Skip to main content Accessibility help
Statistical Downscaling and Bias Correction for Climate Research
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 31
  • Export citation
  • Recommend to librarian
  • Buy the print book

Book description

Statistical downscaling and bias correction are becoming standard tools in climate impact studies. This book provides a comprehensive reference to widely-used approaches, and additionally covers the relevant user context and technical background, as well as a synthesis and guidelines for practitioners. It presents the main approaches including statistical downscaling, bias correction and weather generators, along with their underlying assumptions, skill and limitations. Relevant background information on user needs and observational and climate model uncertainties is complemented by concise introductions to the most important concepts in statistical and dynamical modelling. A substantial part is dedicated to the evaluation of regional climate projections and their value in different user contexts. Detailed guidelines for the application of downscaling and the use of downscaled information in practice complete the volume. Its modular approach makes the book accessible for developers and practitioners, graduate students and experienced researchers, as well as impact modellers and decision makers.


‘This book provides an invaluable reference for anyone involved in developing or using local and regional projections to quantify climate change impacts. As climate model output becomes increasingly accessible and open source code for downscaling is shared by the research community, the selection of methods and data to use for a local climate impacts analysis becomes more complex. This reference provides comprehensive guidance for those developing improved downscaling approaches, applying existing methods, or using data generated by others. The authors keep a clear focus on quantifying the uncertainties involved in each step of a downscaling process, and highlighting opportunities to ultimately produce more skilful information for decision-makers challenged with responding to climate change impacts.’

Ed Maurer - Santa Clara University, California

‘A large variety of statistical downscaling and bias correction methods are used for connecting climate change with impact assessments. The new book by D. Maraun and M. Widmann provides a very useful overview of the methods and topics involved and gives guidance for future users. The demand for downscaled information is rapidly growing and this book helps with understanding assets and drawbacks.’

Daniela Jacob - Climate Service Center Germany (GERICS), Hamburg

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.


Page 1 of 2

Page 1 of 2

Adams, P., Eitland, E., Hewitson, B., Vaughan, C., Wilby, R. and Zebiak, S. (2015), ‘Toward an ethical framework for climate services. A white paper of the climate services partnership working group on climate services ethics’.
Addor, N., Rohrer, M., Furrer, R. and Seibert, J. (2016), ‘Propagation of biases in climate models from the synoptic to the regional scale: Implications for bias adjustment’, J. Geophys. Res. 121(5), 2075–2089.
Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Suesskind, J., Arkin, P. and Nelkin, E. (2003), ‘The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present)’, J. Hydrometeorol. 4(6), 1147–1167.
Aguilar, E., Auer, I., Brunet, M., Peterson, T. C. and Wieringa, J. (2003), ‘Guidelines on climate metadata and homogenization’.WMO-TD No. 1186. WorldMeteorological Organization, Geneva, Switzerland, 2003.
Akaike, H. (1973), “Information theory and an extension of the maximum likelihood principle”, in B. N., Petrov and F., Csaki, eds., 2nd International Symposium on Information Theory, Budapest, pp. 267–281.
Allcroft, D. J. and Glasbey, C. A. (2003), ‘A latent Gaussian Markov rand om-field model for spatiotemporal rainfall disaggregation’, J. Roy. Stat. Soc. C. 52(4), 487–498.
Anagnostopoulos, G. G., Koutsoyiannis, D., Christofides, A., Efstratiadis, A. and Mamassis, N. (2010), ‘A comparison of local and aggregated climate model outputs with observed data’, Hydrol. Sci. J. 55(7), 1094–1110.
Arakawa, A. and Schubert, W. H. (1974), ‘Interaction of a cumulus cloud ensemble with the large-scale environment, part i’, J. Atmos. Sci. 31(3), 674–701.
Auer, I., Böhm, R., Jurkovic, A., Orlik, A., Potzmann, R., Schöner, W., Ungersböck, M., Brunetti, M., Nanni, T., Maugeri, M., Briffa, K., Jones, P., Efthymiadis, D., Mestre, O., Moisselin, J.-M., Begert, M., Brazdil, R., Bochnicek, O., Cegnar, T., Gajic-Capka, M., Zaninovic, K., Mahstorovic, Z., Szalai, S., Szentimrey, T. and Mercalli, L. (2005), ‘A new instrumental precipitation dataset for the greater alpine region for the period 1800–2002’, Int. J. Climatol. 25(2), 139–166.
Austin, P. M. (1987), ‘Relation between measured radar reflectivity and surface rainfall’, Mon. Wea. Rev. 115(5), 1053–1070.
Bagrov, N. A. (1959), ‘Analytic representation of a sequence of meteorological fields via natural orthogonal components’, Trudy Tsentr. Inst. Progn 74, 3–24.
Baldwin, M. P. and Dunkerton, T. J. (2001), ‘Stratospheric harbingers of anomalous weather regimes’, Science 294(5542), 581–584.
Bardossy, A., Bogardi, I. and Matyasovszky, I. (2005), ‘Fuzzy rule-based downscaling of precipitation’, Theor. Appl. Climatol. 82(1), 119–129.
Bárdossy, A. and Pegram, G. G.S. (2009), ‘Copula based multisite model for daily precipitation simulation’, Hydrol. Earth Syst. Sci. 13(12), 2299.
Bárdossy, A. and Plate, E. J. (1991), ‘Modeling daily rainfall using a semi-Markov representation of circulation pattern occurrence’, J. Hydrol. 122, 33–47.
Bárdossy, A. and Plate, E. J. (1992), ‘Space-time model for daily rainfall using atmospheric circulation patterns’, Wat. Resour. Res. 28, 1247–1259.
Barkhordarian, A., von Storch, H. and Bhend, J. (2013), ‘The expectation of future precipitation change over the Mediterranean region is different from what we observe’, Clim. Dynam. 40(1–2), 225–244.
Barnett, T. P. and Preisendorfer, R. W. (1978), ‘Multifield analog prediction of short-term climate fluctuations using a climate state vector’, J. Atmos. Sci. 35(10), 1771–1787.
Barry, R. G. (2008), Mountain weather and climate, Cambridge University Press.
Barry, R. G. and Blanken, P. D. (2016), Microclimate and local climate, Cambridge University Press.
Barry, R. G. and Chorley, R. J. (2009), Atmosphere, weather and climate, Routledge.
Barsugli, J. J., Guentchev, G., Horton, R. M., Wood, A., Mearns, L. O., Liang, X.-Z., Winkler, J. A., Dixon, K., Hayhoe, K., Rood, R. B., Goddard, L., Ray, A., Buja, L. and Ammann, C. (2013), ‘The practitioner's dilemma: How to assess the credibility of downscaled climate projections’, EOS 94(46), 424–425.
Bartholy, J., Bogardi, I. and Matyasovszky, I. (1995), ‘Effect of climate change on regional precipitation in Lake Balaton watershed’, Theor. Appl. Climatol. 51(4), 237–250.
Bates, B. C., Charles, S. P. and Hughes, J. P. (1998), ‘Stochastic downscaling of numerical climate model simulations’, Env. Mod. Soft. 13(3), 325–331.
Bechtold, P. (2015), ‘Atmospheric moist convection. ECMWF Lecture Notes’.
Becker, N., Ulbrich, U. and Klein, R. (2015), ‘Systematic large-scale secondary circulations in a regional climate model’, Geophys. Res. Lett. 42(10), 4142–4149.
Beckmann, B.-R. and Buishand, T. A. (2002), ‘Statistical downscaling relationships for precipitation in the Netherland s and North Germany’, Int. J. Climatol. 22(1), 15–32.
Beersma, J. J. and Buishand, T. A. (2003), ‘Multi-site simulation of daily precipitation and temperature conditional on the atmospheric circulation’, Clim. Res. 25, 121–133.
Befort, D. J., Wild, S., Kruschke, T., Ulbrich, U. and Leckebusch, G. C. (2016), ‘Different longterm trends of extra-tropical cyclones and windstorms in ERA-20C and NOAA-20CR reanalyses’, Atmos. Sci. Lett. 17(11), 586–595.
Bellenger, H., Guilyardi, E., Leloup, J., Lengaigne, M. and Vialard, J. (2014), ‘ENSO representation in climate models: from CMIP3 to CMIP5’, Clim. Dynam. 42, 1999–2018.
Bellone, E., Hughes, J. P. and Guttorp, P. (2000), ‘A hidden Markov model for downscaling synoptic atmospheric patterns to precipitation amounts’, Clim. Res. 15(1), 1–12.
Bellprat, O., Kotlarski, S., Lüthi, D. and Schär, C. (2013), ‘Physical constraints for temperature biases in climate models’, Geophys. Res. Lett. 40, 4042–4047.
Beltrami, E. (1873), ‘Sulle funzioni bilineari’, Giornale di Matematiche ad Uso degli Studenti Delle Universita 11(2), 98–106.
Benestad, R. E. (2001), ‘A comparison between two empirical downscaling strategies’, Int. J. Climatol. 21(13), 1645–1668.
Benestad, R. E. (2002), ‘Empirically downscaled temperature scenarios for northern Europe based on a multi-model ensemble’, Clim. Res. 21(2), 105–125.
Benestad, R. E. (2005), ‘Climate change scenarios for northern Europe from multi-model IPCC AR4 climate simulations’, Geophys. Res. Lett. 32(17).
Benestad, R. E. (2011), ‘A new global set of downscaled temperature scenarios’, J. Climate 24(8), 2080–2098.
Benestad, R. E., Chen, D., Mezghani, A., Fan, L. and Parding, K. (2015), ‘On using principal components to represent stations in empirical-statistical downscaling’, Tellus A 67, 28326.
Benestad, R. E., Hanssen-Bauer, I. and Chen, D. (2008), Empirical-statistical downscaling, World Scientific Publishing Co Inc.
Benestad, R. E., Hanssen-Bauer, I. and Førland, E.J. (2007), ‘An evaluation of statistical models for downscaling precipitation and their ability to capture long-term trends’, Int. J. Climatol. 27(5), 649–665.
Bengtsson, L., Arkin, P., Berrisford, P., Bougeault, P., Folland, C. K., Gordon, C., Haines, K., Hodges, K. I., Jones, P., Kallberg, P., Rayner, N., Simmons, A. J., Stammer, D., Thorne, P. W., Uppala, S. and Vose, R. S. (2007), ‘The need for a dynamical climate reanalysis’, Bull. Amer. Meteorol. Soc. 88(4), 495–501.
Bengtsson, L., Hagemann, S. and Hodges, K. I. (2004), ‘Can climate trends be calculated from reanalysis data?’, J. Geophys. Res. 109, D11111.
Berger, A. (1988), ‘Milankovitch theory and climate’, Rev. Geophys. 26(4), 624–657.
Betts, A. K. and Miller, M. J. (1986), ‘A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets’, Quart. J. Roy. Meteorol. Soc. 112(473), 693–709.
Bevacqua, E., Maraun, D., Hobæk Haff, I., Widmann, M. and Vrac, M. (2017), ‘Multivariate Statistical Modelling of Compound Events via Pair-Copula Constructions: Analysis of Floods in Ravenna’, Hydrol. Earth Syst. Sci. 21(6), 2701–2723.
Bhend, J. and Whetton, P. (2013), ‘Consistency of simulated and observed regional changes in temperature, sea level pressure and precipitation’, Clim. Change 118(3–4), 799–810.
Boberg, F. and Christensen, J. H. (2012), ‘Overestimation of Mediterranean summer temperature projections due to model deficiencies’, Nat. Clim. Change 2(6), 433–436.
Boé, J., Terray, L., Habets, F. and Martin, E. (2007), ‘Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies’, Int. J. Climatol. 27, 1643–1655.
Böhm, R., Auer, I., Brunetti, M., Maugeri, M., Nanni, T. and Schöner, W. (2001), ‘Regional temperature variability in the European Alps: 1760–1998 from homogenized instrumental time series’, Int. J. Climatol. 21(14), 1779–1801.
Bony, S., Colman, R., Kattsov, V. M., Allan, R. P., Bretherton, C. S., Dufresne, J.-L., Hall, A., Hallegatte, S., Holland, M. M., Ingram, W., Rand all, D. A., Soden, B. J., Tselioudis, G. and Webb, M. J. (2006), ‘How well do we understand and evaluate climate change feedback processes?’, J. Climate 19(15), 3445–3482.
Bony, S., Stevens, B., Frierson, D. M.W., Jakob, C., Kageyama, M., Pincus, R., Shepherd, T. G., Sherwood, S. C., Siebesma, A. P., Sobel, A. H., Watanabe, M. and Webb, M. J. (2015), ‘Clouds, circulation and climate sensitivity’, Nat. Geosci. 8(4), 261–268.
Bothe, O., Evans, M., Fernández Donado, L., Garcia Bustamante, E., Gergis, J., Gonzalez-Rouco, J.F., Goosse, H., Hegerl, G., Hind, A., Jungclaus, J. H. et al. (2015), ‘Continental-scale temperature variability in PMIP3 simulations and PAGES 2k regional temperature reconstructions over the past millennium’, Clim. Past 11, 1673–1699.
Boucher, O., Rand all, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S., Stevens, B. and Zhang, X. Y. (2013), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA, chapter ‘Clouds and Aerosols’.
Boulanger, J., Brasseur, G., Carril, A. F., de Castro, M., Degallier, N., Ereño, C., Le Treut, H., Marengo, J. A., Menendez, C. G., Nuñez, M.N., Penalba, O. C., Rolla, A. L., Rusticucci, M. and Terra, R. (2010), ‘A Europe–South America network for climate change assessment and impact studies’, Clim. Change 98(3), 307–329.
Box, G. E. P. and Draper, N. R. (1987), Empirical model-building and response surfaces, Vol. 424, Wiley New York.
Brand s, S., Gutiérrez, J.M. and Herrera, S. (2012), ‘On the use of reanalysis data for downscaling’, J. Climate 25, 2517–2526.
Brand sma, T. and Van der Meulen, J. P. (2008), ‘Thermometer screen intercomparison in De Bilt (the Netherland s) Part II: Description and modeling of mean temperature differences and extremes’, Int. J. Climatol. 28(3), 389–400.
Brayshaw, D. J., Hoskins, B. and Blackburn, M. (2015), ‘The basic ingredients of the North Atlantic storm track. part I: Land –sea contrast and orography’, J. Atmos. Sci. 72(9).
Bretherton, C. S., Smith, C. and Wallace, J. M. (1992), ‘An intercomparison ofmethods for finding coupled patterns in climate data’, J. Climate 5(6), 541–560.
Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F.B. and Jones, P. D. (2006), ‘Uncertainty estimates in regional and global observed temperature changes: A new dataset from 1850’, J. Geophys. Res. 111, D12106.
Brown, C., Ghile, Y., Laverty, M. and Li, K. (2012), ‘Decision scaling: Linking bottom-up vulnerability analysis with climate projections in the water sector’, Wat. Resour. Res. 48, W09537.
Brown, C. and Wilby, R. L. (2012), ‘An alternate approach to assessing climate risks’, EOS 93(41), 401–402.
Buell, C. E. (1975), The topography of empirical orthogonal functions, in ‘Preprints Fourth Conference on Probability and Statistics in Atmospheric Science’, p. 188.
Buell, C. E. (1979), On the physical interpretation of empirical orthogonal functions, in ‘Preprints Sixth Conference on Probability and Statistics in Atmospheric Science’, p. 112.
Buishand, T. A. (1977), Stochastic modeling of daily rainfall sequences., Technical Report 77-3.
Buishand, T. A. and Brand sma, T. (2001), ‘Multisite simulation of daily precipitation and temperature in the Rhine basin by nearest-neighbor resampling’, Wat. Resour. Res. 37(11), 2761–2776.
Bukovsky, M. S. (2012), ‘Temperature trends in the NARCCAP regional climate models’, J. Climate 24, 3985–3991.
Bukovsky, M. S. and Karoly, D. J. (2009), ‘Precipitation simulations using WRF as a nested regional climate model’, J. Appl. Meteorol. Climatol. 48(10), 2152–2159.
Bürger, G., Murdock, T. Q., Werner, A. T., Sobie, S. R. and Cannon, A. J. (2012), ‘Downscaling extremes - an intercomparison of multiple statistical methods for present climate’, J. Climate 25, 4366–4388.
Buser, C. M., Künsch, H.R., Lüthi, D., Wild, M. and Schär, C. (2009), ‘Bayesian multi-model projection of climate: bias assumptions and interannual variability’, Clim. Dynam. 33, 849– 868.
Busuioc, A., von Storch, H. and Schnur, R. (1999), ‘Verification of GCM-generated regional seasonal precipitation for current climate and of statistical downscaling estimates under changing climate conditions’, J. Climate 12, 258–272.
Butler, A. H., Thompson, D. W.J. and Heikes, R. (2010), ‘The steady-state atmospheric circulation response to climate change - like thermal forcings in a simple general circulation model’, J. Climate 23(13), 3474–3496.
Cabré, M. F., Solman, S. A. and Nuñez, M.N. (2010), ‘Creating regional climate change scenarios over southern South America for the 2020's and 2050's using the pattern scaling technique: validity and limitations’, Clim. Change 98(3–4), 449–469.
Caldwell, P., Chin, H.-N. S., Bader, D. C. and Bala, G. (2009), ‘Evaluation of a WRF dynamical downscaling simulation over California’, Clim. Change 95, 499–521.
Cannon, A. J. (2011), ‘Quantile regression neural networks: Implementation in R and application to precipitation downscaling’, Comp. Geosci. 37(9), 1277–1284.
Cannon, A. J. (2016), ‘Multivariate Bias Correction of ClimateModel Output:MatchingMarginal Distributions and Intervariable Dependence Structure’, J. Climate 29(19), 7045–7064.
Cannon, A. J. (2017), ‘Multivariate quantile mapping bias correction: an n-dimensional probability density function transform for climate model simulations of multiple variables’, Clim. Dynam. pp. 1–19, DOI: 10.1007/s00382-017-3580-6.
Casanueva, A., Frías, M.D., Herrera, S., San-Martín, D., Zaninovic, K. and Gutiérrez, J.M. (2014), ‘Statistical downscaling of climate impact indices: testing the direct approach’, Clim. Change 127(3–4), 547–560.
Cash, D., Clark, W. C., Alcock, F., Dickson, N. M., Eckley, N. and Jäger, J. (2002), ‘Salience, credibility, legitimacy and boundaries: linking research, assessment and decision making’, John F. Kennedy School of Government, Harvard University, Faculty ResearchWorking Papers Series.
