov, R. V. and Zherebtsov, G. A. 2015. Toward the azimuthal characteristics of ionospheric and seismic effects of “Chelyabinsk” meteorite fall according to the data from coherent radar, GPS, and seismic networks. Journal of Geophysical Research: Space Physics, Vol. 120, Issue. 12, p. 10,754.


Book description

This book presents an innovative new approach to studying source mechanisms of earthquakes, combining theory and observation in a unified methodology, with a key focus on the mechanics governing fault failures. It explains source mechanisms by building from fundamental concepts such as the equations of elasticity theory to more advanced problems including dislocation theory, kinematic models and fracture dynamics. The theory is presented first in student-friendly form using consistent notation throughout, and with full, detailed mathematical derivations that enable students to follow each step. Later chapters explain the widely-used practical modelling methods for source mechanism determination, linking clearly to the theoretical foundations, and highlighting the processing of digital seismological data. Providing a unique balance between application techniques and theory, this is an ideal guide for graduate students and researchers in seismology, tectonophysics, geodynamics and geomechanics, and a valuable practical resource for professionals working in seismic hazard assessment and seismic engineering.


'An excellent and timely book - the first textbook to provide such a detailed and complete overview on the theory of earthquake source mechanisms, and to combine the classical continuum mechanics approach with concepts of kinematic and dynamic rupture models. This book will become an essential reference and valuable resource for researchers, professionals and graduate students.'

Professor Dr Torsten Dahm - Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences

'This is an up-to-date, comprehensive, quantitative treatment of an important topic in seismology. It is unique in that theory and data analysis are both discussed in-depth, and it covers fundamental ideas from the 1960s to the very latest developments, making it the essential text for graduate students and researchers. Along with its very complete bibliography, it will become the Bible of the subject.'

Professor Shamita Das - University of Oxford

Refine List
Actions for selected content:
Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive
  • Send content to

    To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .

    To send content items to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

    Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

    Find out more about the Kindle Personal Document Service.

    Please be advised that item(s) you selected are not available.
    You are about to send

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
Abercrombie, R. E. and Rice, J. R. (2005). Can observations of earthquake scaling constrain slip weakening?Geophys. J. Int., 162, 406–424.
Adda Bedia, M. and Madariaga, R. (2008). Seismic radiation from a kink on an antiplane fault. Bull. Seism. Soc. Am., 98, 2291–2302.
Aki, K. (1966). Generation and propagation of G waves from the Niigata earthquake of June 16, 1964. Estimation of earthquake movement, released energy and stress–strain drop from G wave spectrum. Bull. Earthq. Res. Inst., 44, 23–88.
Aki, K. (1967). Scaling law of seismic spectrum. J. Geophys. Res., 73, 5359–5376.
Aki, K. (1979). Characterization of barriers on an earthquake fault. J. Geophys. Res., 84, 6140–6148.
Aki, K. (1984). Asperities, barriers, characteristic earthquakes and strong motion prediction. J. Geophys. Res., 89, 5867–5872.
Aki, K. and Richards, P. G. (1980). Quantitative Seismology. Theory and Methods. Two volumes. San Francisco: W. H. Freeman
Ampuero, J. P. and Rubin, A. M. (2008). Earthquake nucleation on rate and state faults – aging and slip laws. J. Geophys. Res., 113, B01302, .
Andrews, D. J. (1976). Rupture velocity of plain stress shear cracks. J. Geophys. Res., 81, 5679–5687.
Andrews, D. J. (1989). Mechanics of fault junctions. J. Geophys. Res., 94, 9389–9397.
Andrews, D. J. (1999). Test of two methods for faulting in finite-difference calculations. Bull. Seism. Soc. Am., 89, 931–937.
Aochi, H. and Madariaga, R. (2003). The 1999 Izmit, Turkey, earthquake: non-planar fault structure, dynamic rupture process, and strong ground motion. Bull. Seismol. Soc. Am., 93, 1249–1266.
Aochi, H., Fukuyama, E., and Matsu'ura, M. (2000). Spontaneous rupture propagation on a non-planar fault in 3-D elastic medium. Pure Appl. Geophys. 157, 2003–2027.
Archuleta, R. J. (1984). A faulting model for the 1979 Imperial Valley earthquake. J. Geophys. Res., 89, 4559–4585.
Arias, R., Madariaga, R. and Adda-Bedia, M. (2011). Singular elasto-static field near a fault kink. Pageoph., 168, 2167–2179.
Avallone, A., Marzario, M., Cirella, A., Piatanesi, A., Rovelli, A., Di Alessandro, C. et al. (2011). Very high rate (10 Hz) GPS seismology for moderate-magnitude earthquakes: the case of the MW 6.3 L'Aquila (Central Italy) event. J. Geophys. Res., 116, B02305, .
Backus, G. E. (1977). Interpreting the seismic glut moments of total degree two or less. Geophys. J. Roy Astr. Soc., 51, 1–25.
Backus, G. E. and Mulcahy, M. (1976a). Moment tensors and other phenomenological descriptions of seismic waves. I. Continuous displacements. Geophys. J. Roy Astr. Soc., 46, 341–361.
Backus, G. E. and Mulcahy, M. (1976b). Moment tensors and other phenomenological descriptions of seismic waves. II. Discontinuous displacements. Geophys. J. Roy Astr. Soc., 47, 301–330.
Barbot, S., Lapusta, N. and Avouac, J. P. (2012). Under the hood of the earthquake machine: toward predictive modeling of the seismic cycle. Science, 336, 707–710.
Barenblatt, G. I. (1959a). The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks. J. Appl. Math. Mech., 23, 622–636.
Barenblatt, G. I. (1959b). On equilibrium cracks, formed in brittle fracture. Doklady, USSR Academy of Sciences, 127, 47–50 (in Russian).
Barenblatt, G. I. (1962). The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech., 7, 55–129.
Barka, A., Akyüz, H. S., Altunel, E., Sunal, G., Cakir, Z., Dikbas, A. et al. (2002). The surface rupture and slip distribution of the August 17, 1999 Izmit earthquake, M 7.4, North Anatolian Fault. Bull. Seism. Soc. Am., 92, 43–60.
Båth, M. (1965). Lateral inhomogeneities of the upper mantle. Tectonophys., 2, 483–514.
Beeler, N. M. and Tullis, T. E. (1996). Self-healing slip pulses in dynamic rupture models due to velocity dependent strength. Bull. Seism. Soc. Am., 86, 1130–1148.
Beeler, N. M., Tullis, T. E. and Weeks, J. D. (1994). The roles of time and displacement in the evolution effect in rock friction. Geophys. Res. Lett., 21, 1987–1990.
Ben Menahem, A. (1961). Radiation of seismic surface waves from finite moving sources. Bull. Seism. Soc Am., 51, 401–453.
Ben Menahem, A. (1962). Radiation of seismic body waves from finite moving sources in the earth. J. Geophys. Res., 67, 396–474.
