Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-20T02:46:29.287Z Has data issue: false hasContentIssue false

22 - Modelling solar and stellar magnetoconvection

Published online by Cambridge University Press:  11 November 2009

Nigel Weiss
Affiliation:
Department of Applied Mathematics & Theoretical Physics, University of Cambridge, Cambridge CB3 9EW, UK
Michael J. Thompson
Affiliation:
Imperial College of Science, Technology and Medicine, London
Jørgen Christensen-Dalsgaard
Affiliation:
Aarhus Universitet, Denmark
Get access

Summary

Numerical experiments on three-dimensional convection in the presence of an externally imposed magnetic field reveal a range of behaviour that can be compared with that observed at the surface of the Sun (and therefore expected to be present in other similar stars). In a strongly stratified compressible layer small-scale convection gives way to a regime with flux separation as the field strength is reduced; with a weak mean field magnetic flux is concentrated into narrow lanes enclosing vigorously convecting plumes. Small-scale dynamos, generating disordered magnetic fields, have been found in Boussinesq calculations with very high magnetic Reynolds numbers; there is a gradual transition from dynamo action to magnetoconvection as the strength of the imposed field is increased.

Introduction

Thirty-seven years ago, when I was a postdoc at Culham, Roger Tayler told me that he was sending a very bright young research student to spend the summer there – and so I first met Douglas. When I moved to Cambridge a year later he was finishing his Ph.D. and then he and Rosanne went off to the States for a few years. We've been in close contact ever since they returned to Cambridge and it has been a great pleasure having Douglas as a colleague and a friend – always stimulating and often argumentative, but never causing any serious disagreement. So I am very glad to have a chance of saying ‘Thank you’ here.

As we have already been reminded, Douglas's third paper (Gough & Tayler 1966) was on magnetoconvection.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×