Casola, J. H. and Wallace, J. M. (2007), ‘Identifying weather regimes in the wintertime 500- hPa geopotential height field for the Pacific–North American sector using a limited-contour clustering technique’, J. Appl. Meteorol. Climatol. 46(10), 1619–1630.
Castro, C. L., Pielke, R. A. and Leoncini, G. (2005), ‘Dynamical downscaling: Assessment of value retained and added using the Regional Atmospheric Modeling System (RAMS)’, J. Geophys. Res. 110(D5), D05108.
Caussinus, H. and Mestre, O. (2004), ‘Detection and correction of artificial shifts in climate series’, J. Roy. Stat. Soc. C 53(3), 405–425.
Cavazos, T. and Hewitson, B. C. (2005), ‘Performance of NCEP-NCAR reanalysis variables in statistical downscaling of daily precipitation’, Clim. Res. 28, 95–107.
Cayan, D., Kunkel, K., Castro, C., Gershunov, A., Barsugli, J., Ray, A., Overpeck, J., Anderson, M., Russell, J., Rajagopalan, B., Rangwala, I. and Duffy, P. (2013), Assessment of Climate Change in the Southwest United States: A Report Prepared for the National Climate Assessment, Island Press, chapter ‘Future climate: Projected average’, pp. 101–125.
Ceppi, P., Scherrer, S. C., Fischer, A. M. and Appenzeller, C. (2012), ‘Revisiting Swiss temperature trends 1959–2008’, Int. J. Climatol. 32, 203–213.
Chand ler, R. E. (2005), ‘On the use of generalized linear models for interpreting climate variability’, Environmetrics 16, 699–715.
Chand ler, R. E. (2013), ‘Exploiting strength, discounting weakness: combining information from multiple climate simulators’, Phil. Trans. R. Soc. A 371(1991), 20120388.
Chand ler, R. E. and Bate, S. (2007), ‘Inference for clustered data using the independence loglikelihood’, Biometrika 94, 167–183.
Chand ler, R. E. and Wheater, H. S. (2002), ‘Analysis of rainfall variability using generalized linear models: A case study from the west of Ireland’, Wat. Resour. Res. 38(10), 1192.
Charles, S. P., Bari, M. A., Kitsios, A. and Bates, B. C. (2007), ‘Effect of GCM bias on downscaled precipitation and runoff projections for the Serpentine catchment, Western Australia’, Int. J. Climatol. 27(12), 1673–1690.
Charles, S. P., Bates, B. C., Whetton, P. H. and Hughes, J. P. (1999), ‘Validation of downscaling models for changed climate conditions: case study of southwestern Australia’, Clim. Res. 12, 1– 14.
Chen, L., Li, T. and Yu, Y. (2015), ‘Causes of strengthening and weakening of ENSO amplitude under global warming in four CMIP5 models’, J. Climate 28, 3250–3274.
Christensen, J. H., Boberg, F., Christensen, O. B. and Lucas-Picher, P. (2008), ‘On the need for bias correction of regional climate change projections of temperature and precipitation’, Geophys. Res. Lett. 35, L20709.
Christensen, J. H. and Christensen, O. B. (2007), ‘A summary of the PRUDENCE model projections of changes in European climate by the end of this century’, Clim. Change 81, 7–30.
Christensen, J. H., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I., Jones, R., Kolli, R. K., Kwon, W.-T., Laprise, R., Rueda, V. M., Mearns, L., Menéndez, C.G., Räisänen, J., Rinke, A., Sarr, A. and Whetton, P. (2007), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, chapter ‘Regional Climate Projections’.
Christensen, J. H., Machenhauer, B., Jones, R. G., Schär, C., Ruti, P. M., Castro, M. and Visconti, G. (1997), ‘Validation of present-day regional climate simulations over Europe: LAM simulations with observed boundary conditions’, Clim. Dynam. 13, 489–506.
Chu, J.-L., Kang, H., Tam, C.-Y., Park, C.-K. and Chen, C.-T. (2008), ‘Seasonal forecast for local precipitation over northern taiwan using statistical downscaling’, J. Geophys. Res. 113(D12).
Chu, J.-L. and Yu, P.-S. (2010), ‘A study of the impact of climate change on local precipitation using statistical downscaling’, J. Geophys. Res. 115, D10105.
Clark, P. (2009), ‘Issues with high-resolution NWP’, Technical report, United Kingdom Met Office.
Coe, R. and Stern, R. D. (1982), ‘Fitting models to daily rainfall data’, J. Appl. Meteorol. 21(7), 1024–1031.
Cohen, S. J. and Allsopp, T. R. (1988), ‘The potential impacts of a scenario of CO2-induced climatic change on Ontario, Canada’, J. Climate 1, 669–681.
Coles, S. (2001), An introduction to statistical modeling of extreme values, Springer Series in Statistics, Springer.
Colette, A., Vautard, R. and Vrac, M. (2012), ‘Regional climate downscaling with prior statistical correction of the global climate forcing’, Geophys. Res. Lett. 39(13), L13707.
Collins, M., Booth, B. B.B., Harris, G. R., Murphy, J. M., Sexton, D. M.H. and Webb, M. J. (2006), ‘Towards quantifying uncertainty in transient climate change’, Clim. Dynam. 27, 127– 147.
Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., Gao, X., Gutowski, W. J., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., Weaver, A. J. and Wehner, M. (2013), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA, chapter ‘Long-Term Climate Change: Projections, Committments and Irreversibility’.
Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin, X., Gleason, B. E., Vose, R. S., Rutledge, G., Bessemoulin, P., Brönnimann, S., Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman, P. Y., Jones, P. D., Kruk, M. C., Kruger, A. C., Marshall, G. J., Maugeri, M., Mok, H. Y., Nordli, O., Ross, T. F., Trigo, R. M., Wang, X. L., Woodruff, S. D. and Worley, S. J. (2011), ‘The twentieth century reanalysis project’, Quart. J. Roy. Meteorol. Soc. 137(654), 1–28.
Cooley, D., Nychka, D. and Naveau, P. (2007), ‘Bayesian spatial modeling of extreme precipitation return levels’, J. Am. Stat. Ass. 102(479), 824–840.
CORDEX (2016), ‘Bias-adjusted RCM data’, content & view=article & id=275 & Itemid=785.
Cowpertwait, P., Isham, V. and Onof, C. (2007), ‘Point process models of rainfall: developments for fine-scale structure’, Proc. Roy. Soc. A 463(2086), 2569–2588.
Cowpertwait, P. S. P. (1994), A generalized point process model for rainfall, in ‘Proc. Roy. Soc. A’, Vol. 447, pp. 23–37.
Cowpertwait, P. S. P., Kilsby, C. G. and O'Connell, P.E. (2002), ‘A space-time Neyman-Scott model of rainfall: Empirical analysis of extremes’, Wat. Resour. Res. 38(8), 1131.
Cox, D. R. and Hinkley, D. V. (1994), Theoretical statistics, Chapman & Hall, London.
Cox, D. R. and Isham, V. (1988), A simple spatial-temporal model of rainfall, in ‘Proc. Roy. Soc. A’, Vol. 415, pp. 317–328.
Cox, D. R. and Isham, V. S. (1994), Statistics for the environment, 2: Water related issues, Wiley, chapter ‘Stochastic Models of Precipitation’, pp. 3–18.
Craddock, J. and Flood, C. (1969), ‘Eigenvectors for representing the 500 mb geopotential surface over the Northern Hemisphere’, Quart. J. Roy. Meteorol. Soc. 95(405), 576–593.
Crowley, T. (1990), ‘Are there any satisfactory geologic analogs for a future greenhouse warming?’, J. Climate 3, 1282–1292.
Daly, C., Neilson, R. P. and Phillips, D. L. (1994), ‘A statistical-topographic model for mapping climatological precipitation over mountainous terrain’, J. Appl. Meteorol. 33(2), 140–158.
Davini, P., von Hardenberg, J., Corti, S., Christensen, H. M., Juricke, S., Subramanian, A., Watson, P. A. G., Weisheimer, A. and Palmer, T. N. (2017), ‘Climate SPHINX: evaluating the impact of resolution and stochastic physics parameterisations in the EC-Earth global climate model’, Geosci. Model Dev. 10(3), 1383–1402.
Davison, A. C. (2003), Statistical models, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press.
Dawson, A., Palmer, T. N. and Corti, S. (2012), ‘Simulating regime structures in weather and climate prediction models’, Geophys. Res. Lett. 39(21).
Dayon, G., Boé, J. and Martin, E. (2015), ‘Transferability in the future climate of a statistical downscaling method for precipitation in France’, J. Geophys. Res. 120(3), 1023–1043.
De Elia, R. (2014), ‘Specificities of climate modeling research and the challenges in communicating to users’, Bull. Amer. Meteorol. Soc. 95(7), 1003–1010.
Deardorff, J. W. (1972), ‘Numerical investigation of neutral and unstable planetary boundary layers’, J. Atmos. Sci. 29(1), 91–115.
Dee, D. P., Källén, E., Simmons, A. J. and Haimberger, L. (2011 a), ‘Comments on “Reanalyses suitable for characterizing long-term trends”’, Bull. Amer. Meteorol. Soc. 92(1), 65–70.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beeljars, A. C.M., van den Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N. and Vitart, F. (2011b), ‘The ERA-Interim reanalysis: configuration and performance of the data assimilation system’, Quart. J. Roy. Meteorol. Soc. 137, 553–597.
Deidda, R., Badas, M. G. and Piga, E. (2006), ‘Space-time multifractality of remotely sensed rainfall fields’, J. Hydrol. 322(1), 2–13.
Della-Marta, P. M. and Wanner, H. (2006), ‘A method of homogenizing the extremes and mean of daily temperature measurements’, J. Climate 19(17), 4179–4197.
Denis, B., Laprise, R., Caya, D. and Côté, J. (2002), ‘Downscaling ability of one-way nested regional climate models: the Big-Brother Experiment’, Clim. Dynam. 18(8), 627–646.
Déqué, M., Rowell, D. P., Luthi, D., Giorgi, F., Christensen, J. H., Rockel, B., Jacob, D., Kjellström, E., de Castro, M. and van den Hurk, B. (2007), ‘An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections’, Clim. Change 81, 53–70.
Deser, C., Knutti, R., Solomon, S. and Phillips, A. S. (2012), ‘Communication of the role of natural variability in future North American climate’, Nat. Clim. Change 2, 775–779.
Deser, F., Rockel, B., von Storch, H., Winterfeldt, J. and Zahn, M. (2011), ‘Regional climate models add value to global model data. a review and selected examples’, Bull. Amer. Meteorol. Soc. 92, 1181–1192.
Dessai, S. (2009), ‘Do we need better predictions to adapt to a changing climate?’, EOS 90, 111–112.
Dessai, S. and Hulme, M. (2004), ‘Does climate adaptation policy need probabilities?’, Climate Policy 4(2), 107–128.
Di Luca, A., de Elía, R. and Laprise, R. (2015), ‘Challenges in the quest for added value of regional climate dynamical downscaling’, Curr. Clim. Change Rep. 1(1), 10–21.
Dickinson, R. E., Errico, R. M., Giorgi, F. and Bates, G. T. (1989), ‘A regional climate model for the Western United States’, Clim. Change 15, 383–422.
Diggle, P. J. and Ribeiro, P. J. (2007), Model-based geostatistics, Springer Series in statistics, Springer.
Ding, H., Keenlyside, N., Latif, M., Park, W. and Wahl, S. (2015), ‘The impact of mean state errors on equatorial atlantic interannual variability in a climate model’, J. Geophys. Res. 120(2), 1133–1151.
Director, H. and Bornn, L. (2015), ‘Connecting point-level and gridded moments in the analysis of climate data’, J. Climate 28(9), 3496–3510.
Dobson, A. J. (2001), An introduction to generalized linear models, Chapman and Hall, London.
Dommenget, D. and Latif, M. (2002), ‘A cautionary note on the interpretation of EOFs’, J. Clim. 15(2), 216–225.
Döscher, R., Willén, U., Jones, C., Rutgersson, A., Meier, H. E.M., Hansson, U. and Graham, L. P. (2002), ‘The development of the regional coupled ocean-atmosphere model RCAO’, Boreal Env. Res. 7(3), 183–192.
Dosio, A. (2016), ‘Projections of climate change indices of temperature and precipitation from an ensemble of bias-adjusted high-resolution EURO-CORDEX regional climate models’, J. Geophys. Res. 121(10), 5488–5511.
Dosio, A., Paruolo, P. and Rojas, R. (2012), ‘Bias correction of the ENSEMBLES high resolution climate change projections for use by impact models: Analysis of the climate change signal’, J. Geophys. Res. Atmos. 117, D17110.
Dubrovsky, M. (1997), ‘Creating daily weather series with use of the weather generator’, Environmetrics 8(5), 409–424.
Dubrovský, M., Buchtele, J. and Žalud, Z. (2004), ‘High-frequency and low-frequency variability in stochastic daily weather generator and its effect on agricultural and hydrologic modelling’, Clim. Change 63(1), 145–179.
Dufresne, J. L. and Bony, S. (2008), ‘An assessment of the primary sources of spread of global warming estimates from coupled atmosphere-ocean models’, J. Climate 21, 5135–5144.
Dunn, P. K. (2004), ‘Occurrence and quantity of precipitation can be modelled simultaneously’, Int. J. Climatol. 24(10), 1231–1239.
Easterling, D. R. (1999), ‘Development of regional climate scenarios using a downscaling approach’, Clim. Change 41(3–4), 615–634.
Eckart, C. and Young, G. (1936), ‘The approximation of one matrix by another of lower rank’, Psychometrika 1(3), 211–218.
Eckart, C. and Young, G. (1939), ‘A principal axis transformation for non-hermitian matrices’, Bull. Amer. Math. Soc. 45(2), 118–121.
ECMWF (2016), IFS documentation – Cy41r2; operational implementation 8 March 2016, ECMWF, chapter ‘Part IV: Physical Processes’.
Eden, C., Greatbatch, R. J. and Böning, C.W. (2004), ‘Adiabatically correcting an eddypermitting model using large-scale hydrographic data: Application to the Gulf Stream and the North Atlantic Current’, J. Phys. Oceanogr. 34(4), 701–719.
Eden, J. M., Widmann, M., Maraun, D. and Vrac, M. (2014), ‘Comparison of GCM-and RCMsimulated precipitation following stochastic postprocessing’, J. Geophys. Res. 119(19).
Eden, J., Widmann, M., Grawe, D. and Rast, S. (2012), ‘Skill, correction, and downscaling of GCM-simulated precipitation’, J. Climate 25, 3970–3984.
Edwards, P. N. (2011), ‘History of climate modeling’, WIRES Clim. Change 2(1), 128–139.
Ehret, U., Zehe, E., Wulfmeyer, V., Warrach-Sagi, K. and Liebert, J. (2012), ‘Should we apply bias correction to global and regional climate model data?’, Hydrol. Earth Syst. Sci. 16, 3391– 3404.
Eitzinger, J. and Thaler, S. (2016), ‘STARC-Impact Kick-Off Meeting. Introduction toWorkpackage 4’.
Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997), Modelling extremal events for insurance and finance, Applications in Mathematics, Springer.
Engen-Skaugen, T. (2007), ‘Refinement of dynamically downscaled precipitation and temperature scenarios’, Clim. Change 84(3–4), 365–382.
Entekhabi, D., Rodriguez-Iturbe, I. and Eagleson, P. S. (1989), ‘Probabilistic representation of the temporal rainfall process by a modified Neyman-Scott Rectangular Pulses Model: Parameter estimation and validation’, Wat. Resour. Res. 25(2), 295–302.
European Commission (2013), ‘An EU Strategy on adaptation to climate change’,
Farmer, S. (1971), ‘An investigation into the results of principal component analysis of data derived from rand om numbers’, The Statistician 20(4), 63–72.
Fawcett, L. and Walshaw, D. (2007), ‘Improved estimation for temporally clustered extremes’, Environmetrics 18(2), 173–188.
Ferraris, L., Gabellani, S., Rebora, N. and Provenzale, A. (2003), ‘A comparison of stochastic models for spatial rainfall downscaling’, Wat. Resour. Res. 39(12), 1368.
Fischer, E. M., Seneviratne, S. I., Vidale, P. L., Lüthi, D. and Schär, C. (2007), ‘Soil moistureatmosphere interactions during the 2003 European summer heat wave’, J. Climate 20, 5081– 5099.
Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V., Reason, C. and Rummukainen, M. (2013), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA, chapter ‘Evaluation of Climate Models’.
Foley, A. M. (2010), ‘Uncertainty in regional climate modelling: A review’, Prog. Phys. Geogr. 34(5), 647–670.
Fowler, H. J., Blenkinsop, S. and Tebaldi, C. (2007), ‘Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling’, Int. J. Climatol. 27, 1547–1578.
Fowler, H. J., Kilsby, C. G. and O'Connell, P.E. (2000), ‘A stochastic rainfall model for the assessment of regionl water resources systems under changed climate conditions’, Hydrol. Earth. Syst. Sci. 4(2), 263–282.
Fraley, C. and Raftery, A. E. (2002), ‘Model-based clustering, discriminant analysis, and density estimation’, J. Amer. Stat. Assoc. 97(458), 611–631.
Fraley, C. and Raftery, A. E. (2007), ‘Model-based methods of classification: using the mclust software in chemometrics’, J. Stat. Soft. 18(6), 1–13.
Frei, C., Christensen, J. H., Deque, M., Jacob, D., Jones, R. G. and Vidale, P. L. (2003), ‘Daily precipitation statistics in regional climate models: Evaluation and intercomparison for the European Alps’, J. Geophys. Res. 108(D3), 4124.
Frei, C. and Schär, C. (1998), ‘A precipitation climatology of the Alps from high-resolution raingauge observations’, Int. J. Climtol. 18(8), 873–900.
Frei, C., Schöll, R., Fukutome, S., Schmidli, J. and Vidale, P. L. (2006), ‘Future change of precipitation extremes in Europe: an intercomparison of scenarios from regional climate models’, J. Geophys. Res. 111, D06105.
Frey-Buness, F., Heimann, D. and Sausen, R. (1995), ‘A statistical-dynamical downscaling procedure for global climate simulations’, Theor. Appl. Climatol. 50(3–4), 117–131.