Ben Menahem, A. and Singh, S. J. (1981). Seismic Waves and Sources. Berlin: Springer.
Berckhemer, H. (1962). Die Ausdehnung der Bruchfläche im Erdbebenherd und ihr Einfluss auf das seismiche Wellenspektrum. Gerland Beitr. Geophys., 71, 5–26.
Bernard, P. and Madariaga, R. (1984). A new asymptotic method for the modeling of near-field accelerograms. Bull. Seism. Soc. Am., 74, 539–557,
Bilich, A., Cassidy, J. F. and Larson, K. (2008). GPS seismology: application to the 2002 MW 7.9 Denali fault earthquakes. Bull. Seism. Soc. Am., 98, 593–606.
Bizzarri, A. and Cocco, M. (2003). Slip-weakening behavior during the propagation of dynamic ruptures obeying rate- and state-dependent friction laws. J. Geophys. Res., 108, . Issn: 0148-0227.
Bizzarri, A. and Das, S. (2012). Mechanics of 3-D shear cracks between Rayleigh and shear wave rupture speeds. Earth Planet. Sci. Lett., 357–358, 397–404.
Boatwright, J. (1978). Detailed spectral analysis of two small New York state earthquakes, Bull. Seism. Soc. Am., 68, 1117–1131.
Bodin, P. and Brune, J. N. (1996). On the scaling of slip and rupture for shallow strike-slip earthquakes: quasi-static models and dynamic rupture propagation. Bull. Seism. Soc. Am., 86, 1292–1299.
Boore, D. M., Stephens, C. and Joyner, W. B. (2002). Comments on baseline correction of digital strong-motion data: examples from the 1999 Hector Mine, California, earthquake. Bull. Seism. Soc. Am., 92, 1543–1560.
Bouchon, M. (1981). A simple method to calculate Green's function for elastic layered media. Bull. Seism. Soc. Am., 71, 959–971.
Bouchon, M. (1982). The complete synthesis of seismic crustal phases at regional distances. J. Geophys. Res. B, 87, 2156–2202.
Bouchon, M. (1997). The state of stress on some faults of the San Andreas system as inferred from near-field strong motion data. J. Geophys. Res., 102, 1731–1744.
Bouchon, M. and Vallée, M. (2003). Observation of long supershear rupture during the M = 8.1 Kunlunshan (Tibet) earthquake. Science, 301, 824–826.
Bouchon, M., Bouin, M., Karabulut, H., Toksöz, M. N., Dietrich, M. and Rosakis, A. J. (2001). How fast is rupture during an earthquake? New insights from the 1999 Turkey earthquakes. Geophys. Res. Lett., 28, 2723–2726.
Bouchon, M., Durand, V., Marsan, D., Karabulut, H. and Schmittbuhl, J. (2012). The long precursory phase of most large interplate earthquakes. Nature Geosci., 6, 299–302.
Bouchon, M., Toksoz, N., Karabulut, H., Bouin, M.-P., Dieterich, M., Aktar, M. et al. (2002). Space and time evolution of rupture and faulting during the 1999 Izmit (Turkey) earthquake. Bull. Seism. Soc. Am. 92, 256–266.
Brace, W. F. and Walsh, J. B. (1962). Some direct measurements of the surface energy of quartz and orthoclase. Amer. Mineral., 47, 111–112.
Bracewell, R. (1965). The Fourier Transform and its Applications. New York: MacGraw-Hill.
Brantut, N. and Rice, J. R. (2011). How pore fluid pressurization influences crack tip processes during dynamic rupture. Geophys. Res. Lett., 38, L24314, .
Brillinger, D. R., Udías, A. and Bolt, B. A. (1980). A probability model for regional focal mechanism solutions. Bull. Seism. Soc. Am., 70, 149–170.
Broberg, K. B. (1999). Cracks and Fracture. San Diego, CA: Academic Press.
Brodsky, E. E., Gilchrist, J. G., Sagy, A. and Colletini, C. (2011). Faults smooth gradually as a function of slip. Earth Planet. Sci. Lett., 302, 185–193.
Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes. J. Geophys. Res., 75, 4997–5009.
Brune, J. N. (1971). Correction. J. Geophys. Res. 76, 5002.
Buforn, E. (1994). Métodos para la determinación del mecanismo focal de los terremotos. Fisica de la Tierra, 6, 113–139.
Burridge, R. (1969). The numerical solution of certain integral equations with non-integral kernel arising in the theory of cracks propagation and elastic wave diffraction. Phil. Trans. Roy. Soc. A, 265, 353–381.
Burridge, R. and Halliday, G. S. (1977). Dynamic shear cracks with friction as models for shallow focus earthquakes. Geophys. J. Roy. Astr. Soc., 25, 261–283.
Burridge, R. and Knopoff, L. (1964). Body force equivalents for seismic dislocations. Bull. Seism. Soc. Am., 54, 1875–1888.
Burridge, R. and Knopoff, L. (1967). Model and theoretical seismicity. Bull. Seism. Soc. Am., 57, 341–371.
Byerly, P. (1928). The nature of the first motion in the Chilean earthquake of November 11, 1922. Am. J. Sci. (series 5), 16, 232–236.
Candela, T., Renard, F., Klinger, Y., Mair, K., Schmittbuhl, J. and Brodsky, E. E. (2012). Roughness of fault surfaces over nine decades of length scales. J. Geophys. Res., 117, .
Carlson, J. M. and Langer, J. S. (1989). Properties of earthquakes generated by fault dynamics. Phys Rev. Lett. 32, 2632–2635.
Cesca, S., Buforn, E. and Dahm, T. (2006). Moment tensor inversion of shallow earthquakes in Spain. Geophys. J. Int., 166, 839–854.
Cesca, S., Heimann, S., Stammler, K. and Dahm, T. (2010). Automated point and kinematic source inversion at regional distances. J. Geophys. Res., 115, B06304, .
Chapman, C. H. (1978). A new method for computing synthetic seismograms. Geophys. J. Roy. Astr. Soc., 54, 481–518.
Chen, Y. T. and Xu, L. S. (2000). A time-domain inversion technique for the tempo-spatial distribution of slip on a finite fault with applications to recent large earthquakes in the Tibetan plateau. Geophys. J. Int., 143, 407–416.
Cocco, M. and Bizzari, A. (2002). On the slip-weakening behavior of rate and state friction laws. Geophys. Res. Lett., 29, 1516.
Cochard, A. and Madariaga, R. (1994). Dynamic faulting under rate depending friction. Pageoph., 142, 419–445.
Cochard, A. and Madariaga, R. (1996). Complexity of seismicity due to high rate-dependent friction. J. Geophys. Res., 101, 25 321–25 336.
Corish, S. C., Bradley, R. and Olsen, K. B. (2007). Assessment of a nonlinear dynamic rupture inversion technique. Bull. Seismol. Soc. Am., 97, 901–914.
Cottrell, A. H. and Bilby, B. (1949). Dislocation theory of yielding and strain ageing of iron. Proc. Phys. Soc. A, 62, 49–62.