Frías, M. D., Zorita, E., Fernández, J. and Rodríguez-Puebla, C. (2006), ‘Testing statistical downscaling methods in simulated climates’, Geophys. Res. Lett. 33, L19807.
Friederichs, P. and Hense, A. (2007), ‘Statistical downscaling of extreme precipitation events using censored quantile regression’, Mon. Wea. Rev. 135(6), 2365–2378.
Fritsch, J. M., Chappell, C. F. and Hoxit, L. R. (1976), ‘The use of large-scale budgets for convective parameterization’, Mon. Wea. Rev. 104(11), 1408–1418.
Frost, A. J., Charles, S. P., Timbal, B., Chiew, F. H.S., Mehrotra, R., Nguyen, K. C., Chand ler, R. E., McGregor, J. L., Fu, G., Kirono, D. G.C. et al. (2011), ‘A comparison of multisite daily rainfall downscaling techniques under Australian conditions’, J. Hydrol. 408(1), 1–18.
Fuentes, U. and Heimann, D. (2000), ‘An improved statistical-dynamical downscaling scheme and its application to the Alpine precipitation climatology’, Theor. Appl. Climatol. 65(3–4), 119– 135.
Funk, C., Peterson, P., Land sfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A. and Michaelsen, J. (2015), ‘The climate hazards infrared precipitation with stations - a new environmental record for monitoring extremes’, Scientific Data 2, 150066.
Gabriel, K. R. and Neumann, J. (1962), ‘A Markov chain model for daily rainfall occurrence at Tel Aviv’, Quart. J. Roy. Meteorol. Soc. 88, 90–95.
Gangopadhyay, S., Pruitt, T., Brekke, L. and Raff, D. (2011), ‘Hydrologic projections for the Western United States’, EOS 92(48), 441–442.
García-Morales, M. B. and Dubus, L. (2007), ‘Forecasting precipitation for hydroelectric power management: how to exploit GCM's seasonal ensemble forecasts’, Int. J. Climatol. 27(12), 1691–1705.
Gates, W. L. (1985), ‘The use of general circulation models in the analysis of the ecosystem impacts of climatic change’, Clim. Change 7, 267–284.
GCOS (1998), ‘Report on the adequacy of the global climate observing system’, GCOS-48, Geneva.
Genest, C. and Favre, A.-C. (2007), ‘Everything you always wanted to know about copula modeling but were afraid to ask’, J. Hydrol. Eng. 12(4), 347–368.
Georgakakos, A., Fleming, P., Dettinger, M., Peters-Lidard, C., Richmond, T. C., Reckhow, K., White, K. and Yates, D. (2014), Climate Change Impacts in the United States: The Third National Climate Assessment, U.S. Global Change Research Program, chapter ‘Water Resources’, pp. 69–112.
Gerrity, J. P. and McPherson, R. D. (1969), ‘Development of a limited area fine-mesh prediction model’, Mon. Wea. Rev. 97(9), 665–669.
Giannini, A., Saravanan, R. and Chang, P. (2003), ‘Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales’, Science 302(5647), 1027–1030.
Gilks, W. R., Richardson, S. and Spiegelhalter, D. (1995), Markov chain Monte Carlo in practice, CRC Press.
Giorgi, F. (1990), ‘Simulation of regional climate using a limited-area model nested in a general circulation model’, J. Climate 3, 941–963.
Giorgi, F. and Bates, G. T. (1989), ‘The climatological skill of a regional climate model over complex terrain’, Mon. Wea. Rev. 117, 2325–2347.
Giorgi, F. and Gutowski, W. J. (2016), ‘Coordinated experiments for projections of regional climate change’, Curr. Clim. Change Rep. 2(4), 202–210.
Giorgi, F., Hewitson, B., Christensen, J., Hulme, M., von Storch, H., Whetton, P., Jones, R., Mearns, L. and Fu, C. (2001), Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA, chapter ‘Regional Climate Information – Evaluation and Projections’.
Giorgi, F., Jones, C. and Asrar, G. R. (2009), ‘Addressing climate information needs at the regional level: the CORDEX framework’, WMO Bulletin 58(3), 175–183.
Giorgi, F., Marinucci, M. R. and Visconti, G. (1991), ‘A 2XCO2 climate change scenario over Europe generated using a limited area model nested in a general circulation model 2. Climate change scenario’, J. Geophys. Res. 97, 10011–10028.
Giorgi, F. and Mearns, L. O. (1999), ‘Introduction to special section: Regional Climate Modeling Revisited’, J. Geophys. Res. D6, 6335–6352.
Giorgi, F., Torma, C., Coppola, E., Ban, N., Schär, C. and Somot, S. (2016), ‘Enhanced summer convective rainfall at Alpine high elevations in response to climate warming’, Nat. Geosci. 9(8), 584–589.
Girshick, M. A. (1939), ‘On the sampling theory of roots of determinantal equations’, The Annals of Mathematical Statistics 10(3), 203–224.
Girvetz, E. H., Maurer, E. P., Duffy, P. B., Ruesch, A., Thrasher, B. and Zganjar, C. (2013), Making climate data relevant to decision making: the important details of spatial and temporal downscaling, The World Bank.
Glahn, H. R. (1962), ‘An experiment in forecasting rainfall probabilities by objective methods’, Mon. Weather Rev 90, 59–67.
Glahn, H. R. and Allen, R. A. (1965), ‘A note concerning the “inflation” of regression forecasts’, J. Appl. Meteorol. 5, 124–126.
Glahn, H. R. and Lowry, D. A. (1972), ‘The use of model output statistics (MOS) in objective weather forecasing’, J. Appl. Meteorol. 11, 1203–1211.
Glasbey, C. A. and Nevison, I. M. (1997), Rainfall modelling using a latent Gaussian variable, in Modelling longitudinal and spatially correlated data, Springer, pp. 233–242.
Gleick, P. H. (1986), ‘Methods for evaluating the regional hydrologic impacts of global climatic changes’, J. Hydrol. 88(1), 97–116.
Gneiting, T., Raftery, A. E., Westveld, A. H. and Goldman, T. (2005), ‘Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation’, Mon.Wea. Rev. 133, 1098–1118.
Gobiet, A., Suklitsch, M. and Heinrich, G. (2015), ‘The effect of empirical-statistical correction of intensity-dependent model errors on the temperature climate change signal’, Hydrol. Earth Syst. Sci. 19, 4055–4066.
Goodess, C. M., Anagnostopoulou, C., Bárdossy, A., Frei, C., Harpham, C., Haylock, M. R., Hundecha, Y., Maheras, P., Ribalaygua, J., Schmidli, J., Schmith, T., Tolika, K., Tomozeiu, R. and Wilby, R. L. (2010), ‘An intercomparison of statistical downscaling methods for Europe and European regions – assessing their performance with respect to extreme weather events and the implications for climate change applications’, Project report, Climatic Research Unit, University of East Anglia, Norwich, UK.
Goosse, H. (2015), Climate system dynamics and modeling, Cambridge University Press.
Goosse, H. (2017), ‘Reconstructed and simulated temperature asymmetry between continents in both hemispheres over the last centuries’, Clim. Dynam. 48(5–6), 1483–1501.
Goosse, H., Renssen, H., Timmermann, A., Bradley, R. S. and Mann, M. E. (2006), ‘Using paleoclimate proxy-data to select optimal realisations in an ensemble of simulations of the climate of the past millennium’, Clim. Dynam. 27(2–3), 165–184.
Groisman, P. Y. and Legates, D. R. (1994), ‘The accuracy of United States precipitation data’, Bull. Amer. Meteorol. Soc. 75(2), 215–227.
Groot, A., Swart, R., Hygen, H., Benestad, R. E., Cauchy, A., Betgen, C. and Dubois, G. (2004), ‘ClipC deliverable user requirements, part 1: Strategies for user consultation and engagement and user requirements: Synthesis from past efforts’. clipc_deliverable2_1_final_intemplate.pdf, accessed 2 August 2017.
Grotch, S. L. and MacCracken, M. C. (1991), ‘The use of general circulation models to predict regional climate change’, J. Climate 4, 286–303.
Güntner, A., Olsson, J., Calver, A. and Gannon, B. (2001), ‘Cascade-based disaggregation of continuous rainfall time series: the influence of climate’, Hydrol. Earth Syst. Sci. 5(2), 145– 164.
Gutiérrez, J. M. et al. (2017), ‘An intercomparison of a large ensemble of statistical downscaling methods for Europe: overall results from the VALUE perfect predictor cross-validation experiment’, Int. J. Climatol., subm.
Gutiérrez, J. M., San-Martín, D., Brand s, S., Manzanas, R. and Herrera, S. (2013), ‘Reassessing statistical downscaling techniques for their robust application under climate change conditions’, J. Climate 26(1), 171–188.
Gutmann, E., Pruitt, T., Clark, M. P., Brekke, L., Arnold, J. R., Raff, D. A. and Rasmussen, R. M. (2014), ‘An intercomparison of statistical downscaling methods used for water resource assessments in the United States’, Wat. Resour. Res. 50(9), 7167–7186.
Gutowski, W. J., Decker, S. G., Donavon, R. A., Pan, Z., Arritt, R. W. and Takle, E. S. (2003), ‘Temporal-spatial scales of observed and simulated precipitation in central U.S. climate’, J. Climate 16, 3841–3847.
Haas, R. and Pinto, J. G. (2012), ‘A combined statistical and dynamical approach for downscaling large-scale footprints of European windstorms’, Geophys. Res. Lett. 39(23).
Haas, R., Pinto, J. G. and Born, K. (2014), ‘Can dynamically downscaled windstorm footprints be improved by observations through a probabilistic approach?’, J. Geophys. Res. 119(2), 713– 725.
Haerter, J. O., Eggert, B., Moseley, C., Piani, C. and Berg, P. (2015), ‘Statistical precipitation bias correction of gridded model data using point measurements’, Geophys. Res. Lett. 42, 1919– 1929.
Haerter, J. O., Hagemann, S., Moseley, C. and Piani, C. (2011), ‘Climate model bias correction and the role of timescales’, Hydrol. Earth Syst. Sci. 15(3), 1065–1079.
Hagemann, S., Chen, C., Clark, D., Folwell, S., Gosling, S. N., Haddeland, I., Hannasaki, N., Heinke, J., Ludwig, F., Voss, F. and Wiltshire, A. (2013), ‘Climate change impact on available water resources obtained using multiple global climate and hydrology models’, Earth Syst. Dynam. 4, 129–144.
Hagemann, S., Chen, C., Haerter, J. O., Heinke, J., Gerten, D. and Piani, C. (2011), ‘Impact of a statistical bias correction on the projected hydrological changes obtained from three GCMs and two hydrology models’, J. Hydrometeorol. 12(4), 556–578.
Haiden, T., Kann, A., Wittmann, C., Pistotnik, G., Bica, B. and Gruber, C. (2011), ‘The Integrated Nowcasting through Comprehensive Analysis (INCA) system and its validation over the Eastern Alpine region’, Wea. Forecast. 26(2), 166–183.
Haines, K. and Hannachi, A. (1995), ‘Weather regimes in the Pacific from a GCM’, J. Atmos. Sci. 52(13), 2444–2462.
Hall, A. (2014), ‘Projecting regional change’, Science 346(6216), 1461–1462.
Hall, A., Qu, X. and Neelin, J. D. (2008), ‘Improving predictions of summer climate change in the United States’, Geophys. Res. Lett. 35, L01702.
Hall, T., Brooks, H. E., Doswell, I. I.I. and Charles, A. (1999), ‘Precipitation forecasting using a neural network’, Wea. Forecast 14(3), 338–345.
Hannachi, A. (1997), ‘Low-frequency variability in a GCM: Three-dimensional flow regimes and their dynamics’, J. Climate 10(6), 1357–1379.
Hannachi, A., Jolliffe, I. T. and Stephenson, D. B. (2007), ‘Empirical orthogonal functions and related techniques in atmospheric science: A review’, Int. J. Climatol. 27(9), 1119–1152.
Hanssen-Bauer, I., Achberger, C., Benestad, R. E., Chen, D. and Forland, E. J. (2005), ‘Statistical downscaling of climate scenarios over Scand inavia’, Clim. Res. 29(3), 255–268.
Harris, I., Jones, P. D., Osborn, T. J. and Lister, D. H. (2014), ‘Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset’, Int. J. Climatol. 34(3), 623–642.
Harvey, B. J., Shaffrey, L. C. and Woollings, T. J. (2015), ‘Deconstructing the climate change response of the Northern Hemisphere wintertime storm tracks’, Clim. Dynam. 45(9-10), 2847– 2860.
Hastie, T. J. and Tibshirani, R. J. (1990), Generalized additive models, Chapman & Hall.
Hawkins, E., Smith, R. S., Gregory, J. M. and Stainforth, D. A. (2016), ‘Irreducible uncertainty in near-term climate projections’, Clim. Dynam. 46(11–12), 3807–3819.
Hawkins, E. and Sutton, R. (2009), ‘The potential to narrow uncertainty in regional climate predictions’, Bull. Amer. Meteorol. Soc. 90(8), 1095–1107.
Hawkins, E. and Sutton, R. (2011), ‘The potential to narrow uncertainty in projections of regional precipitation change’, Clim. Dynam. DOI:10.1007/s00382-010-0810-6.
Hawkins, E. and Sutton, R. (2012), ‘Time of emergence of climate signals’, Geophys. Res. Lett. 39, L01702.
Hay, L. E. and Clark, M. P. (2003), ‘Use of statistically and dynamically downscaled atmospheric model output for hydrologic simulations in three mountainous basins in the western United States’, J. Hydrol. 282, 56–75.
Hay, L. E., Clark, M. P., Wilby, R. L., Gutowski, W. J., Leavesley, G. H., Pan, Z., Arritt, R. W. and Takle, E. S. (2002), ‘Use of regional climate model output for hydrologic simulations’, J. Hydrometeorol. 3(5), 571–590.
Hay, L. E., McCabe, G. J., Wolock, D. M. and Ayers, M. A. (1991), ‘Simulation of precipitation by weather type analysis’, Wat. Resour. Res. 27, 493–501.
Haylock, M. R., Gawley, G. C., Harpham, C., Wilby, R.L. and Goodess, C. M. (2006), ‘Downscaling heavy precipitation over the United Kingdom: A comparison of dynamical and statistical methods and their future scenarios’, Int. J. Climatol. 26(10), 1397–1415.
Haylock, M. R., Hofstra, N., Klein Tank, A.M.G., Klok, E. J., Jones, P. D. and New, M. (2008), ‘A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006’, J. Geophys. Res. 113, 20119.
Hazeleger, W., Severijns, C., Semmler, T., Stefanescu, S., Yang, S., Wang, X., Wyser, K., Dutra, E., Baldasano, J. M., Bintanja, R., Bougeault, P., Caballero, R., Ekman, A. M.L., Christensen, J. H., van den Hurk, B., Jimenez, P., Jones, C., Kållberg, P., Koenigk, T., Mc Grath, R., Mirand a, P., van Noije, T., Palmer, T., Parodi, J. A., Schmith, T., Selten, F., Storelvmo, T., Sterl, A., Tapamo, H., Vancoppenolle, M., Viterbo, P. and Willen, U. (2010), ‘EC-Earth: a seamless earthsystem prediction approach in action’, Bull. Amer. Meteorol. Soc. 91(10), 1357–1363.
Hazeleger, W., van den Hurk, B.J. J., Min, E., van Oldenborgh, G. J., Petersen, A. C., Stainforth, D. A., Vasileiadou, E. and Smith, L. A. (2015), ‘Tales of future weather’, Nat. Clim. Change 5, 107–113.
He, J. and Soden, B. J. (2015), ‘Anthropogenic weakening of the tropical circulation: The relative roles of direct CO2 forcing and sea surface temperature change’, J. Climate 28(22), 8728– 8742.
Heimann, D. (1986), ‘Estimation of regional surface layer wind field characteristics using a threelayer mesoscale model’, Beiträge zur Physik der Atmosphäre 59, 518–537.
Held, I. M. and Soden, B. J. (2006), ‘Robust responses of the hydrological cycle to global warming’, J. Climate 19(21), 5686–5699.
Held, I. M., Ting, M. and Wang, H. (2002), ‘Northern winter stationary waves: theory and modeling’, J. Climate 15(16), 2125–2144.
Hempel, S., Frieler, K., Warszawski, L., Schewe, J. and Piontek, F. (2013), ‘A trend-preserving bias correction - the ISI-MIP approach’, Earth Syst. Dynam. 4, 219–236.
Henderson-Sellers, A. (1996), ‘Can we integrate climatic modelling and assessment?’, Environ. Mod. Assess. 1(1–2), 59–70.
Hertig, E., Beck, C., Wanner, H. and Jacobeit, J. (2015), ‘A review of non-stationarities in climate variability of the last century with focus on the North Atlantic–European sector’, Earth Sci. Rev. 147, 1–17.
Hertig, E. et al. (2017), ‘Validation of extremes from the Perfect-Predictor Experiment of the COST Action VALUE’, Int. J. Climatol., subm.
Hess, P. and Brezowsky, H. (1977), Katalog der Großwetterlagen Europas (1861–1976), Selbstverlag des Deutschen Wetterdienstes Bd. 15, Berichte des Deutschen Wetterdienstes, Offenbach am Main.
Hewitson, B. C. (2011), ‘Meeting user needs: climate service limits, ideals, & realities’,
Hewitson, B. C. (2016), ‘CORDEX gaps and the distillation dilemma’, http://www.icrccordex2016. org/images/pdf/Programme/presentations/plenary_1/Pl1_4_Hewitson_Bruce.pdf.
Hewitson, B. C. and Crane, R. G. (1994), Neural nets: applications in Geography, Springer.
Hewitson, B. C. and Crane, R. G. (1996), ‘Climate downscaling: techniques and application’, Clim. Res. 7, 85–95.
Hewitson, B. C., Daron, J., Crane, R. G., Zermoglio, M. F. and Jack, C. (2014), ‘Interrogating empirical-statistical downscaling’, Clim. Change 122, 539–554.
Hewitt, C. D. (2005), ‘The ENSEMBLES Project: Providing ensemble-based predictions of climate changes and their impacts’, EGGS newsletter 13, 22–25.
Hewitt, C., Mason, S. and Walland, D. (2012), ‘The global framework for climate services’, Nat. Clim. Change 2(12), 831–832.