Coutant, O. (1990). Programme de simulation numerique AXITRA, Rapport LGIT. University Joseph Fourier, Grenoble, France.
Cowie, P. A. and Scholz, C. H. (1992). Displacement–length scaling relationship for faults: data synthesis and discussion. J. Struct. Geol., 14, 1149–1156.
Cruz-Atienza, V. M. and Virieux, J. (2004). Dynamic rupture simulation of non-planar faults with a finite-difference approach. Geophys. J. Int., 158, 939–954.
Custodio, S., Liu, P. and Archuleta, R. J. (2005). The 2004 MW 6.0 Parkfield, California, earthquake: inversion of near-source ground motion using multiple data sets. Geophys. Res. Lett., 32, L23312, .
Dahlen, F. A. and Tromp, J. (1998). Theoretical Global Seismology. Princeton: Princeton University Press.
Dahm, T. (1996). Relative moment tensor inversion based on ray theory: theory and synthetic tests. Geophys. J. Int., 124, 245–257.
Dahm, T. and Krüger, F. (1999). Higher-degree moment tensor inversion using far-field broad-band recordings: theory and evaluation of the method with application to the 1994 Bolivia earthquake. Geophys. J. Int., 137, 35–50.
Dahm, T., Manthei, G. and Eisenblatter, J. (1999). Automated moment tensor inversion to estimate source mechanisms of hydraulically induced micro-seismicity in salt rock. Tectonophys., 306, 1–17, .
Dalguer, L. A. and Day, S. M. (2006). Comparison of fault representation methods in finite difference simulations of dynamic rupture. Bull. Seism. Soc. Am., 96, 1764–1778.
Dalguer, L. A. and Day, S. M. (2007). Staggered-grid split-node method for spontaneous rupture simulation. J. Geophys. Res. 112, B02302, .
Das, S. (1980). A numerical method for determination of source time functions for general 3 dimensional rupture propagation. Geophys. J. Roy. Astr. Soc., 62, 591–604.
Das, S. and Aki, K. (1977a). Fault planes with barriers: a versatile earthquake model. J. Geophys. Res., 82, 5648–5670.
Das, S. and Aki, K. (1977b). A numerical study of two dimensional spontaneous rupture propagation. Geophys. J. Roy. Astr. Soc., 50, 643–668.
Das, S. and Kostrov, B. V. (1983). Breaking of a single asperity: rupture process and seismic radiation. J. Geophys. Res., 88, 4277–4288.
Das, S. and Kostrov, B. V. (1997). Determination of the polynomial moments of the seismic moment rate density distribution with positivity constraints. Geophys. J. Int., 131, 115–126.
Day, S. M. (1982). Three dimensional simulation of spontaneous rupture, the effect of non uniform prestress. Bull. Seism. Soc. Am., 72, 1881–1902.
Delouis, B., Lundgren, P., Salichon, J. and Giardini, D. (2000). Joint inversion of InSAR and teleseismic data for the slip history of the 1999 Izmit (Turkey) earthquake. Geophys. Res. Lett., 27, 3389–3392.
Deschamps, A., Lyon-Caen, H. and Madariaga, R. (1980). Mise au point sur les méthodes de calcul de séismogrammes synthétiques de long périod. Ann. Géophys., 36, 167–178.
Di Carli, S., Francois-Holden, C., Peyrat, S. and Madariaga, R. (2010). Dynamic inversion of the 2000 Tottori earthquake based on elliptical subfault approximations. J. Geophys. Res., 115, B12 328, .
Di Toro, G., Han, R., Hirose, T., De Paola, N., Mizoguchi, S. N. K., Ferri, F. et al. (2011). Fault lubrication during earthquakes, Nature, 471, 494–498.
Dieterich, J. H. (1979a). Modeling of rock friction. 1. Experimental results and constitutive equations. J. Geophys. Res., 84, 2161–2168.
Dieterich, J. H. (1979b). Modeling of rock friction. 2. Simulation of preseismic slip. J. Geophys. Res., 84, 2169–2175.
Dieterich, J. H. (1992). Earthquake nucleation on faults with rate and state-dependent strength. Tectonophys., 21, 115–134.
Dieterich, J. H. (2007) Application of rate-and-state-dependent friction to models of fault slip and earthquake occurrence. In: Earthquake Seismology, eds. Schubert, G., and Kanamori, H., Treatise on Geophysics, vol. 4, pp.107–129. Amsterdam: Elsevier.
Doornbos, D. J. (1982). Seismic moment tensors and kinematic source parameters. Geophys. J. Roy. Astr. Soc., 69, 235–251.
Dreger, D. S. (1994). Empirical Green's function study of the January 17, 1994 Northridge, California earthquake. Geophys. Res. Lett., 21, 2633–2636.
Dreger, D. S. and Helmberger, D. V. (1993). Determination of source parameters at regional distances with three-component sparse network data. J. Geophys. Res., 98, 8107–8125.
Duan, B. (2010). Role of initial stress rotations in rupture dynamics and ground motion: a case study with implications for the Wenchuan earthquake. J. Geophys. Res., 115, B05301, .
Duan, B. and Oglesby, D. D. (2006). Heterogeneous fault stresses from previous earthquakes and the effect on dynamics of parallel strike–slip faults. J. Geophys. Res., 111, .
Dugdale, D. S. (1960). Yielding of steel sheets containing slits. J. Mech. Phys. Solids, 8, 100–104.
Dunham, E. M. and Archuleta, R. J. (2004). Evidence of supershear transient during the 2002 Denali Fault earthquake. Bull. Seism. Soc. Am., 94, S256–S268.
Dziewonski, A. M. and Anderson, D. L. (1981). Preliminary reference Earth model. Phys. Earth Planet. Int., 25, 297–356.
Dziewonski, A. M. and Woodhouse, J. H. (1983). Studies of the seismic source using normal mode theory. In: Earthquakes: Observation, Theory and Interpretation, eds. Kanamori, H. and Boschi, E., pp. 45–137. New York: North Holland.
Dziewonski, A. M., Chou, T. A. and Woodhouse, J. H. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res., 86, 2825–2852.
Ellsworth, W. L. and Beroza, G. C. (1995). Seismic evidence for an earthquake nucleation phase. Science, 268, 851–865.
Engdahl, E. R., and Villaseñor, A. (2002). Global seismicity: 1900–1999. In: International Handbook of Earthquake and Engineering Seismology, eds. Lee, W. H. K., Kanamori, H., Jennings, P. C. and Kisslinger, C., Part A, pp. 665–690. London: Academic Press.
Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. Roy. Soc. A, 241, 376–396.
Eshelby, J. D. (1959). The elastic field outside an ellipsoidal inclusion. Proc. Royal Soc. A, 252, 561–569.
Fossum, A. F. and Freund, L. B. (1975). Non uniformly moving shear crack model of a shallow focus earthquake mechanism. J. Geophys. Res., 80, 3343–3347.
Freund, L. B. (1972a). Crack propagation in an elastic solid subjected to general loading. I. Constant rate of extension. J. Mech. Phys. Solids, 20, 129–140.