Hidalgo, H. G., Dettinger, M. D. and Cayan, D. R. (2008), ‘Downscaling with constructed analogues: Daily precipitation and temperature fields over the United States’. California Energy Commission, PIER Energy-Related Environmental Research. CEC-500-2007-123.
Hiebl, J. and Frei, C. (2016), ‘Daily temperature grids for Austria since 1961 – concept, creation and applicability’, Theor. Appl. Climatol. 124(1–2), 161–178.
Hobaek Haff, I., Frigessi, A. and Maraun, D. (2015), ‘How well do regional climate models simulate the spatial structure of precipitation? An application of pair-copula constructions’, J. Geophys. Res. 120(7), 2624–2646.
Hofstätter, M., Ganekind, M. and Hiebl, J. (2013), ‘GPARD-6: A new 60-year gridded precipitation dataset for Austria based on daily rain gauge measurements’. Conference contribution: DACH 2013, Deutsh-Osterreichisch-Schweizerische Meteorologen-Tagung. Innsbruck, Austria.
Hofstra, N., New, M. and McSweeney, C. (2010), ‘The influence of interpolation and station network density on the distributions and trends of climate variables in daily gridded data’, Clim. Dynam. 35, 841–858.
Holden, P. B. and Edwards, N. R. (2010), ‘Dimensionally reduced emulation of an AOGCM for application to integrated assessment modelling’, Geophys. Res. Lett. 37(21).
Holton, J. R. and Hakim, G. J. (2013), An introduction to dynamic meteorology, 5 edn, Elsevier.
Hoppe, R., Wesselink, A. and Cairns, R. (2013), ‘Lost in the problem: the role of boundary organisations in the governance of climate change’, WIREs Clim. Change 4(4), 283–300.
Hoskins, B. J. and Karoly, D. J. (1981), ‘The steady linear response of a spherical atmosphere to thermal and orographic forcing’, J. Atmos. Sci. 38(6), 1179–1196.
Hoskins, B. J. and Valdes, P. J. (1990), ‘On the existence of storm-tracks’, J. Atmos. Sci. 47(15), 1854–1864.
Hotelling, H. (1933), ‘Analysis of a complex of statistical variables into principal components’, J. Educ. Psychol. 24(6), 417.
Hotelling, H. (1935), ‘The most predictable criterion’, J. Educ. Psychol. 26(2), 139.
Howcroft, J. G. (1966), ‘Fine-mesh limited-area forecasting model’, Technical report U. S. Air Weather Service, Scott Air Force Base.
Hu, Y., Maskey, S. and Uhlenbrook, S. (2013), ‘Downscaling daily precipitation over the Yellow River source region in China: a comparison of three statistical downscaling methods’, Theor. Appl. Climatol. 112(3–4), 447–460.
Hughes, J. P. and Guttorp, P. (1994), ‘A class of stochastic models for relating synoptic atmospheric patterns to regional hydrologic phenomena’, Wat. Resour. Res. 30(5), 1535–1546.
Hughes, J. P., Guttorp, P. and Charles, S. P. (1999), ‘A non-homogeneous hidden Markov model for precipitation occurrence’, J. Roy. Stat. Soc. C 48(1), 15–30.
Hulme, M. (2007), ‘The appliance of science’, The Guardian. 2007/mar/14/scienceofclimatechange.climatechange.
Hulme, M., Jenkins, G. J., Lu, X., Turnpenny, J. R., Mitchell, T.D., Jones, R. G., Lowe, J., Murphy, J.M., Hassell, D., Boorman, P., McDonald, R. and Hill, S. (2002), ‘Climate Change Scenarios for the United Kingdom. The UKCIP02 Scientific Report’, Technical report, Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich, UK.
Huntingford, C. and Cox, P. M. (2000), ‘An analogue model to derive additional climate change scenarios from existing GCM simulations’, Clim. Dynam. 16(8), 575–586.
Huth, R. (1999), ‘Statistical downscaling in central Europe: evaluation of methods and potential predictors’, Clim. Res. 13, 91–101, doi: 10.3354/cr013091.
Huth, R. (2002), ‘Statistical downscaling of daily temperature in Central Europe’, J. Climate 15, 1731–1742.
Huth, R. (2004), ‘Sensitivity of local daily temperature change estimates to the selection of downscaling models and predictors’, J. Climate 17(3), 640–652.
Huth, R. (2005), ‘Downscaling of humidity variables: a search for suitable predictors and predictand s’, Int. J. Climatol. 25(2), 243–250.
Huth, R., Kliegrova, S. and Metelka, L. (2008), ‘Non-linearity in statistical downscaling: does it bring an improvement for daily temperature in Europe?’, Int. J. Climatol. 28(4), 465–477.
Huth, R., Miksovsky, J., Stepanek, P., Belda, M., Farda, A., Chladova, Z. and Pisoft, P. (2015), ‘Comparative validation of statistical and dynamical downscaling models on a dense grid in central Europe: temperature’, Theor. Appl. Climatol. 120(3–4), 533–553.
Hyndman, R. J. and Grunwald, G. K. (2000), ‘Applications: Generalized additive modelling of mixed distribution Markov models with application to Melbourne's rainfall’, Aust. N. Z. J. Stat. 42(2), 145–158.
Ineson, S. and Scaife, A. A. (2009), ‘The role of the stratosphere in the European climate response to El Niño’, Nat. Geosci. 2(1), 32–36.
IPCC (1988), ‘Report of the first session of the WMO/UNEP Intergovernmental Panel on Climate Change (IPCC)’, World Climate Programme Publications Series. Geneva, 9–11 November.
Isotta, F. A., Frei, C., Weilguni, V., Lassegues, P., Rudolf, B., Pavan, V., Cacciamani, C., Antolini, G., Ratto, S. M., Munari, M., Micheletti, S., Bonati, V., Lussana, C., Panettieri, C. R.E., Marigo, G. and Vertacnik, G. (2014), ‘The climate of daily precipitation in the Alps: development and analysis of a high-resolution grid dataset from pan-Alpine raingauge data’, Int. J. Climatol. 34(5), 1657–1675.
Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G., Georgopoulou, E., Gobiet, A., Nikulin, G., Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N., Kotlarski, S., Kriegsmann, A., Martin, E., Moseley, C., Pfeifer, S., Preuschmann, S., Radtke, K., Rechid, D., Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J.-F., Teichmann, C., Valentini, R., Vautard, R. and Weber, B. (2014), ‘EURO-CORDEX: New high-resolution climate change projections for European impact research’, Reg. Environ. Change 14, 563–578.
Jacobeit, J., Hertig, E., Seubert, S. and Lutz, K. (2014), ‘Statistical downscaling for climate change projections in the Mediterranean region: methods and results’, Reg. Environ. Change 14, 1891–1906.
Jacobeit, J., Wanner, H., Luterbacher, J., Beck, C., Philipp, A. and Sturm, K. (2003), ‘Atmospheric circulation variability in the North-Atlantic-European area since the mid-seventeenth century’, Clim. Dynam. 20(4), 341–352.
Jakob, C. (2014), ‘Going back to basics’, Nat. Clim. Change 4(12), 1042–1045.
Joe, H. (1996), Distributions with fixed marginals and related topics, IMS, Hayward, CA, chapter ‘Families of m-variate distributions with given Margins and m(m-1)/2 Dependence Parameters’.
Jolliffe, I. T. (1986), Principal component analysis, Springer.
Jolliffe, I. T. (1990), ‘Principal component analysis: a beginner's guide I. Introduction and application’, Weather 45(10), 375–382.
Jolliffe, I. T. (1993), ‘Principal component analysis: A beginner's guide II. Pitfalls, myths and extensions’, Weather 48(8), 246–253.
Jolliffe, I. T. (1995), ‘Rotation of principal components: choice of normalization constraints’, J. Appl. Stat. 22(1), 29–35.
Jolliffe, I. T. and Stephenson, D. B., eds. (2003), Forecast verication: a practitioner's guide in atmospheric science, Wiley.
Jones, D. A., Wang, W. and Fawcett, R. (2009 a), ‘High-quality spatial climate data-sets for Australia’, Austral. Meteorol. Oceanogr. J. 58(4), 233.
Jones, P. D., Harpham, C. and Briffa, K. R. (2013), ‘Lamb weather types derived from reanalysis products’, Int. J. Climatol. 33(5), 1129–1139.
Jones, P. D., Kilsby, C. G., Harpham, C., Glenis, V. and Burton, A. (2009 b), ‘UK Climate Projections science report: Projections of future daily climate for the UK from the Weather Generator’, Technical report, University of Newcastle, UK.
Jones, P. D., Lister, D. H., Osborn, T. J., Harpham, C., Salmon, M. and Morice, C. P. (2012), ‘Hemispheric and large-scale land -surface air temperature variations: An extensive revision and an update to 2010’, J. Geophys. Res. 117(D5).
Jones, P. D. and Moberg, A. (2003), ‘Hemispheric and large-scale surface air temperature variations: An extensive revision and an update to 2001’, J. Climate 16(2), 206–223.
Jordan, M. C. (1874), ‘Mémoires sur les formes bilinéaires’, J. de Mathémathiques Pures et Appliquées 19, 35–54.
Joyce, R. J., Janowiak, J. E., Arkin, P. A. and Xie, P. (2004), ‘CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution’, J. Hydrometeorol. 5(3), 487–503.
Jung, T., Miller, M. J., Palmer, T. N., Towers, P., Wedi, N., Achuthavarier, D., Adams, J. M., Altshuler, E. L., Cash, B. A., Kinter III, J. L., Marx, L., Stan, C. and Hodges, K. I. (2012), ‘High-resolution global climate simulations with the ECMWF model in Project Athena: Experimental design, model climate, and seasonal forecast skill’, J. Climate 25(9), 3155– 3172.
Jury, M. W., Prein, A. F., Truhetz, H. and Gobiet, A. (2015), ‘Evaluation of CMIP5 models in the context of dynamical downscaling over Europe’, J. Climate 28(14), 5575–5582.
Kaczmarska, J., Isham, V. and Onof, C. (2014), ‘Point process models for fine-resolution rainfall’, Hydrol. Sci. J. 59(11), 1972–1991.
Kallache, M., Vrac, M. and Michelangeli, P.-A. (2011), ‘Nonstationary probabilistic downscaling of extreme precipitation’, J. Geophys. Res. 116, D05113.
Kalnay, E. (2003), Atmospheric modeling, data assimilation and predictability, Cambridge University Press.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gand in, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R. and Joseph, D. (1996), ‘The NCEP/NCAR reanalysis project’, Bull. Amer. Meteorol. Soc. 77, 437–471.
Karl, T. R., Diamond, H. J., Bojinski, S., Butler, J. H., Dolman, H., Haeberli, W., Harrison, D. E., Nyong, A., Rösner, S., Seiz, G., Trenberth, K., Westermeyer, W. and Zillman, J. (2010), ‘Observation needs for climate information, prediction and application: Capabilities of existing and future observing systems’, Proc. Environ. Sci. 1, 192–205.
Karl, T. R., Wang, W.-C., Schlesinger, M. E., Knight, R. W. and Portman, D. (1990), ‘A method of relating general circulation model simulated climate to the observed local climate. Part I: seasonal statistics’, J. Climate 3, 1053–1079.
Katz, R. W. (1977), ‘Precipitation as a chain-dependent process’, J. Appl. Meteorol. 16(7), 671– 676.
Katz, R. W. and Parlange, M.B. (1993), ‘Effects of an index of atmospheric circulation on stochastic properties of precipitation’, Wat. Resour. Res. 29(7), 2335–2344.
Katz, R. W. and Parlange, M. B. (1998), ‘Overdispersion phenomenon in stochastic modeling of precipitation’, J. Climate 11(4), 591–601.
Kay, A. L. and Jones, R. G. (2012), ‘Comparison of the use of alternative UKCP09 products for modelling the impacts of climate change on flood frequency’, Clim. Change 114(2), 211– 230.
Keeley, S. P. E., Sutton, R. T. and Shaffrey, L. C. (2012), ‘The impact of North Atlantic sea surface temperature errors on the simulation of North Atlantic European region climate’, Q. J. R. Meteorol. Soc. 138, 1774–1783.
Keeling, C. D. (1960), ‘The concentration and isotopic abundances of carbon dioxide in the atmosphere’, Tellus 12(2), 200–2003.
Keenlyside, N. S., Latif, M., Jungclaus, J., Kornblueh, L. and Roeckner, E. (2008), ‘Advancing decadal-scale climate prediction in the North Atlantic sector’, Nature 453(7191), 84–88.
Keller, D. E., Fischer, A. M., Liniger, M. A., Appenzeller, C. and Knutti, R. (2016), ‘Testing a weather generator for downscaling climate change projections over Switzerland ’, Int. J. Climatol.
Keller, D., Fischer, A. M., Frei, C., Liniger, M. A., Appenzeller, C. and Knutti, R. (2015), ‘Implementation and validation of a Wilks-type multi-site daily precipitation generator over a typical Alpine river catchment’, Hydrol. Earth Syst. Sci. 19, 2163–2177.
Kendon, E. J., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan, S. C. and Senior, C. A. (2014), ‘Heavier summer downpours with climate change revealed by weather forecast resolution model’, Nat. Clim. Change 4, 570–576.
Kendon, E. J., Rowell, D. P. and Jones, R. G. (2010), ‘Mechanisms and reliability of future projected changes in daily precipitation’, Clim. Dynam. 35(2–3), 489–509.
Kennedy, M. C. and O'Hagan, A. (2001), ‘Bayesian calibration of computer models’, J. Roy. Stat. Soc. B 63(3), 425–464.
Kerr, R. A. (2011a), ‘Time to adapt to a warming world, but where's the science?’, Science 334(6059), 1052–1053.
Kerr, R. A. (2011b), ‘Vital details of global warming are eluding forecasters’, Science 334(6053), 173–174.
Kettle, H. and Thompson, R. (2004), ‘Statistical downscaling in European mountains: verification of reconstructed air temperature’, Clim. Res. 26(2), 97–112.
Kida, H., Koide, T., Sasaki, H. and Chiba, M. (1991), ‘A new approach for coupling a limited area model to a GCM for regional climate simulations’, J. Meteorol. Soc. Jap. 69(6), 723–728.
Kilsby, C. G., Jones, P. D., Burton, A., Ford, A. C., Fowler, H. J., Harpham, C., James, P., Smith, A. and Wilby, R. L. (2007), ‘A daily weather generator for use in climate change studies’, Env. Mod. Soft. 22, 1705–1719.
Kim, J.-W., J.-T., Chang, Baker, N. L., Wilks, D. S. and Gates, W. L. (1984), ‘The statistical problem of climate inversion: determination of the relationship between local and large-scale climate’, Mon. Wea. Rev. 112, 2069–2077.
Kim, J., Waliser, D. E., Mattmann, C. A., Goodale, C. E., Hart, A. F., Zimdars, P. A., Crichton, D. J., Nikulin, C. J.G., Hewitson, B., Jack, C., Lennard, C. and Favre, A. (2014), ‘Evaluation of the CORDEX-Africa multi-RCM hindcast: systematic model errors’, Clim. Dynam. 42(5– 6), 1189–1202.
Kistler, R., Kalnay, E., Collins, W., Saha, S., White, G., Woollen, J., Chelliah, M., Ebisuzaki, W., Kanamitsu, M., Kousky, V., van den Dool, H., Jenne, R. and Fiorino, M. (2001), ‘The NCEP–NCAR 50-year reanalysis: monthly means CD–ROM and documentation’, Bull. Amer. Meteorol. Soc. 82(2), 247–267.
Klein Tank, A.M.G., Wijngaard, J. B., Können, G.P., Böhm, R., Demarée, G., Gocheva, A., Mileta, M., Pashiardis, S., Hejkrlik, L., Kern-Hansen, C., Heino, R., Bessemoulin, P., Müller- Westermeier, G., Tzanakou, M., Szalai, S., Pálsdóttir, T., Fitzgerald, D., Rubin, S., Capaldo, M., Maugeri, M., Leitass, A., Bukantis, A., Aberfeld, R., van Engelen, A.F.V., Forland, E., Mietus, M., Coelho, F., Mares, C., Razuvaev, V., Nieplova, E., Cegnar, T., López, J.A., Dahlström, B., Moberg, A., Kirchhofer, W., Ceylan, A., Pachaliuk, O., Alexand er, L. V. and Petrovic, P. (2002), ‘Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment’, Int. J. Climatol. 22(12), 1441–1453.
Klein Tank, A.M.G., Zwiers, F. W. and Zhang, X. (2009), Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation, Climate Data and Monitoring WCDMP-No. 72, World Meteorological Organisation.
Klein, W. H. (1948), ‘Winter precipitation from the 700-millibar circulation’, Bull. Amer. Meteorol. Soc. 9, 439–453.
Klein, W. H. and Glahn, H. R. (1974), ‘Forecasting local weather by means of model output statistics’, Bull. Amer. Meteorol. Soc. 55(10), 1217–1227.
Klein, W. H., Lewis, B. M. and Enger, I. (1959), ‘Objective prediction of five-day mean temperatures during winter’, J. Meteorol. 16, 672–682.
Knight, J. R., Folland, C. K. and Scaife, A. A. (2006), ‘Climate impacts of the Atlantic multidecadal oscillation’, Geophys. Res. Lett. 33(17).
Kobayash, S., Yukinari, O., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K. and Takahashi, K. (2015), ‘The JRA-55 reanalysis: general specifications and basic characteristics’, J. Meteorol. Soc. Japan II 93(1), 5–48.
Koenker, R. (2005), Quantile regression, number 38, Cambridge University Press.
Kohonen, T. (1998), ‘The self-organizing map’, Neurocomputing 21(1–3), 1–6.
Kotlarski, S., Keuler, K., Christensen, O. B., Colette, A., Déqué, M., Gobiet, A., Goergen, K., Jacob, D., Lüthi, D., van Meijgaard, E., Nikulin, G., Schär, C., Teichmann, C., Vautard, R., Warrach-Sagi, K. and Wulfmeyer, V. (2014), ‘Regional climate modelling on European scales: a joint stand ard evaluation of the EURO-CORDEX RCM ensemble’, Geosci. Model. Dev. 7, 1297–1333.
Krueger, O., Schenk, F., Feser, F. and Weisse, R. (2013), ‘Inconsistencies between longterm trends in storminess derived from the 20CR reanalysis and observations’, J. Climate 26(3), 868–874.