Freund, L. B. (1972b). Energy flux into the tip of an extending crack in an elastic solid. J. Elasticity, 2, 341–349.
Freund, L. B. (1979). The mechanics of dynamic shear crack propagation. J. Geophys. Res., 84, 2199–2209.
Fröhlich, C. (2006). Deep Earthquakes. Cambridge: Cambridge University Press.
Fuchs, K. and Müller, G. (1971). Computation of synthetic seismograms with the reflectivity method and comparison with observations. Geophys. J. Roy. Astr. Soc., 23, 417–433.
Fukuyama, E. and Irikura, K. (1986). Rupture process of the 1983 Japan Sea (Akita-Oki) earthquake using a wave form inversion method. Bull. Seism. Soc. Am., 76, 1623–1649.
Fukuyama, E. and Madariaga, R. (1998). Rupture dynamics of a planar fault in a 3D elastic medium: rate and slip weakening friction. Bull. Seism. Soc. Am., 88, 1–17.
Fukuyama, E. and Mikumo, T. (1993). Dynamic rupture analysis: inversion for the process of the 1990 Izu-Oshima, Japan, earthquake (M = 6.5). J. Geophys. Res., 98, 6529–6542.
Gel'fand, I. M. and Shilov, G. E. (1964). Generalized Functions. New York: Academic Press.
Gershanik, S. (1996). Sismología. La Plata: Universidad Nacional de la Plata.
Gilbert, F. (1970). Excitation of the normal modes of the Earth by earthquakes sources. Geophys. J. Roy. Astr. Soc., 22, 223–226.
Goldsby, L. and Tullis, T. E. (2011). Flash heating leads to low frictional strength of crustal rocks at earthquake slip rates. Science, 334, 216–218.
Griffith, A. (1921). The phenomenon of rupture and flow in solids. Phil. Trans. Roy. Soc., 221, 163–198.
Guatteri, M., and Spudich, P. (2000). What can strong-motion data tell us about slip-weakening fault-friction laws?Bull. Seism. Soc. Am., 90, 98–116.
Gubbins, D. (1990). Seismology and Plate Tectonics. Cambridge: Cambridge University Press.
Gutenberg, B. and Richter, C. F. (1942). Earthquake magnitude, intensity, energy and acceleration. Bull. Seism. Soc. Am., 32, 163–191.
Gutenberg, B. and Richter, C. F. (1954). Seismicity of the Earth and Associated Phenomena. 2nd edn. Princeton: Princeton University Press.
Gutenberg, B. and Richter, C. F. (1956). Earthquake magnitude, intensity, energy and acceleration (second paper). Bull. Seism. Soc. Am., 46, 105–145.
Han, R., Shimamoto, T., Hirose, T., Ree, J. H. and Ando, J. (2007). Ultralow friction of carbonate faults caused by thermal decomposition. Science, 316, 878–881.
Hanks, T. C. (1977). Earthquake stress-drops, ambient tectonics stresses and stresses that drive plates. Pure Appl. Geophysics, 115, 441–458.
Hanks, T. C. and Kanamori, H. (1979). A moment magnitude scale. J. Geophys. Res, 84, 2348–2350.
Hanks, T. C. and Wyss, M. (1972). The use of body-wave spectra in the determination of seismic source parameters. Bull. Seism. Soc. Am., 62, 561–589.
Harris, R., and Day, S. (1993), Dynamics of fault interaction: parallel strike–slip faults. J. Geophys. Res., 98, 4461–4472.
Harris, R. A., Barall, M., Archuleta, R., Dunham, E., Aagaard, B., Ampuero, J. P. et al. (2009). The SCEC/USGS dynamic earthquake rupture code verification exercise. Seismol. Res. Lett., 80, 119–126.
Hartzell, S. H. (1978). Earthquake aftershocks as Green’s functions. Geophys. Res. Lett., 5, 1–4.
Hartzell, S. H. and Heaton, T. H. (1983). Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake. Bull. Seism. Soc. Am., 73, 1553–1583.
Haskell, N. A. (1964). Total energy and energy spectral density of elastic wave radiation from propagating faults. Bull. Seism. Soc. Am., 54, 1811–1841.
Haskell, N. A. (1966). Total energy and energy spectral density of elastic wave radiation from propagating faults, Part II. Bull. Seism. Soc. Am., 56, 125–140.
Havskov, J. and Ottemöller, L. (2010). Routine Data Processing in Earthquake Seismology. Berlin: Springer.
Heaton, T. H. (1990). Evidence for and implications of self-healing pulses of slip in earthquake rupture. Phys. Earth Planet. Int., 64, 1–20.
Heimann, S. (2001). A robust method to estimate kinematic earthquake source parameters. Doctoral thesis, University of Hamburg.
Helmberger, D. V. (1974). Generalized ray theory for shear dislocations. Bull. Seism. Soc. Am., 64, 45–64.
Herrero, A. and Bernard, P. (1994). A kinematic self-similar rupture process for earthquakes. Bull. Seism. Soc. Am., 72, 2037–2062.
Hirasawa, T. and Stauder, W. (1965). On the seismic body waves from a finite moving source. Bull. Seism. Soc. Am., 55, 237–262.
Houston, H., Benz, H., and Vidale, J. E. (1998). Time functions of deep earthquakes from broadband and short period stacks. J. Geophys. Res., 103, 29 895–29 913.
Hudson, J. A. (1980). The Excitation and Propagation of Elastic Waves. Cambridge: Cambridge University Press.
Husseini, M. I. and Randall, M. J. (1976). Rupture velocity and radiation efficiency. Bull. Seism. Soc. Am., 66, 1173–1187.
Husseini, M. J., Jovanovich, D. B., Randall, M. J. and Freund, L. B. (1975). The fracture energy of earthquakes. Geophys. J. Roy. Astr. Soc., 43, 367–385.
Ida, Y. (1972). Cohesive forces across the tip of a longitudinal shear crack and Griffith's specific surface energy. J. Geophys. Res., 77, 3796–3805.
Ida, Y. (1973). Stress concentration and unsteady propagation of longitudinal shear cracks. J. Geophys. Res., 78, 3418–3429.
Ide, S. (2002). Estimation of radiated energy of finite-source earthquake models. Bull. Seism. Soc. Am., 92, 2994–3005.
Ide, S. and Takeo, M. (1997). Determination of constitutive relations of fault slip based on seismic wave analysis. J. Geophys. Res., 102, 27 379–27 391.
Ide, S., Beroza, G., Prejean, S. and Ellsworth, W. (2003). Apparent break in earthquake scaling due to path and site effects on deep borehole recordings. J. Geophys. Res., 108, .
Irwin, G. R. (1957). Analysis of stresses and strains near the end of a crack transversing a plate. J. Appl. Mech., 64, 361–364.
Jeffreys, H. (1931). On the cause of oscillatory movements in seismograms. Mon. Not. Roy. Astr. Soc. Geophys. Suppl., 2, 407–416.