Kruizinga, S. and Murphy, A. H. (1983), ‘Use of an analogue procedure to formulate objective probabilistic temperature forecasts in the netherland s’, Mon. Wea. Rev. 111(11), 2244–2254.
Kukla, G., Gavin, J. and Karl, T. R. (1986), ‘Urban warming’, J. Clim. Appl. Meteorol. 25(9), 1265–1270.
Kundzewicz, Z. W. and Stakhiv, E. Z. (2010), ‘Are climate models “ready for prime time” in water resources management applications, or is more research needed?’, Hydrol. Sci. J. 55, 1085– 1089.
Kuo, H.-L. (1965), ‘On formation and intensification of tropical cyclones through latent heat release by cumulus convection’, J. Atmos. Sci. 22(1), 40–63.
Kutzbach, J. E. (1967), ‘Empirical eigenvectors of sea-level pressure, surface temperature and precipitation complexes over North America’, J. Appl. Meteorol. 6(5), 791–802.
Kysely, J. and Plavcova, E. (2010), ‘A critical remark on the applicability of E-OBS European gridded temperature data set for validating control climate simulations’, J. Geophys. Res. 115, D23118.
Lackmann, G. M. (2015), ‘Hurricane Sand y before 1900 and after 2100’, Bull. Amer. Meteorol. Soc. 96(4), 547–560.
Lall, U. and Sharma, A. (1996), ‘A nearest neighbor bootstrap for resampling hydrologic time series’, Wat. Resour. Res. 32(3), 679–693.
Lamb, H. H. (1972), British Isles weather types and a register of the daily sequence of circulation patterns 1861–1971, HMSO London No. 116, Meteorol. Off. Geophys. Mem.
Laprise, R. (2008), ‘Regional climate modelling’, J. Comp. Phys. 227(7), 3641–3666.
Laprise, R. (2014), ‘Comment on the added value to global model projections of climate change by dynamical downscaling: a case study over the continental US using the GISS-ModelE2 and WRF models” by Racherla et al.’, J Geophys. Res. 119(7), 3877–3881.
Latif, M. and Park, W. (2012), The future of the world's climate, Elsevier, Amsterdam, The Netherland s, chapter ‘Climatic Variability on Decadal to Century Time-Scales’, pp. 167–195.
Leadbetter, M. R., Lindgren, G. and Rootzen, H. (1983), Extremes and related properties of rand om sequences and processes, Springer Series in Statistics, Springer.
Leand er, R. and Buishand, T. A. (2007), ‘Resampling of regional climate model output for the simulation of extreme river flows’, J. Hydro. 332(3), 487–496.
Legates, D. R. (1991), ‘The effect of domain shape on principal components analyses’, Int. J. Climatol. 11(2), 135–146.
Leloup, J., Lengaigne, M. and Boulanger, J.-P. (2008), ‘Twentieth century ENSO characteristics in the IPCC database’, Clim. Dynam. 30(2–3), 277–291.
Lempert, R. J., Popper, S. W. and Banks, S. C. (2003), Shaping the next one hundred years. New methods for quantitative, long-term policy analysis, RAND.
Lempert, R., Nakicenovic, N., Sarewitz, D. and Schlesinger, M. (2004), ‘Characterising climatechange uncertainties for decision-makers’, Clim. Change 65, 1–9.
Lenderink, G., Buishand, A. and van Deursen, W. (2007), ‘Estimates of future discharges of the river Rhine using two scenario methodologies: direct versus delta approach’, Hydrol. Earth Syst. Sci. 11(3), 1145–1159.
Leonard, M., Westra, S., Phatak, A., Lambert, M., van den Hurk, B., McInnes, K., Risbey, J., Schuster, S., Jacob, D. and Stafford-Smith, M. (2014), ‘A compound event framework for understand ing extreme impacts’, WIREs Clim. Change 4(1), 113–128.
Li, C., Sinha, E., Horton, D. E., Diffenbaugh, N. S. and Michalak, A. M. (2014), ‘Joint bias correction of temperature and precipitation in climate model simulations’, J. Geophys. Res. 119(23), 13153–13162.
Li, G. and Xie, S.-P. (2014), ‘Tropical biases in CMIP5 multimodel ensemble: the excessive equatorial Pacific cold tongue and double ITCZ problems’, J. Climate 27(4), 1765– 1780.
Li, H., Sheffield, J. and Wood, E. F. (2010), ‘Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching’, J. Geophys. Res. 115, D10101.
Limpasuvan, V., Thompson, D. W.J. and Hartmann, D. L. (2004), ‘The life cycle of the Northern Hemisphere sudden stratospheric warmings’, J. Climate 17(13), 2584–2596.
Liu, P. et al. (2009), ‘An MJO simulated by the NICAM at 14- and 7-km resolutions’, Mon. Wea. Rev. 137, 3254–3268.
Livneh, B., Bohn, T. J., Pierce, D. W., Munoz-Arriola, F., Nijssen, B., Vose, R., Cayan, D. R. and Brekke, L. (2015), ‘A spatially comprehensive, hydrometeorological data set for Mexico, the US, and Southern Canada 1950–2013’, Scientific Data 2, 150042.
Lorenz, E. N. (1956), ‘Empirical orthogonal functions and statistical weather prediction’, Technical report, Massachusetts Institute of Technology, Dept. of Meteorology.
Lorenz, E. N. (1969), ‘Atmospheric predictability as revealed by naturally occuring analogs’, J. Atmos. Sci. 26, 639–646.
Lorenz, P. and Jacob, D. (2005), ‘Influence of regional scale information on the global circulation: A two-way nesting climate simulation’, Geophys. Res. Lett. 32, L18706.
Lorenz, P. and Jacob, D. (2010), ‘Validation of temperature trends in the ENSEMBLES regional climate model runs driven by ERA40’, Clim. Res. 44, 167–177.
Lovejoy, S. and Schertzer, D. (2010), ‘Towards a new synthesis for atmospheric dynamics: spacetime cascades’, Atmos. Res. 96(1), 1–52.
Lu, J., Vecchi, G. A. and Reichler, T. (2007), ‘Expansion of the Hadley cell under global warming’, Geophys. Res. Lett. 34, L06805.
Luca, A. D., de Elía, R. and Laprise, R. (2012), ‘Potential for added value in precipitation simulated by high-resolution nested regional climate models and observations’, Clim. Dynam. 38(5– 6), 1229–1247.
Lynch, A. H. and Cassado, J. J. (2006), Applied atmospheric dynamics, Wiley.
MacQueen, J. (1967), ‘Some methods for classification and analysis of multivariate observations’, in Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, Vol. 1, Univ. of Calif. Press, pp. 281–297.
Manabe, S., Smagorinsky, J. and Strickler, R. F. (1965), ‘Simulated climatology of a general circulation model with a hydrologic cycle’, Mon. Wea. Rev. 93(12), 769–798.
Manabe, S. and Wetherald, R. T. (1967), ‘Thermal equilibrium of the atmosphere with a given distribution of relative humidity’, J. Atmos. Sci. 24(3), 241–259.
Manabe, S. and Wetherald, R. T. (1975), ‘The effects of doubling the CO2 concentration on the climate of a general circulation model’, J. Atmos. Sci. 32(1), 3–15.
Mantua, N. J. and Hare, S. R. (2002), ‘The Pacific decadal oscillation’, J. Ocean. 58(1), 35– 44.
Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. and Francis, R. C. (1997), ‘A Pacific interdecadal climate oscillation with impacts on salmon production’, Bull. Amer. Meteorol. Soc. 78(6), 1069–1079.
Maraun, D. (2012), ‘Nonstationarities of regional climate model biases in European seasonal mean temperature and precipitation sums’, Geophys. Res. Lett. 39, L06706.
Maraun, D. (2013a), ‘Bias correction, quantile mapping and downscaling: revisiting the inflation issue’, J. Climate 26, 2137–2143.
Maraun, D. (2013b), ‘When will trends in European mean and heavy daily precipitation emerge?’, Env. Res. Lett. 8, 014004.
Maraun, D. (2014), ‘Reply to comment on “Bias correction, quantile mapping and downscaling: revisiting the inflation issue”’, J. Climate 27, 1821–1825.
Maraun, D. (2016), ‘Bias correcting climate change simulations - a critical review’, Curr. Clim. Change Rep. 2(4), 211–220.
Maraun, D., Huth, R., Gutiérrez, J. M., San Martín, D., Dubrovsky, M., Fischer, A., Hertig, E., Soares, P. M.M., Bartholy, J., Pongrácz, R., Widmann, M., Casado, M. J., Ramos, P. & Bedia, J. (2017a), ‘The VALUE perfect predictor experiment: evaluation of temporal variability’, Int. J. Climatol., DOI 10.1002/joc.5222, published online.
Maraun, D., Osborn, T. J. and Gillett, N. P. (2008), ‘United Kingdom daily precipitation intensity: improved early data, error estimates and an update from 2000 to 2006’, Int. J. Climatol. 28(6), 833–842. DOI 10. 1002/joc. 1672.
Maraun, D., Osborn, T. J. and Rust, H. W. (2012), ‘The influence of synptic airflow on UK daily precipitation extremes. Part II: regional climate model and E-OBS data validation’, Clim. Dynam. 39, 287–301.
Maraun, D., Rust, H. W. and Osborn, T. J. (2009), ‘The annual cycle of heavy precipitation across the UK: a model based on extreme value statistics’, Int. J. Climatol. 29, 1731–1744. DOI 10.1002/joc.1811.
Maraun, D., Rust, H. W. and Osborn, T. J. (2010a), ‘Synoptic airflow and UK daily precipitation extremes. Development and validation of a vector generalised model’, Extremes 13, 133–153.
Maraun, D., Shepherd, T. G., Widmann, M., Zappa, G., Walton, D., Gutierrez, J. M., Hagemann, S., Richter, I., Soares, P. M.M., Hall, A. and Mearns, L. (2017b), ‘Towards processinformed bias correction of climate change simulations’, Nat. Clim. Change, online first, DOI 10.1038/nclimate3418.
Maraun, D., Wetterhall, F., Ireson, A. M., Chand ler, R. E., Kendon, E. J., Widmann, M., Brienen, S., Rust, H. W., Sauter, T., Themeßl, M., Venema, V. K.C., Chun, K. P., Goodess, C. M., Jones, R. G., Onof, C., Vrac, M. and Thiele-Eich, I. (2010b), ‘Precipitation downscaling under climate change. Recent developments to bridge the gap between dynamical models and the end user’, Rev. Geophys. 48, RG3003.
Maraun, D. and Widmann, M. (2015), ‘The representation of location by a regional climate model in complex terrain’, Hydrol. Earth Syst. Sci. 19, 3449–3456.
Maraun, D. and Widmann, M. (2017), ‘Cross-validation of bias corrected climate simulations is misleading’, Hydrol. Earth Syst. Sci. in prep.
Maraun, D., Widmann, M., Gutierrez, J. M., Kotlarski, S., Chand ler, R. E., Hertig, E., Wibig, J., Huth, R. and Wilcke, R. A.I. (2015), ‘VALUE: A framework to validate downscaling approaches for climate change studies’, Earth's Future 3, 1–14.
Masato, G., Hoskins, B. J. and Woollings, T. (2013), ‘Winter and summer Northern Hemisphere blocking in CMIP5 models’, J. Climate 26, 7044–7059.
Mason, S. J. (2004), ‘Simulating climate over western North America using stochastic weather generators’, Clim. Change 62(1), 155–187.
Masson-Delmotte, V., Schulz, M., Abe-Ouchi, A., Beer, J., Ganopolski, A., González Rouco, J. F., Jansen, E., Lambeck, K., Luterbacher, J., Naish, T., Osborn, T., Otto-Bliesner, B., Quinn, T., Ramesh, R., Rojas, M., Shao, X. and Timmermann, A. (2013), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA, chapter ‘Information from Paleoclimate Archives’.
Mastrand rea, M. D., Heller, N. E., Root, T. L. and Schneider, S. H. (2010), ‘Bridging the gap: linking climate-impacts research with adaptation planning and management’, Clim. Change 100(1), 87–101.
Matsikaris, A., Widmann, M. and Jungclaus, J. (2016), ‘Assimilating continental mean temperatures to reconstruct the climate of the late pre-industrial period’, Clim. Dynam. 46(11– 12), 3547–3566.
Matulla, C., Zhang, X., Wang, X. L., Wang, J., Zorita, E., Wagner, S. and Von Storch, H. (2008), ‘Influence of similarity measures on the performance of the analog method for downscaling daily precipitation’, Clim. Dynam. 30(2–3), 133–144.
Matyasovszky, I., Bogardi, I., Bardossy, A. and Duckstein, L. (1993), ‘Space-time precipitation reflecting climate change’, Hydrol. Sci. J. 38(6), 539–558.
Maurer, E. P. (2007), ‘Fine-resolution climate projections enhance regional climate change impact studies’, EOS 88(47), 504.
Maurer, E. P., Brekke, L., Pruitt, T., Thrasher, B., Long, J., Duffy, P., Dettinger, M., Cayan, D. and Arnold, J. (2014), ‘An enhanced archive facilitating climate impact and adaptation analysis’, Bull. Amer. Meteorol. Soc. 95(7), 1011–1019.
Maurer, E. P. and Hidalgo, H. G. (2008), ‘Utility of daily vs. monthly large-scale climate data: an intercomparison of two statistical downscaling methods’, Hydrol. Earth Syst. Sci. 12, 551– 563.
Maurer, E. P., Hidalgo, H. G., Das, T., Dettinger, M. D. and Cayan, D. R. (2010), ‘The utility of daily large-scale climate data in the assessment of climate change impacts on daily streamflow in California’, Hydrol. and Earth System Sci. 14(6), 1125–1138.
Maurer, E. P., Wood, A. W., Adam, J. C., Lettenmaier, D. P. and Nijssen, B. (2002), ‘A long-term hydrologically-based data set of land surface fluxes and states for the conterminous United States’, J. Climate 15(22), 3237–3251.
McBean, G., McCarthy, J., Browning, K., Morel, P. and Rasool, I. (1990), Climate Change. The IPCC Scientific Assessment. Report prepared for Intergovernmental Panel on Climate Change byWorking Group I, Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA, chapter ‘Narrowing the Uncertainties: A Scientific Action Plan for Improved Prediction of Global Climate Change’.
McCabe, G. J., Palecki, M. A. and Betancourt, J. L. (2004), ‘Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States’, Proc. Nat. Acad. Sci. 101(12), 4136– 4141.
McCullagh, P. and Nelder, J. A. (1983), Generalized linear Models, Chapman and Hall, London.
McGuffie, K. and Henderson-Sellers, A. (2005), A climate modelling primer, JohnWiley & Sons.
Mearns, L. O., Arritt, R., Biner, S., Bukovsky, M. S., McGinnis, S., Sain, S., Caya, D., Correia, J., Flory, D., Gutowski, W., Takle, E. S., Jones, R., Leung, R., Moufouma-Okia, W., McDaniel, L., Nunes, A. M.B., Qian, Y., Roads, J., Sloan, L. and Snyder, M. (2012), ‘The North American Regional Climate Change Assessment Program. Overview of Phase I Results’, Bull. Amer. Meteorol. Soc. 93, 1337–1362.
Mearns, L. O., Gutowski, W. J., Jones, R., Leung, L.-Y., McGinnis, S., Nunes, A. M.B. and Qian, Y. (2009), ‘A regional climate change assessment program for North America’, EOS 90(36), 311–312.
Mearns, L. O., Katz, R. W. and Schneider, S. H. (1984), ‘Extreme high-temperature events: changes in their probabilities with changes in mean temperature’, J. Clim. Appl. Meteorol. 23(12), 1601–1613.
Meehl, G. A., Covey, C., Delworth, T., Latif, M., McAvaney, B., Mitchell, J., Stouffer, R. and Taylor, K. (2007a), ‘The WCRP CMIP3 multi-model dataset: a new era in climate change research’, Bull. Amer. Meteorol. Soc. 88, 1383–1394.
Meehl, G. A., Goddard, L., Murphy, J., Stouffer, R. J., Boer, G., Danabasoglu, G., Dixon, K., Giorgetta, M. A., Greene, A. M., Hawkins, E., Hegerl, G., Karoly, D., Keenlyside, N., Kimoto, M., Kirtman, B., Navarra, A., Pulwarty, R., Smith, D., Stammer, D. and Stockdale, T. (2009), ‘Decadal prediction. Can it be skillfull?’, Bull. Amer. Meteorol. Soc. 90, 1467–1485.
Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T., Gregory, J. M., Kitoh, A., Knutti, R., Murphy, J. M., Noda, A., Raper, S. C.B., Watterson, I. G., Weaver, A. J. and Zhao, Z.-C. (2007b), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA, chapter ‘Global Climate Projections’.
Meredith, E. P., Maraun, D., Semenov, V. A. and Park, W. (2015a), ‘Evidence for added value of convection permitting models for studying changes in extreme precipitation’, J. Geophys. Res. Atmos. 120, 12, 500–12, 513.
Meredith, E. P., Semenov, V. A., Maraun, D., Park, W. and Chernokulsky, A. V. (2015b), ‘Crucial role of Black Sea warming in amplifying the 2012 Krymsk precipitation extreme’, Nat. Geosci. 8(8), 615–619.
Merlis, T. M. (2015), ‘Direct weakening of tropical circulations from masked CO2 radiative forcing’, Proc. Nat. Acad. Sci. 112(43), 13167–13171.
Mestre, O., Gruber, C., Prieur, C., Caussinus, H. and Jourdain, S. (2011), ‘SPLIDHOM: A method for homogenization of daily temperature observations’, J. Appl. Meteorol. Climatol. 50(11), 2343–2358.
Mezghani, A. and Hingray, B. (2009), ‘A combined downscaling-disaggregation weather generator for stochastic generation of multisite hourly weather variables over complex terrain: development and multi-scale validation for the Upper Rhone River basin’, J. Hydrol. 377(3), 245– 260.
Michelangeli, P.-A., Vrac, M. and Loukos, H. (2009), ‘Probabilistic downscaling approaches: application to wind cumulative distribution functions’, Geophys. Res. Lett. 36(11).
Minobe, S., Kuwano-Yoshida, A., Komori, N., Xie, S.-P. and Small, R. J. (2008), ‘Influence of the Gulf Stream on the troposphere’, Nature 452(7184), 206–209.