Johnson, L. R. and Nadeau, R. M. (2002). Asperity model of an earthquake: static problem. Bull. Seism. Soc. Am., 92, 672–686.
Johnson, L. R. and Nadeau, R. M. (2005). Asperity model of an earthquake: dynamic problem. Bull. Seism. Soc. Am., 95, 75–108.
Jost, M. L. and Herrmann, R. B. (1989). A student's guide to and review of moment tensors. Seism. Res. Lett., 60, 37–57.
Kame, N. and Yamashita, T. (1997). Dynamic nucleation process of shallow earthquake faulting on a fault zone. Geophys. J. Int., 128, 204–216.
Kame, N. and Yamashita, T. (1999a). A new light on arresting mechanism of dynamic earthquake faulting. Geophys. Res. Lett., 26, 1997–2000.
Kame, N. and Yamashita, T. (1999b). Simulation of the spontaneous growth of a dynamic crack without constraints on the crack tip path. Geophys. J. Int., 139, 345–358.
Kanamori, H. (2004). The diversity of the physics of earthquakes. Proc. Japan Acad. B, 80, 297–316.
Kanamori, H. and Anderson, D. L. (1975). Theoretical basis of some empirical relations in seismology. Bull. Seism. Soc. Am., 65, 1073–1095.
Kanamori, H. and Brodsky, E. E. (2004). The physics of earthquakes. Rep. Progr. Phys., 67, 1429–1496.
Kanamori, H. and Given, J. W. (1981). Use of long period surface waves for rapid determination of earthquake source parameters. Phys. Earth Planet. Int., 27, 8–31.
Kanamori, H. and Steward, G. S. (1978). Seismological aspects of the Guatemala earthquake of February 4, 1976. J. Geophys. Res., 83, 3427–3434.
Kaneko, Y., Avouac, J. P. and Lapusta, N. (2010). Towards inferring earthquake patterns from geodetic observations of interseismic coupling. Nature Geosci., 3, 363–369.
Kasahara, K. (1963). Computer program for a fault plane solution. Bull. Seism. Soc. Am., 53, 1–13.
Kasahara, K. (1981). Earthquake Mechanics. Cambridge: Cambridge University Press.
Kennet, B. L. N. (1981). Seismic waves in a stratified half space – II. Theoretical seismograms. Geophys. J. Roy. Astr. Soc., 61, 1–10.
Kennet, B. L. N. (2001). The Seismic Wavefield. Vol. I: Introduction and Theoretical Development. Cambridge: Cambridge University Press.
Kennet, B. L. N. and Engdahl, E. R. (1991). Traveltime for global earthquake location and phase identification. Geophys. J. Int., 105, 429–465.
Keylis-Borok, B. V. (1956). Methods and results of the investigation of earthquake mechanism. Publ. Bureau Central Seism. Inter. Ser A. Trav. Scient., 19, 205–14.
Keylis-Borok, B. V. (1959). On the estimation of the displacement in an earthquake source and of source dimensions. Ann. Geofisica, 12, 205–214.
Keylis-Borok, V. I., Pistetskii-Shapiro, I. I., Pisarenko, V. F. and Zhelankina, T. S. (1972). Computer determination of earthquake mechanism. In: Computational Seismology. New York: Plenum Publishing.
Kikuchi, M. and Kanamori, H. (1982). Inversion of complex body waves. Bull. Seism. Soc. Am., 72, 491–506.
Kikuchi, M. and Kanamori, H. (1991). Inversion of complex body waves III. Bull. Seism. Soc. Am., 81, 2335–2350.
Knopoff, L. (1958). Energy release in earthquakes. Geophys. J. Roy. Astr. Soc., 1, 44–52.
Knopoff, L. (1961). Analytical calculation of the fault-plane problem. Publ. Dominion Observatory, 24, 309–315.
Knopoff, L. (1967). The mathematics of the seismic source. Institute of Geophysics, University of Karlsruhe (unpublished lecture notes).
Knopoff, L. and Gilbert, F. (1960). First motions from seismic sources. Bull. Seism. Soc. Am., 50, 117–134.
Knopoff, L. and Randall, M. (1970). The compensated vector linear dipole: a possible mechanism for deep earthquakes. J. Geophys. Res., 75, 4957–4963.
Koch, K. (1991). Moment tensor inversion of local earthquake data. Investigation of the method and its numerical stability with model calculations. Geophys. J. Int., 106, 305–319.
Kostrov, B. V. (1964). Self-similar problems of propagation of shear cracks. J. Appl. Math. Mech., 28, 1077–1087.
Kostrov, B. V. (1966). Unsteady propagation of longitudinal cracks. J. Appl. Math. Mech., 30, 1241–1248.
Kostrov, B. V. (1975). On the crack propagation with variable velocity. Int. J. Fracture, 11, 47–56.
Kostrov, B. V. and Das, S. (1982). Idealized models of fault behavior prior to dynamic rupture. Bull. Seism. Soc. Am., 72, 679–703.
Kostrov, B. V. and Das, S. (1988). Principles of Earthquake Source Mechanics. Cambridge: Cambridge University Press.
Kostrov, B. V. and Nikitin, L. V. (1970). Some general problems of mechanics of brittle fracture. Archiwum Mechaniki Stosowanej, 22, 749–776.
Lamb, H. (1904). On the propagation of tremors over the surface of an elastic solid. Phil. Trans. Roy. Soc. A, 203, 1–42.
Lancieri, M., Madariaga, R. and Bonilla, F. (2012). Spectral scaling of the aftershocks of the Tocopilla 2007 earthquake in northern Chile. Geophys. J. Int., 188, 469–480.
Lapwood, E. R. (1949). The disturbance to a line source in a semi-infinite elastic medium. Phil. Trans. Roy. Soc. London. A, 242, 63–100.
Larson, K. (2009). GPS seismology. J. Geod., 83, 227–233.
Lay, T. and Wallace, T. C. (1995). Modern Global Seismology. Academic Press.
Liu, P., Archuleta, R. J. and Hartzell, S. H. (2006). Prediction of broadband ground-motion time histories: hybrid low/high-frequency method with correlated random source parameters. Bull. Seism. Soc. Am., 96, 2118–2130.
Love, A. E. H. (1927). The Mathematical Theory of Elasticity. 4th edn. Cambridge: Cambridge University Press.
Luco, J. E. and Apsel, R. J. (1982). On the Green’s functions for a layered half-space: Part I. Bull. Seism. Soc. Am., 72, 275–302.
Luco, J. E. and Apsel, R. J. (1983). On the Green function for a layered half-space: Part II. Bull. Seism. Soc. Am., 73, 909–929.
Ma, S., Custodio, S., Archuleta, R. and Liu, P. (2008). Dynamic modeling of the 2004 MW 6.0 Parkfield, California, earthquake. J. Geophys. Res., 113, B02 301, .
MacCaffrey, R., Abers, G. and Zwick, P. (1991). Inversion of teleseismic body waves. In: Digital Seismogram Analysis and Wave Form Inversion, ed. Lee, W. H. K.. IASPEI Software Library, vol. 3, pp. 81–166.