Mitchell, J. F. B., Johns, T. C., Eagles, M., Ingram, W. J. and Davis, R. A. (1999), ‘Towards the construction of climate change scenarios’, Clim. Change 41(3), 547–581.
Moron, V., Robertson, A. W., Ward, M.N. and Ndiaye, O. (2008), ‘Weather types and rainfall over Senegal. Part I: Observational analysis’, J. Climate 21(2), 266–287.
Mountain Research Initiative EDW Working Group (2015), ‘Elevation-dependent warming in mountain regions of the world’, Nat. Clim. Change 5(5), 424–430.
Murphy, J. M., Sexton, D. M.H., Jenkins, G. J., Booth, B. B.B., Brown, C. C., Clark, R. T., Collins, M., Harris, G. R., Kendon, E. J., Betts, R. A., Brown, S. J., Humphrey, K. A., McCarthy, M. P., McDonald, R. E., Stephens, A., Wallace, C., Warren, R., Wilby, R. and Wood, R. A. (2009), ‘UK climate projections science report: Climate change projections’, Technical report, Met Office Hadley Centre, Exeter UK.
Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T. and Zhang, H. (2013), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA, chapter ‘Anthropogenic and Natural Radiative Forcing’.
Nakamura, H., Sampe, T., Goto, A., Ohfuchi, W. and Xie, S.-P. (2008), ‘On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation’, Geophys. Res. Lett. 35, L15709.
Nakicenovic, N. and Swart, R., eds (2000), Special report on emissions scenarios: a special report of Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press.
Nature (2010), ‘Validation required’, Nature 463(7283), 849–849.
Neelin, J. D. (2010), Climate change and climate modeling, Cambridge University Press.
New, M., Hulme, M. and Jones, P. (1999), ‘Representing twentieth-century space–time climate variability. Part I: Development of a 1961–90 mean monthly terrestrial climatology’, J. Climate 12(3), 829–856.
New, M., Hulme, M. and Jones, P. (2000), ‘Representing twentieth-century space–time climate variability. Part II: development of 1901–96 monthly grids of terrestrial surface climate’, J. Climate 13(13), 2217–2238.
North, G. R., Bell, T. L., Cahalan, R. F. and Moeng, F. J. (1982), ‘Sampling errors in the estimation of empirical orthogonal functions’, Mon. Wea. Rev. 110(7), 699–706.
Northrop, P. (1998), ‘A clustered spatial-temporal model of rainfall’, Proc. Roy. Soc. A 454(1975), 1875–1888.
Novella, N. S. and Thiaw, W. M. (2013), ‘African rainfall climatology version 2 for famine early warning systems’, J. Appl. Meteorol. Climatol. 52(3), 588–606.
Obukhov, A. M. (1947), ‘Statistically homogeneous fields on a sphere’, Usp. Mat. Nauk 2(2), 196– 198.
Obukhov, A. M. (1954), ‘Statistical description of continuous fields’, Transactions of the Geophysical International Academy Nauk USSR 24(24), 3–42.
Obukhov, A. M. (1960), ‘The statistically orthogonal expansion of empirical functions’, Bulletin of the Academy of Sciences of the USSR. Geophysics Series (English Transl.) 1, 288– 291.
O'Hagan, T. (2004), ‘Dicing with the unknown’, Significance 1(3), 132–133.
O'Hare, G., Sweeney, J. and Wilby, R. (2014), Weather, climate and climate change: human perspectives, Routledge.
Olsson, J. (1998), ‘Evaluation of a scaling cascade model for temporal rain-fall disaggregation’, Hydrol. Earth Syst. Sci. 2(1), 19–30.
Olsson, J., Uvo, C. and Jinno, K. (2001), ‘Statistical atmospheric downscaling of short-term extreme rainfall by neural networks’, Phys. Chem. Earth B 26(9), 695–700.
Onof, C., Chand ler, R. E., Kakou, A., Northrop, P., Wheater, H.S. and Isham, V. (2000), ‘Rainfall modelling using Poisson-cluster processes: a review of developments’, Stoc. Env. Res. Risk Assess. 14(6), 384–411.
Onof, C. and Wheater, H. S. (1994), ‘Improvements to the modelling of British rainfall using a modified rand om parameter Bartlett-Lewis rectangular pulse model’, J. Hydrol. 157(1), 177– 195.
Osborn, T. J. and Hulme, M. (1997), ‘Development of a relationship between station and grid-box rainday frequencies for climate model evaluation’, J. Climate 10(8), 1885–1908.
Osborn, T. J., Wallace, C. J., Harris, I. C. and Melvin, T. M. (2016), ‘Pattern scaling using ClimGen: monthly-resolution future climate scenarios including changes in the variability of precipitation’, Clim. Change 134, 353–369.
Over, T. M. and Gupta, V. K. (1996), ‘A space-time theory of mesoscale rainfall using rand om cascades’, J. Geophys. Res. 101(D21), 26319–26331.
Palmer, T. N. (2013), ‘Climate extremes and the role of dynamics’, Proc. Nat. Acad. Sci. 110, 5281–5282.
Panofsky, H. W. and Brier, G. W. (1968), Some applications of statistics to meteorology, The Pennsylvania State University Press.
Parker, D. E. (2010), ‘Urban heat island effects on estimates of observed climate change’, WIREs Clim. Change 1(1), 123–133.
Paschalis, A., Molnar, P., Fatichi, S. and Burland o, B. (2013), ‘A stochastic model for highresolution space-time precipitation simulation’, Wat. Resour. Res. 49(12), 8400–8417.
Paul, S., Liu, C. M., Chen, J. M. and Lin, S. H. (2008), ‘Development of a statistical downscaling model for projecting monthly rainfall over east asia from a general circulation model output’, J. Geophys. Res. 113(D15).
Pearson, K. (1901), ‘On lines and planes of closest fit to systems of points in space’, Philosophical Magazine 2(11), 559–572.
Peixoto, J. P. and Oort, A. H. (1992), Physics of climate, American Institute of Physics.
Penalba, O. C., Rivera, J. A. and Pántano, V.C. (2014), ‘The CLARIS LPB database: constructing a long-term daily hydro-meteorological dataset for La Plata Basin, southern South America’, Geosci. Data J. 1(1), 20–29.
Perica, S. and Foufoula-Georgiou, E. (1996), ‘Model for multiscale disaggregation of spatial rainfall based on coupling meteorological and scaling descriptions’, J. Geophys. Res 101, 26–347.
Philand er, S. G. (1990), El Niño, La Niña, and the Southern Oscillation, Academic Press.
Philipp, A., Bartholy, J., Beck, C., Erpicum, M., Esteban, P., Fettweis, X., Huth, R., James, P., Jourdain, S., Kreienkamp, F. et al. (2010), ‘Cost733cat - A database of weather and circulation type classifications’, Phys. Chem. Earth 35(9), 360–373.
Philipp, A., Beck, C., Huth, R. and Jacobeit, J. (2014), ‘Development and comparison of circulation type classifications using the COST 733 dataset and software’, Int. J. Climatol.
Philipp, A., Della-Marta, P.-M., Jacobeit, J., Fereday, D. R., Jones, P. D., Moberg, A. and Wanner, H. (2007), ‘Long-term variability of daily North Atlantic-European pressure patterns since 1850 classified by simulated annealing clustering’, J. Climate 20(16), 4065–4095.
Piani, C. and Haerter, J. O. (2012), ‘Two dimensional bias correction of temperature and precipitation copulas in climate models’, Geophys. Res. Lett. 39(20), L20401.
Piani, C., Haerter, J. O. and Coppola, E. (2010a), ‘Statistical bias correction for daily precipitation in regional climate models over Europe’, Theor. Appl. Climatol. 99(1–2), 187–192.
Piani, C., Weedon, G. P., Best, M., Gomes, S. M., Viterbo, P., Hagemann, S. and Haerter, J. O. (2010b), ‘Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models’, J. Hydrol. 395, 199–215.
Pielke Jr., R. A. (2007), The honest broker: making sense of science in policy and politics, Cambridge University Press.
Pielke, R. A. and Wilby, R. L. (2012), ‘Regional climate downscaling: What's the point?’, EOS 93(5), 52–53.
Pielke, R., Beven, K., Brasseur, G., Calvert, J., Chahine, M., Dickerson, R. R., Entekhabi, D., Foufoula-Georgiou, E., Gupta, H., Gupta, V., Krajewski, W., Krieder, E. P., Lau, W. K.M., Mc Donnell, J., Rossow, W., Schaake, J., Smith, J., Sorooshian, S. and Wood., E. (2009), ‘Climate change: the need to consider human forcings besides greenhouse gases’, EOS 90(45), 413–413.
Pierce, D. W., Cayan, D. R., Maurer, E. P., Abatzoglou, J. T. and Hegewisch, K. C. (2015), ‘Improved bias correction techniques for hydrological simulations of climate change’, J. Hydrometeorol. 16(6), 2421–2442.
Pierce, D. W., Cayan, D. R. and Thrasher, B. L. (2014), ‘Statistical downscaling using localized constructed analogs (LOCA)’, J. Hydrometeorol. 15(6), 2558–2585.
Pingel, S., ed. (2012), Toward a climate services enterprise, Brussels, Belgium. Conference Report.
Pinto, J. G., Neuhaus, C. P., Leckebusch, G. C., Reyers, M. and Kerschgens, M. (2010), ‘Estimation of wind storm impacts over western germany under future climate conditions using a statistical–dynamical downscaling approach’, Tellus A 62(2), 188–201.
Planton, S., ed. (2013), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA, chapter ‘Annex III: Glossary’.
Plaut, G. and Simonnet, E. (2001), ‘Large-scale circulation classification, weather regimes, and local climate over France, the Alps and Western Europe’, Clim. Res. 17(3), 303–324.
Poli, P., Hersbach, H., Dee, D. P., Berrisford, P., Simmons, A. J., Vitart, F., Laloyaux, P., Tan, D. G.H., Peubey, C., Thépaut, J.-N., Yannick, T., Hólm, E.V., Bonavita, M., Isaksen, L. and Fisher, M. (2016), ‘ERA-20C: An atmospheric reanalysis of the twentieth century’, J. Climate 29, 4083–4097.
Prein, A. F., Gobiet, A., Suklitsch, M., Truhetz, H., Awan, N. K., Keuler, K. and Georgievski, G. (2013), ‘Added value of convection permitting seasonal simulations’, Clim. Dynam. 41, 2655– 2677.
Prein, A. F., Langhans, W., Fosser, G., Ferrone, A., Ban, N., Goergen, K., Keller, M., Tölle, M., Gutjahr, O., Feser, F., Brisson, E., Kollet, S., Schmidli, J., van Lipzig, N.P.M. and Leung, R. (2015), ‘A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges’, Rev. Geophys. 53(2), 323–361.
Prein, A. F., Rasmussen, R. M., Ikeda, K., Liu, C., Clark, M. P. and Holland, G. J. (2017), ‘The future intensification of hourly precipitation extremes’, Nat. Clim. Change 7, 48–52.
Preisendorfer, R. W. and Barnett, T. P. (1977), Significance tests for empirical orthogonal functions, in Fifth Conf. on Probability and Statistics in Atmos. Sci., Las Vegas, NV. American Meteorol. Soc, Vol. 169, p. 172.
Preisendorfer, R. W. and Mobley, C. D. (1988), Principal component analysis in meteorology and oceanography, Developments in atmospheric science, Elsevier.
Preisendorfer, R. W., Zwiers, F. W. and Barnett, T. P. (1981), ‘Foundations of principal component selection rules’, SIO Reference Series 81–4 May 1981.
prepdata (n.d.), ‘Partnership for Resilience and Preparedness (PREP)’,
Prudhomme, C., Reynard, N. and Crooks, S. (2002), ‘Downscaling of global climate models for flood frequency analysis: where are we now?’, Hydrol. Proc. 16(6), 1137–1150. Sp. Iss. SI.
Prudhomme, C., Wilby, R.L., Crooks, S., Kay, A. L. and Reynard, N. S. (2010), ‘Scenario-neutral approach to climate change impact studies: application to flood risk’, J. Hydrol. 390, 198–209.
Pruppacher, H. R., Klett, J. D. and Wang, P. K. (1998), Microphysics of clouds and precipitation, Taylor & Francis.
Pryor, S. C., Schoof, J. T. and Barthelmie, R. J. (2005), ‘Empirical downscaling of wind speed probability distributions’, J. Geophys. Res. 110, D19109.
Racherla, P. N., Shindell, D. T. and Faluvegi, G. S. (2012), ‘The added value to global model projections of climate change by dynamical downscaling: a case study over the continental US using the GISS-ModelE2 and WRF models’, J. Geophys. Res. 117(D20).
Racsko, P., Szeidl, L. and Semenov, M. (1991), ‘A serial approach to local stochastic weather models’, Ecol. Mod. 57(1–2), 27–41.
Radanovics, S., Vidal, J.-P., Sauquet, E., Daoud, A. B. and Bontron, G. (2013), ‘Optimising predictor domains for spatially coherent precipitation downscaling’, Hydrol. Earth Syst. Sci. 17, 4189–4208.
Räisänen, J. and Räty, O. (2013), ‘Projections of daily mean temperature variability in the future: cross-validation tests with ENSEMBLES regional climate simulations’, Clim. Dynam. 41, 1553–1568.
Rajczak, J., Kotlarski, S. and Schär, C. (2016), ‘Does quantile mapping of simulated precipitation correct for biases in transition probabilities and spell lengths?’, J. Climate 29, 1605–1615.
Rand all, D. (2015), An introduction to the global circulation of the atmosphere, Princeton University Press.
Räty, O., Räisänen, J. and Ylhäisi, J.S. (2014), ‘Evaluation of delta change and bias correction methods for future daily precipitation: intermodel cross-validation using ENSEMBLES simulations’, Clim. Dynam. 42(9–10), 2287–2303.
Raymond, D. J. and Emanuel, K. A. (1993), The Kuo cumulus parameterization, in The representation of cumulus convection in numerical models, Springer, pp. 145–147.
Rebora, N., Ferraris, L., von Hardenberg, J. and Provenzale, A. (2006), ‘RainFARM: rainfall downscaling by a filtered autoregressive model’, J. Hydrometeorol. 7(4), 724–738.
Reyers, M., Pinto, J. G. and Moemken, J. (2015), ‘Statistical–dynamical downscaling for wind energy potentials: evaluation and applications to decadal hindcasts and climate change projections’, Int. J. Climatol. 35(2), 229–244.
Richardson, C. W. (1981), ‘Stochastic simulation of daily precipitation, temperature, and solar radiation’, Wat. Resour. Res. 17(1).
Richardson, C. W. and Wright, D. A. (1984), ‘WGEN: A model for generating daily weather variables’, Report No. 8, Agricultural Research Service, US Department of Agriculture, Washington, DC.
Richman, M. (1987), ‘Rotation of principal components: a reply’, J. Climatol. 7(5), 511–520.
Richman, M. B. (1986), ‘Rotation of principal components’, J. Climatol. 6(3), 293–335.
Richter, I. (2015), ‘Climate model biases in the eastern tropical oceans: causes, impacts and ways forward’, WIRES: Clim. Change 6(3), 345–358.
Richter, I., Chang, P., Xu, Z., Doi, T., Kataoka, T., Nagura, M., Oettli, P., de Szoeke, S. and Tozuka, T. (2016), Indo-Pacific climate variability and predictability, World Scientific, chapter ‘An Overview of Coupled GCM Performance in the Tropics’.
Richter, I. and S.-P. Xie (2008), ‘On the origin of equatorial Atlantic biases in coupled general circulation models’, Clim. Dynam. 31(5), 587–598.
Richter, I., Xie, S.-P., Behera, S. K., Doi, T. and Masumoto, Y. (2014), ‘Equatorial Atlantic variability and its relation to mean state biases in CMIP5’, Clim. Dynam. 42(1–2), 171–188.
Rienecker, M.M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G.-K., Bloom, S., Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J., Koster, R. D., Lucchesi, R., Molo, A., Owens, T., Pawson, S., Pegion, P., Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M. and Woollen, J. (2011), ‘MERRA: NASA's modern-era retrospective analysis for research and applications’, J. Climate 24(14), 3624–3648.
Rockel, B. (2015), ‘The regional downscaling approach: a brief history and recent advances’, Curr. Clim. Change. Rep. 1(1), 22–29.
Rodriguez-Iturbe, I., Cox, D. R. and Isham, V. (1987), ‘Some models for rainfall based on stochastic point processes’, in Proc. Roy. Soc. A, Vol. 410, pp. 269–288.
Rodriguez-Iturbe, I., Cox, D. R. and Isham, V. (1988), ‘A point process model for rainfall: further developments’, in Proc. Roy. Soc. A, Vol. 417, The Royal Society, pp. 283–298.
Roe, G. H. (2005), ‘Orographic precipitation’, Ann. Rev. Earth Planet. Sci. 33, 645–671.
Roehrig, R., Bouniol, D., Guichard, F., Hourdin, H. and Redelsperger, J.-L. (2013), ‘The present and future of the West African monsoon: a process-oriented assessment of CMIP5 simulations along the AMMA transect’, J. Climate 26(17), 6471–6505.
Roessler, O., Fischer, A. M., Huebener, H., Maraun, D., Benestad, R. E., Christodoulides, P., Soares, P. M.M., Cardoso, R. M., Pagé, C., Kanamaru, H., Kreienkamp, F. and Vlachogiannis, D. (2017), ‘Challenges to link climate change data provision and user needs - perspective from the COST-Action VALUE’, Int. J. Climatol. DOI: 10.1002/joc.5060.
Rogers, R. R. and Yau, M. K. (1996), A short course in cloud physics, Elsevier.
Rosenzweig, C. (1985), ‘Potential CO2-induced climate effects on North American wheatproducing regions’, Clim. Change 7, 367–389.
Rummukainen, M. (1997), ‘Methods of statistical downscaling of GCM simulations. Reports Meteorology and Climatology 80’, Technical report, SwedishMeteorological and Hydrological Institute, SE-601 76 Norrköping, Sweden.
Rummukainen, M. (2010), ‘State-of-the-art with regional climate models’, WIREs Clim. Change 1, 82–96. DOI: 10.1002/wcc.8.