Madariaga, R. (1976). Dynamics of an expanding circular fault. Bull. Seism. Soc. Am., 66, 639–666.
Madariaga, R. (1977). High frequency radiation from crack (stress drop) models of earthquake faulting. Geophys. J. Roy. Astr. Soc., 51, 525–651.
Madariaga, R. (1979). On the relation between seismic moment and stress drop in the presence of stress and strength heterogeneity. J. Geophys. Res., 84, 2243–2250.
Madariaga, R. (2009). Seismic source theory. In: Earthquake Seismology (Treatise on Geophysics, vol. 4), eds. Kanamori, H. and Schubert, G., pp. 59–82. Amsterdam: Elsevier.
Madariaga, R. and Cochard, A. (1994). Seismic source dynamics, heterogeneity and friction. Ann. Geofis., 37, 1349–1375.
Madariaga, R. and Olsen, K. B. (2000). Criticality of rupture dynamics in three dimensions. Pageoph., 157, 1981–2001.
Madariaga, R. and Olsen, K. B. (2002). Earthquake dynamics. In: Int. Handbook of Earthquake and Engineering Seismology, vol. 81A, pp. 175–194.
Madariaga, R., Olsen, K. B. and Archuleta, R. (1998). Modeling dynamic rupture in a 3D earthquake fault model. Bull. Seism. Soc. Am., 88, 1182–1197.
Mai, P. M. and Beroza, G. C. (2002). A spatial random field model to characterize complexity in earthquake slip. J. Geophys. Res., 107, .
Marone, C. (1998). Laboratory-derived friction laws and their application to seismic faulting. Ann. Rev. Earth Planet. Sci., 26, 643–696.
McGarr, A. and Fletcher, J. B. (2003). Maximum slip in earthquake fault zones, apparent stress, and stick-slip friction. Bull. Seism. Soc. Am., 93, 2355–2362.
McGuire, J. J. (2004). Estimating finite source properties of small earthquake ruptures. Bull. Seism. Soc. Am., 94, 377–393.
McGuire, J. J., Zhao, Li and Jordan, H. (2001). Teleseismic inversion for the second-degree moment of earthquake space–time distributions. Geophys. J. Int., 145, 661–678.
Mendiguren, J. (1977). Inversion of surface wave data in source mechanism studies. J. Geophys. Res., 82, 889–894.
Menke, W. (2012). Geophysical Data Analysis: Discrete Inverse Theory. 3rd edn. Waltham, Massachusetts: Academic Press.
Mikumo, T. (1992). Dynamic fault rupture and stress recovery processes in continental crust under depth dependent shear strength and frictional parameters. Tectonophys., 211, 201–222.
Mikumo, T. (1994). Dynamic fault rupture of moderate size earthquakes inferred from the results of kinematic wave form inversion. Ann. Geofis., 37, 1377–1389.
Mikumo, T. and Miyatake, T. (1978). Dynamic rupture process on a three-dimensional fault with non-uniform friction and near field seismic waves. Geophys. J. Roy. Astr. Soc., 54, 417–438.
Mikumo, T. and Miyatake, T. (1995). Heterogenous distribution of dynamic stress drop and relative fault strength recovered from the results of wave form inversion: the 1984 Morgan Hill, California earthquake. Bull. Seism. Soc. Am., 85, 178–193.
Mikumo, T., Fukuyama, E., Olsen, K. B. and Yagi, Y. (2003). Stress breakdown time and critical weakening slip inferred from the slip-velocity function on earthquakes faults. Bull. Seism. Soc. Am., 93, 264–282.
Mizoguchi, K., Hirose, T., Shimamoto, T., and Fukuyama, E. (2007). Reconstruction of seismic faulting by high-velocity friction experiments: an example of the 1995 Kobe earthquake. Geophys. Res. Lett., 34, L01 308, .
Molnar, P., Tucker, B. E. and Brune, J. N. (1973). Corner frequency of P and S waves and models of earthquakes sources. Bull. Seism. Soc. Am., 63, 101–104.
Morse, P. M. and Feshbach, H. (1953). Methods of Theoretical Physics. New York: McGraw-Hill.
Müller, G. (1985). The reflectivity method: a tutorial. J. Geophys., 58, 153–174.
Muskhelishvili, N. I. (1973). Singular Integral Equations. Groningen, Netherlands: P. Noordho.
Nabelek, J. L. (1984). Determination of earthquake source parameters from inversion of body waves. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts.
Nakano, H. (1923). Notes on the nature of forces which give rise to the earthquakes motion. Seism. Bull. Cent. Meteor. Obs. Japan, 1, 92–120.
Nielsen, S. and Madariaga, R. (2003). On the self-healing fracture mode. Bull. Seism. Soc. Am., 93, 2375–2388.
Nishimura, G. (1937). On the elastic waves due to pressure variations on the inner surface of a spherical cavity in an elastic solid. Bull. Earthq. Res. Inst. Tokyo, 15, 614–635.
Noda, H., Dunham, E. M., and Rice, J. R. (2009). Earthquake ruptures with thermal weakening and the operation of major faults at low overall stress levels, J. Geophys. Res., 114, B07 302, .
Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis for point processes, J. Amer. Statist. Assoc., 83, 401, 9–27.
Ohnaka, M. (2000). Physical scaling relation between the size of an earthquake and its nucleation zone size. Pageoph., 157, 2259–2282.
Ohnaka, M. (2013). The Physics of Rock Failure and Earthquakes. Cambridge: Cambridge University Press.
Okada, Y. (1992). Internal deformation due to shear and tensile faults in a half-space. Bull. Seism. Soc. Am., 82, 1018–1040.
Okubo, P. G. (1989). Dynamic rupture modeling with laboratory-derived constitutive relations. J. Geophys. Res., 94, 12 321–12 335.
Olsen, K. B., Madariaga, R. and Archuleta, R. J. (1997). Three-dimensional dynamic simulation of the 1992 Landers earthquake. Science, 278, 834–838.
Olsen, K. B., Day, S. M., Dalguer, L. A., Mayhew, J., Cui, Y., Zhu, J. et al. (2009). ShakeOut-D: ground motion estimates using an ensemble of large earthquakes on the southern San Andreas fault with spontaneous. rupture propagation. Geophys. Res. Lett., 36, L04 303, .
Olson, H., Orcutt, J. A. and Frazier, G. A. (1984). The discreet wavenumber/finite element method for synthetic seismograms. Geophys. J. Roy. Astr. Soc., 77, 421–460.
Omori, F. (1894). On the aftershocks of earthquakes. J. Coll. Sci., Imperial University of Tokyo, 7, 111–200.
Palmer, A. C. and Rice, J. R. (1973). The growth of slip surfaces in the progressive failure of over-consolidated clay. Proc. Roy. Soc. A, 332, 527–548.
Panza, G. (1985). Synthetic seismograms: the Rayleigh waves modal summation. J. Geophys., 58, 125–145.