Rust, H. W., Kruschke, T., Dobler, A., Fischer, M. and Ulbrich, U. (2015), ‘Discontinuous daily temperatures in the WATCH forcing datasets’, J. Hydrometeorol. 16(1), 465–472.
Rust, H. W., Vrac, M., Lengaigne, M. and Sultan, B. (2010), ‘Quantifying differences in circulation patterns based on probabilistic models: IPCC AR4 multimodel comparison for the North Atlantic’, J. Climate 23(24), 6573–6589.
Rust, H. W., Vrac, M., Sultan, B. and Lengaigne, M. (2013), ‘Mapping weather-type influence on Senegal precipitation based on a spatial–temporal statistical model’, J. Climate 26(20), 8189– 8209.
Saji, N. H., Goswami, B. N., Vinayachand ran, P. N. and Yamagata, T. (1999), ‘A dipole mode in the tropical Indian Ocean’, Nature 401(6751), 360–363.
Salameh, T., Drobinski, P., Vrac, M. and Naveau, P. (2009), ‘Statistical downscaling of nearsurface wind over complex terrain in southern France’, Meteorol. Atmos. Phys. 103(1), 253– 265.
Salathé, E.P. (2005), ‘Downscaling simulations of future global climate with application to hydrologic modelling’, Int. J. Climatol. 25(4), 419–436.
Salathé, E.P., Steed, R., Mass, C. F. and Zahn, P. H. (2008), ‘A high-resolution climate model for the U.S. Pacific Northwest: mesoscale feedbacks and local responses to climate change’, J. Climate 21, 5708–5726.
San-Martín, D., Manzanas, R., Brand s, S., Herrera, S. and Gutiérrez, J.M. (2017), ‘Reassessing model uncertainty for regional projections of precipitation with an ensemble of statistical downscaling methods’, J. Climate 30(1), 203–223.
Santer, B. (1985), ‘The use of general circulation models in climate impact analysis – a preliminary study of the impacts of CO2-induced climatic change on West European agriculture’, Clim. Change 7, 71–93.
Satoh, M. (2013), Atmospheric circulation dynamics and general circulation models, Springer Science & Business Media.
Satoh, M., Matsuno, T., Tomita, H., Miura, H., Nasuno, T. and Iga, S. (2008), ‘Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud-resolving simulations’, J. Comput. Phys. 227, 3486–3514.
Saunders, I. R. and Byrne, J. M. (1999), ‘Using synoptic surface and geopotential height fields for generating grid-scale precipitation’, Int. J. Climatol. 19(11), 1165–1176.
Sauter, T. and Venema, V. (2011), ‘Natural three-dimensional predictor domains for statistical precipitation downscaling’, J. Climate 24(23), 6132–6145.
Scaife, A. A., Copsey, D., Gordon, C., Harris, C., Hinton, T., Keeley, S., O'Neill, A., Roberts, M. and Williams, K. (2011), ‘Improved Atlantic winter blocking in a climate model’, Geophys. Res. Lett. 38, L23703.
Schamm, K., Ziese, M., Raykova, K., Becker, A., Finger, P., Meyer-Christoffer, A. and Schneider, U. (2015), ‘GPCC Full Data Daily Version 1.0 at 1.0?: Daily Land -
Surface Precipitation from Rain-Gauges built on GTS-based and Historic Data', DOI: 10.5676/DWD_GPCC/FD_D_V1_100.
Schär, C., Frei, C., Lüthi, D. and Davies, H. C. (1996), ‘Surrogate climate-change scenarios for regional climate models’, Geophys. Res. Lett. 23(6), 669–672.
Schär, C., Lüthi, D., Beyerle, U. and Heise, E. (1999), ‘The soil-precipitation feedback: A process study with a regional climate model’, J. Climate 12(3), 722–741.
Schertzer, D. and Lovejoy, S. (1987), ‘Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes’, J. Geophys. Res. 92(D8), 9693–9714.
Schiermeier, Q. (2010), ‘The real holes in climate science’, Nature 463(7279), 284–288.
Schlesinger, M. E. and Ramankutty, N. (1994), ‘An oscillation in the global climate system of period 65–70 years’, Nature 367(6465), 723–726.
Schmidli, J., Frei, C. and Vidale, P. L. (2006), ‘Downscaling from GCM precipitation: A benchmark for dynamical and statistical downscaling methods’, Int. J. Climatol. 26, 679–689.
Schmidli, J., Goodess, C. M., Frei, C., Haylock, M.R., Hundecha, Y., Ribalaygua, J. and Schmith, T. (2007), ‘Statistical and dynamical downscaling of precipitation: an evaluation and comparison of scenarios for the European Alps’, J. Geophys. Res. 112(D4).
Schmith, T. (2008), ‘Stationarity of regression relationships: Application to empirical downscaling’, J. Climate 21(17), 4529–4537.
Schneider, S. H. (2001), ‘What is “Dangerous” climate change?’, Nature 411(6833), 17–19.
Schneider, U., Fuchs, T., Meyer-Christoffer, A. and Rudolf, B. (2008), ‘Global precipitation analysis products of the GPCC’, Global Precipitation Climatology Centre (GPCC), DeutscherWetterdienst, Offenbach a. M., Germany, November.
Schölzel, C. and Friederichs, P. (2008), ‘Multivariate non-normally distributed rand om variables in climate research – introduction to the copula approach’, Nonlin. Proc. Geophys. 15, 761– 772.
Schölzel, C. and Hense, A. (2011), ‘Probabilistic assessment of regional climate change in Southwest Germany by ensemble dressing’, Clim. Dynam. 36(9), 2003–2014.
Schoof, J. T. (2013), ‘Statistical downscaling in climatology’, Geogr. Comp. 7(4), 249–265.
Schoof, J. T. and Pryor, S. C. (2001), ‘Downscaling temperature and precipitation: A comparison of regression-based methods and artificial neural networks’, Int. J. Climatol. 21(7), 773–790.
Schrum, C., Hübner, U., Jacob, D. and Podzun, R. (2003), ‘A coupled atmosphere/ice/ocean model for the North Sea and the Baltic Sea’, Clim. Dynam. 21(2), 131–151.
Schwarb, M. (2000), The alpine precipitation climate, PhD thesis, Swiss Federal Institute of Technology Zurich.
Schwarz, G. (1978), ‘Estimating the dimension of a model’, Ann. Statist. 6, 461–464.
Schwarz, H. E. (1966), Climate, Climatic change, and water supply, National Academy of Sciences, chapter ‘Climatic Change and Water Supply: How Sensitive is the Northeast?’, pp. 111– 120.
Semenov, M. A. and Barrow, E. M. (1997), ‘Use of a stochastic weather generator in the development of climate change scenarios’, Clim. Change 35(4), 397–414.
Semenov, M. A., Brooks, R. J., Barrow, E. M. and Richardson, C. W. (1998), ‘Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates’, Clim. Res. 10(2), 95–107.
Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., Orlowsky, B. and Teuling, A. J. (2010), ‘Investigating soil moisture – climate interactions in a changing climate: a review’, Earth Sci. Rev. 99(3), 125–161.
Seo, K.-H., Frierson, D. M. W. and Son, J.-H. (2014), ‘A mechanism for future changes in Hadley circulation strength in CMIP5 climate change simulations’, Geophys. Res. Lett. 41(14), 5251– 5258.
Sheffield, J., Goteti, G. and Wood, E. F. (2006), ‘Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling’, J. Climate 19(13), 3088–3111.
Shepard, D. S. (1984), ‘Computer mapping: The SYMAP interpolation algorithm’, in Spatial statistics and models, Springer, pp. 133–145.
Shepherd, T. G. (2014), ‘Atmospheric circulation as a source of uncertainty in climate change projections’, Nat. Geosci. 7, 703–708.
Shindell, D., Racherla, P. and Milly, G. (2014), ‘Reply to comment by Laprise on “The added value to global model projections of climate change by dynamical downscaling: a case study over the continental US using the GISS-ModelE2 and WRF models“’, J. Geophys. Res. 119(7), 3882– 3885.
Sillmann, J., Kharin, V. V., Zhang, X., Zwiers, F. W. and Bronaugh, D. (2013), ‘Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate’, J. Geophys. Res. 118(4), 1716–1733.
Simmons, A. J., Jones, P. D., da Costa Bechtold, V., Beljaars, A. C.M., Kållberg, P.W., Saarine, S., Uppala, S. M., Viterbo, P. and Wedi, N. (2004), ‘Comparison of trends and low-frequency variability in CRU, ERA-40, and NCEP/NCAR analyses of surface air temperature’, J. Geophys. Res. 109(D24).
Simmons, A. J., Willett, K. M., Jones, P. D., Thorne, P. W. and Dee, D. P. (2010), ‘Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets’, J. Geophys. Res. 115(D1).
Sklar, A. (1959), ‘Fonctions de répartition à n dimensions et leurs marges’, Publ. Inst. Stat. Univ. Paris 8.
Slingo, J., Inness, P., Neale, R., Woolnough, S. and Yang, G. (2003), ‘Scale interactions on diurnal to seasonal timescales and their relevance to model systematic errors’, Ann. Geophys. 46(1), 139–155.
Smith, D. M., Cusack, S., Colman, A. W., Folland, C. K., Harris, G. R. and Murphy, J. M. (2007), ‘Improved surface temperature prediction for the coming decade from a global climate model’, Science 317(5839), 796–799.
Smith, L. A. (2002), ‘What might we learn from climate forecasts?’, Proc. Nat. Acad. Sci. 99(suppl 1), 2487–2492.
Smith, R. L. (1990), ‘Regional estimation from spatially dependent data’, Technical report.
Soares, P. et al. (2017), ‘Process based evaluation of the VALUE perfect predictor experiment of statistical downscaling methods’, Int. J. Climatol., subm.
Solman, S. A., Sanchez, E., Samuelsson, P., da Rocha, R. P., Li, L., Marengo, J., Pessacg, N. L., Remedio, A. R.C., Chou, S., Berbery, H, Le Treut, H., de Castro, M. and Jacob, D. (2013), ‘Evaluation of an ensemble of regional climate model simulations over South America driven by the ERA-Interim reanalysis: model performance and uncertainties’, Clim. Dynam. 41(5- 6), 1139–1157.
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. and Miller, H. L., eds. (2007), Climate change 2007: The physical science basis: Working Group I contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.
Somot, S., Sevault, F., Déqué, M. and Crépon, M. (2008), ‘21st century climate change scenario for the Mediterranean using a coupled atmosphere–ocean regional climate model’, Glob. Planet. Change 63(2), 112–126.
Spearman, C. (1904), ‘“General intelligence, ” objectively determined and measured’, The American Journal of Psychology 15(2), 201–292.
Sperber, K. R., Annamalai, H., Kang, I.-S., Kitoh, A., Moise, A., Turner, A., Wang, B. and Zhou, T. (2013), ‘The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century’, Clim. Dynam. 41, 2711–2744.
Stainforth, D. A. (2016), personal communication.
Stainforth, D. A., Allen, M. R., Tredger, E. R. and Smith, L. A. (2007), ‘Confidence, uncertainty and decision-support relevance in climate predictions’, Phil. Trans. R. Soc. A 365, 2145– 2161.
Stehlik, J. and Bárdossy, A. (2002), ‘Multivariate stochastic downscaling model for generating daily precipitation series based on atmospheric circulation’, J. Hydrol. 256(1–2), 120–141.
Steiger, N. J., Steig, E. J., Dee, S. G., Roe, G. H. and Hakim, G. J. (2017), ‘Climate reconstruction using data assimilation of water isotope ratios from ice cores’, J. Geophys. Res. 122(3), 1545– 1568.
Stensrud, D. J. (2009), Parameterization schemes: keys to understand ing numerical weather prediction models, Cambridge University Press.
Stern, R. D. and Coe, R. (1984), ‘A model fitting analysis of daily rainfall data’, J. Roy. Stat. Soc. A 134(1), 1–34.
Stevens, B. and Bony, S. (2013), ‘What are climate models missing?’, Science 340(6136), 1053– 1054.
Stocker, T. (2011), Introduction to climate modelling, Springer Science & Business Media.
Stocker, T. F., Dahe, Q., Plattner, G.-K. and Tignor, M. (2015), ‘IPCC Workshop on Regional Climate Projections and their Use in Impacts and Risk Analysis Studies’, https://www.ipcc .ch/pdf/supporting-material/RPW_WorkshopReport.pdf.
Stocker, T. F., Qin, D., Plattner, K., Tignor, M. M.B., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P. M., eds (2013), Climate change 2013: the physical science basis: Working Group I contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.
Stone, M. (1977), ‘An asymptotic equivalence of choice of model by cross-validation and Akaike's criterion’, J. R. Stat. Soc. B 39, 44–47.
Stoner, A. M. K., Hayhoe, K., Yang, X. and Wuebbles, D. J. (2013), ‘An asynchronous regional regression model for statistical downscaling of daily climate variables’, Int. J. Climatol. 33, 2473–2494.
Sun, F., Walton, D. B. and Hall, A. (2015), ‘A hybrid dynamical–statistical downscaling technique. Part II: End-of-century warming projections predict a new climate state in the Los Angeles region’, J. Climate 28(12), 4618–4636.
Sutton, R. T. and Dong, B. (2012), ‘Atlantic Ocean influence on a shift in European climate in the 1990s’, Nat. Geosci. 5, 788–792.
Switanek, M. B., Troch, P. A., Castro, C. L., Leuprecht, A., Chang, H.-I., Mukherjee, R. and Demaria, E. M.C. (2016), ‘Scaled distribution mapping: a bias correction method that preserves raw climate model projected changes’, Hydrol. Earth Syst. Sci. accepted.
Takle, E. S., Gutowski, W. J., Arritt, R. A., Pan, Z., Anderson, C. J., da Silva, R. R., Caya, D., Chen, S.-C., Christensen, J. H., Hong, S.-Y., Juang, H.-M. H., J. K. W., Lapenta, Laprise, R., Lopez, P., McGregor, J. and Roads, J. O. (1999), ‘Project to Intercompare Regional Climate Simulations (PIRCS): Description and initial results’, J. Geophys. Res. 104, 19443–19461.
Tareghian, R. and Rasmussen, P. F. (2013), ‘Statistical downscaling of precipitation using quantile regression’, J. Hydrol. 487, 122–135.
Taylor, K. E., Stouffer, R. J. and Meehl, G. A. (2012), ‘An overview of CMIP5 and the experiment design’, Bull. Amer. Meteorol. Soc. 93, 485–498.
Tebaldi, C. and Knutti, R. (2007), ‘The use of the multi-model ensemble in probabilistic climate projections’, Phil. Trans. R. Soc. A 365, 2053–2075.
Tebaldi, C., Smith, R. L., Nychka, D. and Mearns, L. O. (2005), ‘Quantifying uncertainty in projections of regional climate change: a Bayesian approach to the analysis of multimodel ensembles’, J. Climate 18(10), 1524–1540.
Teutschbein, C. and Seibert, J. (2012), ‘Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods’, J. Hydrol. 456, 12–29.
Themeßl, M. J., Gobiet, A. and Heinrich, G. (2012), ‘Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal’, Clim. Change 112, 449–468.
Themeßl, M. J., Gobiet, A. and Leuprecht, A. (2011), ‘Empirical-statistical downscaling and error correction of daily precipitation from regional climate models’, Int. J. Climatol. 31, 1530–1544.
Thober, S., Mai, J., Zink, M. and Samaniego, L. (2014), ‘Stochastic temporal disaggregation of monthly precipitation for regional gridded data sets’, Wat. Resour. Res. 50(11), 8714–8735.
Thompson, D. W. J., Baldwin, M.P. and Wallace, J. M. (2002), ‘Stratospheric connection to Northern Hemisphere wintertime weather: implications for prediction’, J. Climate 15(12), 1421– 1428.
Thorne, P. W. and Vose, R. S. (2010), ‘Reanalysis suitable for characterizing long term trends. Are they really achievable?’, Bull. Amer. Meteorol. Soc. 91, 353–361.
Thorne, P. and Vose, R. S. (2011), ‘Reply to comments on “Reanalyses suitable for characterizing long-term trends“’, Bull. Amer. Meteorol. Soc. 92(1), 70–72.
Thorne, P. W., Willett, K. M., Allan, R. J., Bojinski, S., Christy, J. R., Fox, N., Gilbert, S., Jolliffe, I., Kennedy, J. J., Kent, E., Klein Tank, A., Lawrimore, J., Parker, D. E., Rayner, N., Simmons, A., Song, L., Stott, P. A., and Trewin, B. (2011), ‘Guiding the creation of a comprehensive surface temperature resource for twenty-first-century climate science’, Bull. Amer. Meteorol. Soc. 92(11), ES40–ES47.
Thrasher, B., Maurer, E. P., McKellar, C. and Duffy, P. (2012), ‘Technical note: bias correcting climate model simulated daily temperature extremes with quantile mapping’, Hydrol. Earth Syst. Sci. 16(9), 3309–3314.
Tiedtke, M. (1989), ‘A comprehensive mass flux scheme for cumulus parameterization in largescale models’, Mon. Wea. Rev. 117(8), 1779–1800.
Tippett, M. K., DelSole, T., Mason, S. J. and Barnston, A. G. (2008), ‘Regression-based methods for finding coupled patterns’, J. Climate 21(17), 4384–4398.
Tokmakian, R., Challenor, P. and Andrianakis, Y. (2012), ‘On the use of emulators with extreme and highly nonlinear geophysical simulators’, J. Atmos. Ocean. Tecnol. 29(11), 1704–1715.
Toreti, A., Kuglitsch, F. G., Xoplaki, E., Luterbacher, J. and Wanner, H. (2010), ‘A novel method for the homogenization of daily temperature series and its relevance for climate change analysis’, J. Climate 23(19), 5325–5331.
Tran, G. T., Oliver, K. I.C., Sóbester, A., Toal, D. J.J., Holden, P. B., Marsh, R., Challenor, P. and Edwards, N. R. (2016), ‘Building a traceable climate model hierarchy with multi-level emulators’, Adv. Stat. Climatol. Meteorol. Ocean. 2(1), 17–37.
Trenberth, K. E. (1975), ‘A quasi-biennial stand ing wave in the Southern Hemisphere and interrelations with sea surface temperature’, Quart. J. Roy. Meteorol. Soc. 101(427), 55–74.
Trenberth, K. E. (1992), Climate system Modeling, Cambridge University Press.