Passelègue, F. X., Schubnel, A., Nielsen, S., Bhat, H. S., and Madariaga, R. (2013). From sub-Rayleigh to supershear ruptures during stick–slip experiments on rocks. Science, 340, 1208–1211.
Peyrat, S. (2001). Modélisation des tremblements de terre: rupture, rayonnement et inversion. Thèse de Doctorat, Université Paris Sud.
Peyrat, S. and Olsen, K. B. (2004). Nonlinear dynamic rupture inversion of the 2000 Western Tottori, Japan, earthquake, .
Peyrat, S., Olsen, K. B. and Madariaga, R. (2001). Dynamic modeling of the 1992 Landers earthquake. J. Geophys. Res., 106, 26 467–26 482.
Peyrat, S., Olsen, K. B.. and Madariaga, R. (2004). Which dynamic parameters can be estimated from strong ground motion?Pageoph., 161, 2155–2169.
Poliakov, A., Dmowska, R., and Rice, J. R. (2002). Dynamic shear rupture interactions with fault bends and off-axis secondary faulting, J. Geophys. Res., 107, 2295, .
Prawirodirjo, L. and Bock, Y. (2004). Instantaneous global plate motion model from 12 years of continuous GPS observations. J. Geophys. Res., 109, .
Pro, C. (2002). Estudio del efecto de directividad en la forma de ondas. Tesis Doctoral, Universidad Complutense de Madrid.
Pujol, J. and Herrmann, R. H. (1990). Student's guide to point sources in homogeneous media. Seism. Res. Lett., 61, 209–224.
Reasenberg, P. and Oppenheimer, D. (1985). FPFIT, FPPLOT and FPPAGE: Fortran computer programs for calculating and displaying earthquake fault-plane solutions. US Geological Survey, Open File Report, pp. 85–739.
Reches, Z. and Lockner, D. A. (1994). Nucleation and growth of faults in brittle rocks. J. Geophys. Res., 99, 18 159–18 173.
Reid, H. F. (1911). The elastic rebound theory of earthquakes. Bull. Dept. Geol., University of California, 6, 412–444.
Rice, J. R. (1968). A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech., 35, 379–386.
Rice, J. R. (1980). The mechanics of earthquake rupture. In: Physics of Earth's Interior, eds. Dziewonski, A. M. and Boschi, E., pp. 555–649. North Holland, Amsterdam.
Rice, J. R. and Ruina, A. L. (1983). Stability of steady frictional slipping. J. Appl. Mech., 50, 343–349.
Rice, J. R., Lapusta, N. and Ranjith, K. (2001). Rate and state dependent friction and the stability of sliding between elastically deformable solids. J. Mech. Phys. Sol., 49, 1865–1898.
Romanowicz, B. (1982). Moment tensor inversion of long period Rayleigh waves. A new approach. J. Geophys. Res., 87, 5395–5407.
Romanowicz, B. (1992). Strike–slip earthquakes on quasi-vertical transcurrent faults: inferences for general scaling relations. Geophys. Res. Lett., 19, 1944–1988.
Rosakis, A., Samadrula, J. O. and Coker, D. (1999). Cracks faster than the shear wave speed. Science, 248, 1337–1340.
Rubin, A. M. and Ampuero, J.-P. (2005). Earthquake nucleation on (aging) rate and state faults, J. Geophys. Res., 110, B11 312, .
Ruina, A. (1983). Slip instability and state variable friction law. J. Geophys. Res., 88, 10 359–10 370.
Ruiz, S. and Madariaga, R. (2013). Kinematic and dynamic inversion of the 2008 Northern Iwate earthquake. Bull. Seism. Soc. Am., 103, 694–708.
Sambridge, M. (1999). Geophysical inversion with a neighbourhood algorithm – I. Searching a parameter space. Geophys. J. Int., 138, 479–494.
Sambridge, M. (2001). Finding acceptable models in nonlinear inverse problems using a neighbourhood algorithm. Inverse Problems, 17, 387–403.
Sato, T. and Hirasawa, T. (1973). Body wave spectra from propagating shear cracks. J. Phys. Earth, 21, 415–431.
Savage, J. C. (1966). Radiation from a realistic model of faulting. Bull. Seism. Soc. Am., 56, 577–592.
Savage, J. C. (1972). Relation of corner frequency to fault dimensions. J. Geophys. Res., 77, 3788–3795.
Savage, J. C. and Burford, R. O. (1973). Geodetic determination of relative plate motion in central California. J. Geophys. Res., 78, 832–845.
Savage, J. C. and Wood, M. D. (1971). The relation between apparent stress and stress drop. Bull. Seism. Soc. Am., 61, 1381–1388.
Scherbaum, F. (1996). Of Poles and Zeros. Fundamentals of Digital Seismology. Dordrecht: Kluwer Academic Publishers.
Schmedes, J., Archuleta, R. J. and Lavallée, D. (2010). Correlation of earthquake source parameters inferred from dynamic rupture simulations, J. Geophys. Res., 115,
Schmedes, J., Archuleta, R. J., and Lavallée, D. (2013). A kinematic rupture model generator incorporating spatial interdependency of earthquake source parameters. Geophys. J. Int., 192, 1116–1131.
Scholz, C. H. (1990). The Mechanics of Earthquakes and Faulting, Cambridge: Cambridge University Press.
Scholz, C. H. (2007). Fault mechanics. In: Treatise on Geophysics, ed. Watts, A. B., vol. 6, pp. 441–483. Amsterdam: Elsevier.
Schwab, F., Nakanishi, K., Cuscito, M., Panza, G. F., Liang, G. and Frez, J. (1984). Surface wave computations and the synthesis of theoretical seismograms at high frequencies. Bull. Seism. Soc. Am., 74, 1555–1578.
Shimazaki, K. (1986). Small and large earthquakes: the effect of the thickness of the seismogenic layer and the free surface. Earthquake Source Mechanics, AGU Geophys. Mon., 37. American Geophysical Union, pp. 209–216.
Silver, P. G. and Jordan, T. H. (1982). Optimal estimation of scalar seismic moment. Geophys. J. Roy. Astr. Soc., 70, 755–787.
Silver, P. G. and Jordan, T. H. (1983). Total moment spectra of fourteen large earthquakes. J. Geophys. Res., 88, 3273–3299.
Sin Vigny, C., Socquet, A., Peyrat, S., Ruegg, J.-C., Metois, M., Madariaga, R. et al. (2011). The 2010 MW 8.8 Maule mega-thrust earthquake of Central Chile, monitored by GPS. Science, 331, 1417–1421.
Sipkin, S. A. (1982). Estimation of earthquake source parameters by the inversion of wave form data: synthetic waveforms. Phys. Earth Planet. Inter., 30, 242–259.
Sipkin, S. A. (1986). Estimation of earthquake source parameters by the inversion of waveform data. Global seismicity, 1981–1983. Bull. Seism. Soc. Am., 76, 1515–1541.
Sipkin, S. A. (1994). Rapid determination of global moment-tensor solutions. Geophys. Res. Letters, 21, 1667–1670.