Trewin, B. (2010), ‘Exposure, instrumentation, and observing practice effects on land temperature measurements’, WIREs Clim. Change 1(4), 490–506.
Trewin, B. (2013), ‘A daily homogenized temperature data set for Australia’, Int. J. Climatol. 33(6), 1510–1529.
Underwood, F. M. (2009), ‘Describing long-term trends in precipitation using generalized additive models’, J. Hydrol. 364(3), 285–297.
UNFCCC (1997), ‘Report of the subsidiary body for scientific and technological advice on the work of its seventh session’, FCCC/SBSTA/1997/14, United Nations, Geneva, Switzerland, 10 November.
United Nations (1992), ‘United Nations Framework Convention on Climate Change’, United Nations, 1992. FCCC/INFORMAL/84 GE.05-62220 (E) 200705. Available at
Uppala, S. M., Källberg, P.W., Simmons, A. J. and Adrae et al., U. (2005), ‘The ERA-40 reanalysis’, Quart. J. Roy. Meteorol. Soc 131, 2961–3012.
US Army Corps of Engineers (1971), ‘HEC-4 monthly streamflow simulation’. Hydrologic Engineering Center, Davis, California.
van Asselt, M.B.A., J. and Rotmans (2002), ‘Uncertainty in integrated assessment modelling’, Clim. Change 54(1), 75–105.
van den Dool, H. M. (1994), ‘Searching for analogues, how long must we wait?’, Tellus A 46(3), 314–324.
van der Linden, P. and Mitchell, J. F.B. (2009), ‘ENSEMBLES: Climate Change and its Impacts: Summary of research and results from the ENSEMBLES project’, Technical report, Met Office Hadley Centre.
van Haren, R., van Oldenborgh, G. J., Lenderink, G., Collins, M. and Hazeleger, W. (2013a), ‘SST and circulation trend biases cause an underestimation of European precipitation trends’, Clim. Dynam. 40(1–2), 1–20.
van Haren, R., van Oldenborgh, G. J., Lenderink, G. and Hazeleger, W. (2013b), ‘Evaluation of modeled changes in extreme precipitation in Europe and the Rhine basin’, Environ. Res. Lett. 8(1), 014053.
van Meijgaard, E., van Ulft, L. H., van de Berg, W. J., Bosveld, F. C., van den Hurk, B. J. J. M., Lenderink, G. and Sibesma, A. P. (2008), ‘The KNMI regional atmospheric climate model RACMO version 2.1, Technical Report 302, Royal Dutch Meteorological Institute, KNMI, Postbus 201, 3730 AE, De Bilt, The Netherland s.
van Oldenborgh, G. J., Doblas Reyes, F.-J., Drijfhout, S. S. and Hawkins, E. (2013), ‘Reliability of regional climate model trends’, Env. Res. Lett. 8(1), 014055.
van Oldenborgh, G. J., Drijfhout, S., van Ulden, A., Haarsma, R., Sterl, A., Severijns, C., Hazeleger, W. and Dijkstra, H. (2009), ‘Western Europe is warming much faster than expected’, Clim. Past 5(1), 1–12.
van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J. and Rose, S. K. (2011), ‘The representative concentration pathways: an overview’, Clim. Change 109(1), 5–31.
Vannitsem, S. (2011), ‘Bias correction and post-processing under climate change’, Nonlin. Proc. Geophys. 18, 911–924.
Vautard, R. (1990), ‘Multiple weather regimes over the North Atlantic: analysis of precursors and successors’, Mon. Wea. Rev. 118(10), 2056–2081.
Vecchi, G. A., Soden, B. J., Wittenberg, A.T., Held, I. M., Leetmaa, A. and Harrison, M. J. (2006), ‘Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing’, Nature 441(7089), 73–76.
Venema, V. K. C., Mestre, O., Aguilar, E., Auer, I., Guijarro, J. A., Domonkos, P., Vertacnik, G., Szentimrey, T., Stepanek, P., Zahradnicek, P., Viarre, J., Müller-Westermeier, G., Lakatos, M., Williams, C. N., Menne, M. J., Lindau, R., Rasol, D., Rustemeier, E., Kolokythas, K., Marinova, T., Andresen, L., Acquaotta, F., Fratianni, S., Cheval, S., Klancar, M., Brunetti, M., Gruber, C., Prohom Duran, M., Likso, T., Esteban, P. and Brand sma, T. (2012), ‘Benchmarking homogenization algorithms for monthly data’, Clim. Past 8, 89–115.
Volosciuk, C., Maraun, D., Semenov, V. A. and Park, W. (2015), ‘Extreme precipitation in an atmosphere general circulation model: impact of horizontal and vertical model resolutions’, J. Climate 28(3), 1184–1205.
Volosciuk, C., Maraun, D., Vrac, M. and Widmann, M. (2017), ‘A combined statistical bias correction and stochastic downscaling method for precipitation’, Hydrol. Earth Syst. Sci. 21(3), 1693–1719.
von Storch, H. (1999), ‘On the use of “inflation” in statistical downscaling’, J. Climate 12(12), 3505–3506.
von Storch, H. and Hannoschöck, G. (1985), ‘Statistical aspects of estimated principal vectors (EOFs) based on small sample sizes’, J. Clim Appl. Meteorol. 24(7), 716–724.
von Storch, H., Langenberg, H. and Feser, F. (2000), ‘A spectral nudging technique for dynamical downscaling purposes’, Mon. Wea. Rev. 128, 3664–3673.
von Storch, H., Zorita, E. and Cubasch, U. (1993), ‘Downscaling of global climate change estimates to regional scales: an application to Iberian rainfall in wintertime’, J. Climate 6(6), 1161– 1171.
von Storch, H. and Zwiers, F. W. (1999), Statistical analysis in climate research, Cambridge University Press, Cambridge.
Vrac, M. and Friederichs, P. (2015), ‘Multivariate-intervariable, spatial, and temporal-bias correction’, J. Climate 28(1), 218–237.
Vrac, M., Marbaix, P., Paillard, D. and Naveau, P. (2007a), ‘Non-linear statistical downscaling of present and LGM precipitation and temperatures over Europe’, Clim. Past 3(4), 669–682.
Vrac, M. and Naveau, P. (2007), ‘Stochastic downscaling of precipitation: From dry events to heavy rainfalls’, Wat. Resour. Res. 43(7), W07402.
Vrac, M., Stein, M. and Hayhoe, K. (2007b), ‘Statistical downscaling of precipitation through nonhomogeneous stochastic weather typing’, Clim. Res. 34, 169–184.
Vrac, M., Stein, M. L., Hayhoe, K. and Liang, X. Z. (2007c), ‘A general method for validating statistical downscaling methods under future climate change’, Geophys. Res. Lett. 34, L18701.
Waldron, K. M., Paegle, J. and Horel, J. D. (1996), ‘Sensitivity of a spectrally filtered and nudged limited-area model to outer model options’, Mon. Wea. Rev. 124(3), 529–547.
Wallace, J. M. and Hobbs, P. V. (2006), Atmospheric science. An introductory survey, Academic Press.
Walton, D. B., Sun, F., Hall, A. and Capps, S. (2015), ‘A hybrid dynamical–statistical downscaling technique. Part I: Development and validation of the technique’, J. Climate 28(12), 4597–4617.
Wang, C., Zhang, L., Lee, S.-K., Wu, L. and Mechoso, C. R. (2014), ‘A global perspective on CMIP5 climate model biases’, Nat. Clim. Change 4, 201–205.
Ward, J. H. (1963), ‘Hierarchical grouping to optimize an objective function’, J. Amer. Stat. Assoc. 58(301), 236–244.
Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O. and Schewe, J. (2014), ‘The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP): project framework’, Proc. Nat. Acad. Sci. 111(9), 3228–3232.
Washington, W. M. and Parkinson, C. L. (2005), An introduction to three-dimensional climate modeling, University Science Books.
WCRP WGRC (2014), ‘WCRP WGRC Expert Meeting on Climate Information “Distillation“’. 29–31 October 2014, Santand er, Spain.
Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J. and Viterbo, P. (2014), ‘The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERAInterim reanalysis data’, Wat. Resour. Res. 50(9), 7505–7514.
Weedon, G. P., Gomes, S., Viterbo, P., Shuttleworth, W. J., Blyth, E., Österle, H., Adam, J. C., Bellouin, N., Boucher, O. and Best, M. (2011), ‘Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century’, J. Hydrometeorol. 12(5), 823–848.
Wehrens, R. and Buydens, L. M.C. (2007), ‘Self-and super-organizing maps in R: the Kohonen package’, J. Stat. Softw. 21(5), 1–19.
Wheater, H. S., Chand ler, R. E., Onof, C. J., Isham, V. S., Bellone, E., Yang, C., Lekkas, D., Lourmas, G. and Segond, M.-L. (2005), ‘Spatial-temporal rainfall modelling for flood risk estimation’, Stoch. Environ. Res. Risk Assess. 19, 403–416.
Wheater, H. S., Isham, V. S., Cox, D. R., Chand ler, R. E., Kakou, A., Northrop, P. J., Oh, L., Onof, C. and Rodriguez-Iturbe, I. (2000), ‘Spatial-temporal rainfall fields: modelling and statistical aspects’, Hydrol. Earth Syst. Sci. 4(4), 581–601.
White, R., Cooley, D., Derby, R. and Seaver, F. (1958), ‘The development of efficient linear statistical operators for the prediction of sea-level pressure’, J. Meteorol. 15(5), 426–434.
White, R. H. and Toumi, R. (2013), ‘The limitations of bias correcting regional climate model inputs’, Geophys. Res. Lett. 40(12), 2907–2912.
Whiteman, C. D. (2000), Mountain meteorology: fundamentals and applications, Oxford University Press.
Widmann, M. (2005), ‘One-dimensional CCA and SVD, and their relationship to regression maps’, J. Climate 18(14), 2785–2792.
Widmann, M. and Bretherton, C. S. (2000), ‘Validation of mesoscale precipitation in the NCEP reanalysis using a new gridcell dataset for the northwestern United States’, J. Climate 13(11), 1936–1950.
Widmann, M., Bretherton, C. S. and Salathe, E. P. (2003), ‘Statistical precipitation downscaling over the northwestern United States using numerically simulated precipitation as a predictor’, J. Climate 16(5), 799–816.
Widmann, M. et al. (2017), ‘Validation of spatial variability in downscaling results from the VALUE perfect predictor experiment’, Int. J. Climatol., subm.
Widmann, M., Goosse, H., van der Schrier, G., Schnur, R. and Barkmeijer, J. (2010), ‘Using data assimilation to study extratropical Northern Hemisphere climate over the last millennium’, Clim. Past 6(5), 627–644.
Widmann, M. and Schär, C. (1997), ‘A principal component and long-term trend analysis of daily precipitation in Switzerland’, Int. J. Climatol. 17(12), 1333–1356.
Wigley, T. M. L., Jones, P. D., Briffa, K. R. and Smith, G. (1990), ‘Obtaining subgrid scale information from coarse-resolution general circulation model output’, J. Geophys. Res. 95, 1943– 1953.
Wigley, T. M. L., Jones, P. D. and Kelly, P. M. (1986), The greenhouse effect. Climatic change and ecosystems, John Wiley, New York, chapter ‘Empirical Climate Studies’.
Wilby, R. L. (2010), ‘Opinion: evaluating climate model outputs for hydrological applications’, Hydrol. Sci. J. 55, 1090–1093.
Wilby, R. L. (2017), Climate change in practice, Cambridge University Press.
Wilby, R. L., Charles, S. P., Zorita, E., Timbal, B., Whetton, P. and Mearns, L. O. (2004), ‘Guidelines for use of climate scenarios developed from statistical downscaling methods’, IPCC Task Group on Data and Scenario Support for Impact and Climate Analysis (TGICA).
Wilby, R. L., Dawson, C. W. and Barrow, E. M. (2002), ‘SDSM – a decision support tool for the assessment of regional climate change impacts’, Env. Mod. Soft. 17(2), 145–157.
Wilby, R. L., Dawson, C. W., Murphy, C., O'Connor, P. and Hawkins, E. (2014), ‘The Statistical DownScalingModel - Decision Centric (SDSM-DC): conceptual basis and applications’, Clim. Res. 61(3), 259–276.
Wilby, R. L. and Dessai, S. (2010), ‘Robust adaptation to climate change’, Weather 65, 180–185.
Wilby, R. L., Friedhoff, M., Connell, R., Minikulov, N. and Leonidova, N. (2011), ‘Tajikistan Pilot Programme for Climate Resilience (PPCR) Project A4 – Improving the Climate Resilience of Tajikistan's Hydropower Sector’, Final Report.
Wilby, R. L., Hay, L. E. and Leavesley, G. H. (1999), ‘A comparison of downscaled and raw GCM output: implications for climate change scenarios in the San Juan River basin, Colorado’, J. Hydrol. 225(1), 67–91.
Wilby, R. L., Hay, L. E., Gutowski, W. J., Arritt, R. W., Takle, E. S., Pan, T., Leavesley, G. H. and Clark, M. P. (2000), ‘Hydrological responses to dynamically and statistically downscaled climate model output’, Geophys. Res. Lett. 27(8), 1199–1202.
Wilby, R. L., Tomlinson, O. J. and Dawson, C. W. (2003), ‘Multi-site simulation of precipitation by conditional resampling’, Climate Res. 23(3), 183–194.
Wilby, R. L. and Wigley, T. M.L. (1997), ‘Downscaling general circulation model output: a review of methods and limitations’, Prog. Phys. Geogr. 21, 530–548.
Wilby, R. L. and Wigley, T. M.L. (2000), ‘Precipitation predictors for downscaling: observed and general circulation model relationships’, Int. J. Climatol. 20(6), 641–661.
Wilby, R. L., Wigley, T. M.L., Conway, D., Jones, P. D., Hewitson, B. C., Main, J. and Wilks, D. S. (1998), ‘Statistical downscaling of general circulation model output: a comparison of methods’, Wat. Resour. Res. 34(11), 2995–3008.
Wilcke, R. A. I., Mendlik, T. and Gobiet, A. (2013), ‘Multi-variable error correction of regional climate models’, Clim. Change 120(4), 871–887.
Wilks, D. S. (1988), ‘Estimating the consequences of CO2-induced climatic change on North American grain agriculture using general circulation model information’, Clim. Change 13, 19–42.
Wilks, D. S. (1998), ‘Multisite generalization of a daily precipitation generation model’, J. Hydrol. 210, 178–191.
Wilks, D. S. (2006), Statistical methods in the atmospheric sciences, 2 edn, Academic Press/Elsevier.
Wilks, D. S. (2009), ‘A gridded multisite weather generator and synchronization to observed weather data’, Wat. Resour. Res. 45(10).
Wilks, D. S. (2010), ‘Use of stochastic weather generators for precipitation downscaling’, WIREs Clim. Change 1(6), 898–907.
Wilks, D. S. (2012), ‘Stochastic weather generators for climate-change downscaling, Part II: Multivariable and spatially coherent multisite downscaling’, WIREs Clim. Change 3(3), 267– 278.
Wilks, D. S. and Wilby, R. L. (1999), ‘The weather generation game: a review of stochastic weather models’, Prog. Phys. Geogr. 23(3), 329–357.
Willems, P., Olsson, J., Arnbjerg-Nielsen, K., Beecham, S., Pathirana, A., Gregersen, I. B. and Madsen, H. (2012), Impacts of climate change on rainfall extremes and urban drainage systems, IWA Publishing.
Willems, P. and Vrac, M. (2011), ‘Statistical precipitation downscaling for small-scale hydrological impact investigations of climate change’, J. Hydrol. 402(3), 193–205.
Willett, K. M., Jones, P. D., Gillett, N. P. and Thorne, P. W. (2008), ‘Recent changes in surface humidity: development of the HadCRUH dataset’, J. Climate 21(20), 5364–5383.
Williams, K., Brown, A., Jakob, C., Best, M., Arribas, A., Bodas-Salcedo,, A., Bony, S., Danabasoglu, G., Ebert, B., Gleckler, P., Donner, L., Miller, M., Petch, J., Scaife, A., Waliser, D. and Watanabe, M. (2013), ‘4th WGNE Workshop on Systematic Errors in Weather and Climate Models’, Workshop Summary, UK Met Office, Exeter, UK.
Winkler, J. A., Palutikof, J. P., Andresen, J. A. and Goodess, C. M. (1997), ‘The simulation of daily temperature time series from GCM output. Part II: Sensitivity analysis of an empirical transfer function methodology’, J. Climate 10(10), 2514–2532.
Wippermann, F. and Gross, G. (1981), ‘On the construction of orographically influenced wind roses for given distributions of the large-scale wind’, Beiträge zur Physik der Atmosphäre 54(4), 492–501.
Wong, G., Maraun, D., Vrac, M., Widmann, M., Eden, J. and Kent, T. (2014), ‘Stochastic model output statistics for bias correcting and downscaling precipitation including extremes’, J. Climate 27, 6940–6959.
Wood, A. W., Leung, L. R., Sridhar, V. and Lettenmaier, D. P. (2004), ‘Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs’, Clim. Change 62(1–3), 189–216.
Wood, A. W., Maurer, E. P., Kumar, A. and Lettenmaier, D. P. (2002), ‘Long-range experimental hydrologic forecasting for the eastern United States’, J. Geophys. Res. Atmos. 107(D20).
Woollings, T. (2010), ‘Dynamical influences on European climate: an uncertain future’, Phil. Trans. R. Soc. A 368, 3733–3756.
Woollings, T., Gregory, J. M., Pinto, J. G., Reyers, M. and Brayshaw, D. J. (2012), ‘Response of the North Atlantic storm track to climate change shaped by ocean-atmosphere coupling’, Nat. Geosci. 5(5), 313–317.
World Bank (2013), ‘Turn Down the Heat: Climate Extremes, Regional Impacts, and the Case for Resilience’, a report for the World Bank by the Potsdam Institute for Climate Impact Research and Climate Analytics.
Worldbank (n.d.), ‘Climate change knowledge portal’, portal/.
Xie, P., Chen, M. and Shi, W. (2010), ‘CPC unified gauge-based analysis of global daily precipitation’, 24th Conference on Hydrology, Atlanta, USA.
Xu, C. (1999), ‘From GCMs to river flow: a review of downscaling methods and hydrologic modelling approaches’, Prog. Phys. Geogr. 23(2), 229.
Yang, C., Chand ler, R. E. and Isham, V. S.