Somerville, P., Irikura, K., Graves, R., Sawada, S., Wald, D., Kagawa, Y. I. T. et al. (1999). Characterizing crustal earthquake slip models for the prediction of strong ground motion. Seism. Res. Letters, 70, 59–80.
Spudich, P. and Cranswick, E. (1984). Direct observation of rupture propagation during the 1979 Imperial Valley earthquake using a short baseline accelerometer array. Bull. Seism. Soc. Am., 74, 2083–2114.
Spudich, P. and Frazer, L. N. (1984). Use of ray theory to calculate high-frequency radiation from earthquake sources having spatially variable rupture velocity and stress drop. Bull. Seismol. Soc. Am., 74, 2061–2082.
Steketee, J. A. (1958). Some geophysical applications of the theory of dislocations. Can. J. Phys. 36, 1168–1198.
Strelitz, R. A. (1978). Moment tensor inversion and source models. Geophys. J. Roy. Astr. Soc., 52, 359–364.
Strelitz, R. A. (1989). Choosing the best double couple from a moment tensor inversion. Geophys. J. Int., 99, 811–815.
Stump, B. W. and Johnson, L. R. (1977). The determination of source properties by linear inversion of seismograms. Bull. Seism. Soc. Am., 67, 1489–1502.
Suzuki, W., Aoi, S. and Sekiguchi, H. (2009). Rupture process of the 2008 northern Iwate intraslab earthquake derived from strong-motion records. Bull. Seism. Soc. Am., 99, 2825–2835.
Tago, J., Cruz-Atienza, V. M., Virieux, J., Etienne, V. and Sánchez-Sesma, F. J. (2012). A 3D hp-adaptive discontinuous Galerkin method for modeling earthquake dynamics. J. Geophys. Res., 117, B09 312, .
Tapley, W. C. and Tull, J. E. (1992). Guide to the UNIX version of SAC. Lawrence Livermore National Laboratory, University of California.
Tarantola, A. (1987). Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation. Amsterdam: Elsevier.
Thio, H. K. and Kanamori, H. (1995). Moment-tensor inversions for local earthquakes using surface waves recorded at TERRAscope. Bull. Seism. Soc. Am., 85, 1021–1038.
Tinti, E., Spudich, P. and Cocco, M. (2005a). Earthquake fracture energy inferred from kinematic rupture models on extended faults, J. Geophys. Res., 110, B12 303, .
Tinti, E., Fukuyama, E., Piatanesi, A. and Cocco, M. (2005b). A kinematic source time function compatible with earthquake dynamics. Bull. Seism. Soc. Am., 95, 1211–1223.
Tinti, E., Cocco, M., Fukuyama, E. and Piatanesi, A. (2009). Dependence of slip weakening distance (D) on final slip during dynamic rupture of earthquakes. Geophys. J. Int., 177, 1205–1220.
Toda, S., Stein, R. S., Sevilgen, V. and Lin, J. (2011). Coulomb 3.3 graphic-rich deformation and stress-change software for earthquake, tectonic, and volcano research and teaching – User guide. US Geological Survey Open File Report 2011-1060, 63 pp., available at .
Tsuboi, C. (1956). Earthquake energy, earthquake volume, aftershock area and strength of the earth's crust. J. Phys. Earth, 4, 63–66.
Tsutsumi, A. and Miyamoto, T. (1997). High-velocity frictional properties of gabbro. Geophys. Res. Lett., 24, 699–702.
Twardzik, C., Madariaga, R., Das, S. and Custodio, S. (2012). Robust features of the source process for the 2004 Parkfield, California, earthquake from strong-motion seismograms. Geophys. J. Int., 191, 1245–1254.
Udías, A. (1971). Source parameters of earthquakes from spectra of Rayleigh waves. Geophys. J. Roy. Astr. Soc., 22, 353–376.
Udías, A. (1989). Development of fault plane studies for the mechanism of earthquakes. In: Observatory Seismology, ed. Litehisser, J. J., pp. 243–256. Berkeley: University of California Press.
Udías, A. (1999). Principles of Seismology. Cambridge: Cambridge University Press.
Udías, A. and Buforn, E. (1988). Single and joint fault-plane solutions from first data. In: Seismological Algorithms, ed. Doornbos, D., pp. 443–453. London: Academic Press.
Vallée, M. and Bouchon, M. (2004). Imaging coseismic rupture in far field by slip patches. Geophys. J. Int., 156, 615–630.
Vallée, M., Landès, M., Shapiro, N. M. and Klinger, Y. (2008). The 2001/11/14 Kokoxili (Tibet) earthquake: high frequency seismic radiation originates from the transitions between subRayleigh and supershear rupture velocity regimes. J. Geophys. Res., 113, B07 305, .
Virieux, J. and Madariaga, R. (1982). Dynamic faulting studied by a finite difference method. Bull. Seism. Soc. Am., 72, 345–369.
Vvedenskaya, A. V. (1956). Determination of displacement fields for earthquakes by means of the dislocation theory. Izv. Akad. Nauka SSSR, Geofiz., 3, 277–284 (in Russian).
Wald, D. J. and Heaton, T. H. (1994). Spatial and temporal distribution of slip for the 1992 Landers, California, earthquake. Bull. Seismol. Soc. Am., 84, 668–691.
Weertman, J. (1967). Uniformly moving transonic and supersonic dislocations. J. Appl. Phys., 38, 5293–5302.
Wesnouzky, S. G. (1998). The Gutenberg–Richter or characteristic earthquake distribution, which is it?Bull. Seism. Soc. Am., 88, 1940–1959.
Wickens, A. J. and Hogdson, J. H. (1967). Computer reevaluation of earthquake mechanism solutions. Publ. Dominion Observatory, 33, 1–560.
Wyss, M. and Brune, J. N. (1967). The Alaska earthquake of March 28, 1964. A complex multiple event. Bull. Seism. Soc. Am., 57, 1017–1023.
Wyss, M. and Brune, J. N. (1968). Seismic moment, stress and source dimensions for earthquakes in the California-Nevada region. J. Geophys. Res., 73, 4681–4694.
Xia, K., Rosakis, A. J. and Kanamori, H. (2004). Laboratory earthquakes: the sub-Rayleigh-to-supershear transition. Science, 303, 1859–861.
Yagi, Y. and Kikuchi, M. (2000). Source rupture process of the Kocaeli, Turkey, earthquake of August 17, 1999, obtained by joint inversion of near-field data and teleseismic data. Geophys. Res. Lett., 27, 1969–1972.
Yamashita, T. and Ohnaka, M. (1991). Nucleation process of unstable rupture in the brittle regime: theoretical approach based on experimentally inferred relations. J. Geophys. Res., 96, 8351–8367.
Yoffe, E. (1951). The moving Griffith crack. Phil. Mag., 42, 739–750.
Zheng, G. and Rice, J. R. (1998). Conditions under which velocity-weakening friction allows a self healing versus a cracklike mode of rupture. Bull. Seism. Soc. Am., 88, 1466–1483.


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed