Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-30T04:28:22.648Z Has data issue: false hasContentIssue false

4 - Mechanical properties of structural nanocrystalline materials – experimental observations

Published online by Cambridge University Press:  04 December 2009

Carl C. Koch
Affiliation:
North Carolina State University
Ilya A. Ovid'ko
Affiliation:
Russian Academy of Sciences, Moscow
Sudipta Seal
Affiliation:
University of Central Florida
Stan Veprek
Affiliation:
Technische Universität München
Get access

Summary

In this chapter we will describe and discuss the experimental evidence for the mechanical behavior of nanocrystalline materials. This will include pure metals, alloys, intermetallic compounds, ceramics, and multiphase materials. The range of mechanical properties for which measurements have been made will be covered. While the models and theoretical explanations for the various phenomena believed responsible for mechanical properties of nanocrystalline materials will be emphasized in Chapter 5, some discussion of deformation mechanisms must necessarily accompany the description of experimental results.

Elastic properties of nanostructured materials

The early measurements of the elastic constants on nanocrystalline materials prepared by the inert-gas-condensation method gave values, for example for Young's modulus, E, which were significantly lower than values for conventional grain size materials (Suryanarayana, 1995). While various reasons were given for the lower values of E, it was suggested by Krstic and co-workers (1993) that the presence of extrinsic defects, e.g. pores and cracks, was responsible for the low values of E in nanocrystalline materials compacted from powders. This conclusion was based upon the observation that nanocrystalline NiP produced by electroplating with negligible porosity levels had an E value comparable to fully dense conventional grain size Ni (Wong et al., 1993). Krstic et al. (1993) and Boccaccini et al. (1993) developed theories to account for the decrease in E with porosity which agree with E vs.% porosity data on nanocrystalline Fe produced by inert-gas condensation and warm consolidation (Fougere et al., 1995).

Type
Chapter
Information
Structural Nanocrystalline Materials
Fundamentals and Applications
, pp. 134 - 203
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, T. L. (1996). Fracture Mechanics. Boca Raton: CRC Press.Google Scholar
Argon, A. S., and Veprek, S. (2002). Mater. Res. Soc. Symp. Proceedings, 697, 3.
Asaro, R. J., and Suresh, S. (2005). Actual Mater., 53, 3369–3382.CrossRef
Baker, I., Nagpal, P., Liu, F., and Munroe, P. R. (1991). Acta Metall. Mater., 39, 1637–1644.CrossRef
Baker, M., Kench, P. J., Tsotsos, C., Gibson, P. N., Leyland, A., and Matthews (2005). J. Vac. Sci. Technol., A 23, 1–11.
Barnett, S. A. (1993). In Physics of Thin Films Vol. 17: Mechanic and Dielectric Properties, ed. Francombe, M. H., and Vossen, J. L.Boston: Academic Press, p. 2.Google Scholar
Barnet, S. and Madan, A. (1999). Phys. World, 11, 45.CrossRef
Barnett, S. A., Madan, A., Kim, I., and Martin, K. (2003). MRS Bulletin, 28, 169.CrossRef
Barsoum, M. W. (1997). Fundamentals of Ceramics. New York: McGraw-Hill, pp. 414–417.Google Scholar
Boccaccini, A. R., Ondracek, G., Mazilu, P., and Windelburg, D. (1993). J. Mech. Behav. Mater., 4, 119.CrossRef
Bohn, R., Haubold, T., Birringer, R., and Gleiter, H. (1991). Scripta Metall. Mater., 25, 811–816.CrossRef
Bohn, R., Oehring, M., Pfullmann, Th., Appel, F., and Bormann, R. (1995). In Processing and Properties of Nanocrystalline Materials, ed. Suryanarayana, C., Singh, J., and Froes, F. H.Warrendale, PA: TMS, pp. 355–366.Google Scholar
Bolshakov, A., Oliver, W. C., and Pharr, G. M. (1996). J. Mater. Res., 11, 760.CrossRef
Bonetti, E., Campari, E. G., Del Bianco, L., Pasquini, L., and Sampaolesi, E. (1999). NanoStructured Mater., 11, 709–720.CrossRef
Budrovic, Z., Van Swygenhoven, H., Derlet, P. M., Van Petegem, S., and Schmitt, B. (2004). Science, 304, 273–276.CrossRef
Cai, B., Kong, Q. P., Lu, L., and Lu, K. (2000). Mater. Sci. Engr. A, 286, 188–192.CrossRef
Carsley, J. E., Milligan, W. W., Hackney, S. A., and Aifantis, E. C. (1995). Metall. Mater. Trans. A, 26A, 2479.CrossRef
Carsley, J. E., Fisher, A., Milligan, W. W., and Aifantis, E. C. (1998). Metall. Mater. Trans. A, 29, 2261–2271.CrossRef
Chan, K. S. (1990). Scripta Metall. Mater., 24, 1725–1730.CrossRef
Chang, H., Altstetter, C. J., and Averback, R. S. (1992). J. Mater. Res., 7, 2962–2970.CrossRef
Chen, M., Ma, E., Hemker, K. J., Sheng, H., Wang, Y., and Cheng, X. (2003). Science, 300, 1275–1277.CrossRef
Cheng, S., Spencer, J. A., and Milligan, W. W. (2003). Acta Mater., 51, 4505–4518.CrossRef
Chokshi, A. H., Rosen, A., Karch, J., and Gleiter, H. (1989). Scripta Mater., 23, 1679.CrossRef
Chu, W.-Y., and Thompson, A. W. (1991). Scripta Metall. Mater., 25, 641–644.CrossRef
Chu, X., and Barnett, S. A. (1995). J. Appl. Phys., 77, 4403.CrossRef
Conrad, H., Narayan, J., and Jung, K. (2005). Inter. J. Refractory & Hard Materials (in press).
Cottrell, A. H. (1958). Trans. TMS-AIME, 212, 192.
Dalla Torre, F., Van Swygenhoven, H., and Victoria, M. (2002). Acta Mater., 50, 3957–3970.CrossRef
Demkowicz, M. J., and Argon, A. S. (2004). Phys. Rev. Lett., 93, 025505.CrossRef
Deng, J., Wang, D. L., Kong, Q. P., and Shui, J. P. (1995). Scripta Metall. Mater., 32, 349–352.CrossRef
Derlet, P. M., and Van Swygenhoven, H. (2002). Phil. Mag. A, 82, 1–15.CrossRef
Dieter, G. E. (1976). Mechanical Metallurgy, 2nd edition. McGraw-Hill, p. 270.Google Scholar
Diserens, M., Patscheider, J., and Lévy, F., (1998). Surf. Coat. Technol., 108–109, 241.CrossRef
Diserens, M., Patscheider, J., and Lévy, F., (1999). Surf. Coat. Technol., 120–121, 158.CrossRef
Duscher, G., Chisholm, M. F., Alber, U., and Ruhle, M. (2004). Nature Mater., 3, 621–626.CrossRef
Donovan, P. E., and Stobbs, W. M. (1981). Acta Metall., 29, 1419.CrossRef
Eckert, J. (2002). Structure formation and mechanical behavior of two-phase nanostructured materials. In Nanostructured Materials: Processing, Properties and Applications, ed. Koch, C. C.Norwich, NY; William Andrew Publ., pp. 423–525.Google Scholar
Edington, J. W., Melton, K. N., and Cutler, C. P. (1976). Prog. Mater. Sci., 21, 61–170.CrossRef
Fischer-Cripps, A. C., Karvankova, P., and Veprek, S. (2006). Surf. Coat. Technol., 200, 5645.CrossRef
Fougere, G. E., Riester, L., Ferber, M., Weertman, J. R., and Siegel, R. W. (1995). Mater. Sci. Eng., A204, 1.CrossRef
Gonsalves, K. E., Rangarajan, S. P., Law, C. C., Garcia-Ruiz, A., and Chow, G. M. (1997). NanoStructured Mater., 9, 169–172.CrossRef
Goodwin, T. J., Yoo, S. H., Matteazzi, P., and Groza, J. R. (1997). NanoStructured Mater., 8, 559–566.CrossRef
Greer, A. L. (2001). Mater. Sci. Engr. A, 304–306, 68–72.CrossRef
Hahn, H., and Averback, R. S. (1991). J. Am. Ceram. Soc., 74, 2918–2921.CrossRef
Hall, E. O. (1951). Proc. R. Soc. Lond., 364, 474.
Han, B. Q., and Lavernia, E. J. (2005). Adv. Eng. Mater., 7, 247–250.CrossRef
Hanlon, T., Kwon, Y.-N., and Suresh, S. (2003). Scripta Mater., 49, 675–680.CrossRef
Hao, S., Delley, B., Veprek, S., and Stampfl, C. (2006). Phys. Rev. Lett., 97, 086102.CrossRef
He, L., and Ma, E. (1996). NanoStructured Mater., 7, 327–339.CrossRef
Helersson, U., Todorova, S., Barnett, S. A., Sundgren, J., Markert, L. C., and Greene, J. E. (1987). J. Appl. Phys., 62, 481.CrossRef
Hertzberg, R. W. (1989). Deformation and Fracture Mechanics of Engineering Materials, 3rd edition. New York: Wiley.Google Scholar
Hoffmann, M., and Birringer, R. (1996). Acta Mater., 44, 2729–2736.CrossRef
Hofler, H. J., and Averback, R. S. (1990). Scripta Metall. Mater., 24, 2401–2406.CrossRef
Holleck, H., Lahres, M., Woll, P. (1990). Surf. Coat. Technol., 41, 179.CrossRef
Hu, X., Han, Z., Li, G., and Gu, M. (2002). J. Vac. Sci. Technol., A20, 1921.CrossRef
Hu, X., Zhang, H., J. Dai, J., Li, G., and Gu, M. (2005). J. Vac. Sci. Technol., A23, 114.CrossRef
Huang, S. C., and Chesnutt, J. C. (1994). In Intermetallic Compounds, Vol. 2, Practice, ed. Westbrook, J. H., and Fleischer, R. L.Chichester, UK: John Wiley & Sons, Ltd., pp. 73–90.
Huang, Z., Gu, L. Y., and Weertman, J. R. (1997). Scripta Mater., 42, 1071–1075.CrossRef
Hugo, R. C., Kung, H., Weertman, J. R., Mitra, R., Knapp, J. A., and Follstaedt, D. M. (2003). Acta Mater., 51, 1937–1943.CrossRef
Hutchinson, J. W. (1984). Scripta Metall., 18, 421–422.CrossRef
Inoue, A., Nakazato, K., Kawamura, Y., and Masumoto, T. (1994). Mater. Sci. Engr. A, 179/180, 654–658.CrossRef
Jia, D., Ramesh, K. T., and Ma, E. (2000). Scripta Mater., 42, 73–78.CrossRef
Karimpoor, A. A., Erb, U., Aust, K. T., and Palumbo, G. (2003). Scripta Mater., 49, 651–656.CrossRef
Karvankova, P., Veprek-Heijman, M. G. J., Zindulka, O., Bergmaier, A., and Veprek, S. (2003). Surf. Coat. Technol., 163–164, 149.CrossRef
Karvankova, P., Veprek-Heijman, M. G. J., Azinovic, D., and Veprek, S. (2006). Surf. Coat. Technol., 200, 2978.CrossRef
Ke, M., Hachney, S. A., Milligan, W. W., and Aifantis, E. C. (1995). NanoStructured Mater., 5, 689–698.CrossRef
Kim, D. K., and Okazaki, K. (1992). Mater. Sci. Forum, 88–90, 553–560.CrossRef
Koch, C. C., and Cho, Y. S. (1992). NanoStructured Mater., 1, 207–212.CrossRef
Koch, C. C., Morris, D. G., Lu, K., and Inoue, A. (1999). MRS Bulletin, 24, 54–58.CrossRef
Koch, C. C., and Narayan, J. (2001). The Inverse Hall–Petch Effect – Fact or Artifact? In MRS Symp. Proc. Vol. 634, ed. Farkas, D., Kung, H., Mayo, M., Swygenhoven, H., and Weertman, J. R.Warrendale, PA: MRS, pp. B5.1.1–B5.1.11.Google Scholar
Koch, C. C., Youssef, K. M., Scattergood, R. O., and Murty, K. L. (2005). Adv. Engr. Mater., 7, 787–794.CrossRef
Koehler, J. S. (1970). Phys. Rev., B2, 547.CrossRef
Krstic, V., Erb, U., and Palumbo, G. (1993). Scripta Metall. Mater., 29, 1501.CrossRef
Kumar, K. S., Suresh, S., Chisholm, M. F., Horton, J. A., and Wang, P. (2003). Acta Mater., 51, 387–405.CrossRef
Kumar, K. S., Van Swygenhoven, H., and Suresh, S. (2003). Acta Mater., 51, 5743–5774.CrossRef
Lehocky, S. L. (1978a). J. Appl. Phys., 49, 5479.CrossRef
Lehocky, S. L. (1978b). Phys. Rev. Lett., 41, 1814.CrossRef
Li, H., and Ebrahimi, F. (2004). Appl. Phys. Lett., 84, 4307–4309.CrossRef
Li, J., Sun, Y., Sun, X., and Qiao, J. (2005). Surface & Coatings Technology, 192, 331–335.CrossRef
Li, J. C. M., (1963). Trans. TMS-AIME, 227, 239.
Li, S. H., Shi, Y. L., and Peng, H. R. (1992). Plasma Chem. Plasma Process., 12, 287.
Li, Y. J., Blum, W., and Breutinger, F. (2004). Mater. Sci. Engr. A, 387–389, 585–589.CrossRef
Liao, X. Z., Zhao, Y. H., Srinivason, S. G., and Zhu, Y. T. (2004). Appl. Phys. Lett., 84, 592–594.CrossRef
Liao, X. Z., Zhou, F., Lavernia, E. J., He, D. W., and Zhu, Y. T. (2003). Appl. Phys. Lett., 83, 5062–5064.CrossRef
Ljungcrantz, H., Hultman, L., and Sundgren, J.-E., (1995). J. Appl. Phys., 78, 832.CrossRef
Lu, L., Li, S. X., and Lu, K. (2001). Scripta Mater., 45, 1163–1169.CrossRef
Malow, T. R., and Koch, C. C. (1998). Metall. Mater. Trans. A, 29A, 2285–2295.CrossRef
Malow, T. R., Koch, C. C., Miraglia, P. Q., and Murty, K. L. (1998). Mater. Sci. Engr. A, 252, 36–43.CrossRef
Männling, H.-D., (2003). Ph.D. Thesis, Technical University Munich.
Markmann, J., Bunzel, P., Rosner, H., Liu, K. W., Padmanabhan, K. A., Birringer, R., Gleiter, H., and Weissmuller, J. (2003). Scripta Mater., 49, 637–644.CrossRef
Mayo, M. J. (1997). NanoStructured Mater., 9, 717–726.CrossRef
McFadden, S. X., Mishra, R. S., Valiev, R. Z., Zhilyaev, A. P., and Mukherjee, A. K. (1999). Nature, 398, 684–686.
Meyers, M. A., and Ashworth, E. (1982). Phil. Mag., 737.CrossRef
Meyers, M. A., and Chawla, K. K. (1999). Mechanical Behavior of Materials. New Jersey: Prentice-Hall, p. 541.Google Scholar
Milligan, W. W. (2003). Mechanical behavior of bulk nanocrystalline and ultrafine-grain metals. In Comprehensive Structural Integrity, ed. Milne, I., Ritchie, R. O., and Karihaloo, B.Amsterdam: Elsevier, pp. 529–550.Google Scholar
Milligan, W. W., Hackney, S. A., Ke, M., and Aifantis, E. C. (1993). NanoStructured Mater., 2, 267–276.CrossRef
Mirshams, R. A., Xiao, C. H., Whang, S. H., and Yin, W. M. (2001). Mater. Sci. Engr. A., 315, 21–27.CrossRef
Mishra, R. S., Valiev, R. Z., and Mukherjee, A. K. (1997). NanoStructured Mater., 9, 473–476.CrossRef
Mishra, R. S., Valiev, R. Z., McFadden, S. X., and Mukherjee, A. K. (1998). Mater. Sci. Engr. A, 252, 174–178.CrossRef
Mitra, R., Chiou, W.-A., and Weertman, J. R. (2004). J. Mater. Res., 19, 1029–1037.CrossRef
Mohamed, F. A., and Li, Y. (2001). Mater. Sci. Engr. A, 298, 1–15.CrossRef
Morris, D. G. (1998). Mechanical behavior of nanostructured materials, Materials Science Foundations 2. Enfield NH: Trans. Tech. Publ., pp. 42–74.Google Scholar
Morris, D. G., and Morris, M. A. (1991). Acta Metall. Mater., 39, 1763.CrossRef
Morris-Munoz, M. A., Dodge, A., and Morris, D. G. (1999). NanoStructured Mater., 11, 873–885.CrossRef
Mukherjee, A. K. (2002). Mater. Sci. Engr. A., 322, 1–22.CrossRef
Mukhopadhyay, J., Kaschner, G., and Mukherjee, A. K. (1990). Scripta Metall. Mater., 24, 857–862.CrossRef
Musil, J., Kadlec, S., Vyskocil, J., and Valvoda, V. (1988). Thin Solid Films, 167, 107.CrossRef
Niederhofer, A., Bolom, T., Nesladek, P., Moto, K., Eggs, C., Patil, D. S., and Veprek, S. (2001). Surf. Coat. Technol., 146–147, 183.CrossRef
Nieman, G. W., Weertman, J. R., and Siegel, R. W. (1990). Scripta Metall. Mater., 24, 145–150.CrossRef
Nieman, G. W., Weertman, J. R., and Siegel, R. W. (1991). J. Mater. Res., 6, 1012–1027.CrossRef
Nowack, A. S., and Berry, B. S. (1972). Anelastic Relaxation in Crystalline Solids. New York: Academic Press.Google Scholar
Odén, M., (2004). Invited paper at the 51st Int. Symp. of the American Vacuum Society, Anaheim, November 14–19, 2004.
Ostwaldt, D., Klepaczko, J. R., and Klimanik, P. J. (1997). PHYS IV FRANCE, 7, C3–385.
Ovidko, I. A. (2003). Phil. Mag. Lett., 83, 611–620.CrossRef
Palumbo, G., Gonzalez, F., Brennenstuhl, A. M., Erb, U., Shmayda, W., and Lichtenberger, P. C. (1997). NanoStructured Mater., 9, 737–746.CrossRef
Patscheider (2004). Private communication, unpublished.
Petch, N. J. (1953). J. Iron Steel Inst., 174, 25.
Prilliman, S. G., Erdonmez, C. K., Clark, S. M., Alivisatos, A. P., Karvankova, P., and Veprek, S. (2006). Mater. Sci. Eng. A, 437, 379.CrossRef
Prochazka, J., Karvankova, P., Veprek-Heijman, M. G. J., and Veprek, S. (2004). Mater. Sci. Eng. A, 384, 102.CrossRef
Rose, J. H., Smith, J. R., Guinea, F., and Ferrante, J. (1984). Phys. Rev. B, 29, 2963.CrossRef
Rosner, H., Markmann, J., and Weissmuller, J. (2004). Phil. Mag. Lett., 84, 321–334.CrossRef
Sakai, S., Tanimoto, H., and Mizubayashi, H. (1999). Acta Mater., 47, 211–217.CrossRef
Sakai, S., Tanimoto, H., Otsuka, K., Yamada, T., Koda, Y., Kita, E., and Mizubayashi, H. (2001). Scripta Mater., 45, 1313.CrossRef
Sanders, P. G., Rittner, M., Kiedaisch, E., Weertman, J. R., Kung, H., and Lu, Y. C. (1997). NanoStructured Mater., 9, 433–440.CrossRef
Sanders, P. G., Eastman, J. A., and Weertman, J. R. (1997). Acta Mater., 45, 4019.CrossRef
Sauthoff, G. (1994). Plastic deformation. In Intermetallic Compounds, Principles and Practice, ed. Westbrook, J. H., and Fleischer, R. L.Chichester: John Wiley and Sons, pp. 924–925.Google Scholar
Schuh, C. A., Argon, S. A., Nieh, T. G., and Wadsworth, J. (2003). Phil. Mag., 83, 2585.CrossRef
Schwaiger, R., Moser, B., Dao, M., Chollacoop, N., and Suresh, S. (2003). Acta Mater., 51, 5159–5172.CrossRef
Schweinfest, R., Paxton, A. T., and Finnis, M. W. (2004). Nature, 432, 1008.CrossRef
Sergueeva, A. V., Mara, N. A., and Mukherjee, A. K. (2004). Mat. Res. Symp., Proc., 821, P9.8.1–P9.8.7.CrossRef
Shan, Z., Stach, E. A., Wiezorek, J. M. K., Knapp, J. A., Follstaedt, D. M., and Mao, S. X. (2004). Science, 305, 654–657.CrossRef
Shen, T. D., and Koch, C. C. (1996). Acta Mater., 44, 753–761.CrossRef
Shen, T. D., Koch, C. C., Tsui, T. Y., and Pharr, G. M. (1995). J. Mater. Res., 10, 2892.CrossRef
Shen, Y. F., Lu, L., Lu, Q. H., Jin, Z. H., and Lu, K., (2005). Scripta Mater., 52, 989–994.CrossRef
Shinin, M., Hultman, L., and Barnett, S. A. (1992). J. Mater. Res., 7, 902.
Shinin, M., and Barnett, S. A. (1995). Appl. Phys. Lett., 64, 61.CrossRef
Siegel, R. W. (1997). Mater. Sci. Forum, 235–238, 851–860.
Siegel, R. W., and Fougere, G. E. (1994). In Nanophase Materials: Synthesis Properties, Applications, ed. Hadjipanayis, G. C., and Seigel, R. W.Dordrecht, the Netherlands: Kluwer Acad. Publ., p. 233.CrossRefGoogle Scholar
Smith, J. R., Ferrante, J., Vinet, P., Gray, J. G., Richter, R., and Rose, J. (1987). In Chemistry and Physics of Fracture, ed. Latanisos, R. M., and Jones, R. H.Dordrecht: Martinus Nijhoff, p. 329.CrossRefGoogle Scholar
Söderberg, H., Molina, J., Hultman, L., and Odén, M., (2005). J. Appl. Phys., 97, 114–327.CrossRef
Strunk, H. P. (2003). Institute of Materials Science, University Erlangen-Nürnberg, Germany, unpublished results.
Suryanarayana, C. (1995). Int. Mater. Rev., 40, 41–64.CrossRef
Swadener, J. G., Taljat, B., and Pharr, G. M. (2001). J. Mater. Res., 16, 2901.CrossRef
Tabor, D. (1951). The Hardness of Metals. Oxford: Clarendon Press.Google Scholar
Taketani, K., Uoya, A., Ohtera, K., Uehara, T., Higashi, K., Inoue, A., and Masumoto, T. (1994). J. Mater. Sci., 29, 6513–6517.CrossRef
Tanimoto, H., Sakai, S., and Mizubayashi, H. (2004). Mater. Sci. Engr. A., 370, 135–141.CrossRef
Tanimoto, H., Sakai, S., and Mizubayashi, H. (1999). NanoStructured Mater., 12, 751–756.CrossRef
Tellkamp, V. L., Melmed, A., and Lavernia, E. J. (2001). Metall. Mater. Trans. A, 32A, 2335.CrossRef
Tsui, T. Y., Oliver, W. C., and Pharr, G. M. (1996). J. Mater. Res., 11, 752.CrossRef
Valvoda, V., Kuzel, R., Cerny, R., and Musil, J. (1988). Thin Solid Films, 156, 63.CrossRef
Vliet, K. J., Li, J., Zhu, T., Yip, S., and Suresh, S. (2003). Phys. Rev. B, 67, 104105.CrossRef
Vasudevan, V. K., Court, S. A., Kurath, P., and Fraser, H. L. (1989). Scripta Metall., 23, 467–469.CrossRef
Vaz, P., Rebouta, L., Godeau, Ph., Girardeau, T., Pacaud, J., Riviere, J. P., and Traverse, A. (2001). Surf. Coat. Technol., 146–147, 274.CrossRef
Veprek, S., and Argon, A. S. (2002). J. Vac. Sci. Technol., B20, 650.CrossRef
Veprek, S., and Reiprich, S. (1995). Thin Solid Films, 268, 64.CrossRef
Veprek, S., Sarott, F.-A., and Iqbal, Z. (1987). Phys. Rev., B36, 3344.CrossRef
Veprek, S., Reiprich, S., and Li, S. H. (1995a). Appl. Phys. Lett., 66, 2640.CrossRef
Veprek, S., Haussmann, M., and Reiprich, S. (1995b). J. Vac. Sci. Technol., A14, 46.
Veprek, S., Niederhofer, A., Moto, K., Nesladek, P., Männling, H.-D., and Bolom, T. (2000a). Mater. Res. Soc. Symp. Proc., 581, 321.CrossRef
Veprek, S., Niederhofer, A., Moto, K., Bolom, T., Männling, H.-D., Nesladek, P., Dollinger, G., and Bergmaier, A. (2000b). Surf. Coat. Technol., 133–134, 152.CrossRef
Veprek, S., Mukherjee, S., Karvankova, P., Männling, H.-D., He, J. L., Moto, K., Prochazka, J., and Argon, A. S. (2003a). J. Vac. Sci. Technol., A21, 532.CrossRef
Veprek, S., Mukherjee, S., Karvankova, P., Männling, H.-D., He, J. L., Moto, K., Prochazka, J., and Argon, A. S. (2003b). Thin Solid Films, 436, 220.CrossRef
Veprek, S., Männling, H.-D., Niederhofer, A., Ma, D., and Mukherjee, S. (2004). J. Vac. Sci. Technol, B22, L5.CrossRef
Veprek, S., Veprek-Heijman, G. M. J., Karvankova, P., and Prochazka, J. (2005a). Thin Solid Films, 476, 1.CrossRef
Veprek, S., Männling, H.-D., Karvankova, P., and Prochazka, J. (2005b). Surf. Coat. Technol., in press.
Veprek, R. G., Parks, D. M., Argon, A. S., and Veprek, S. (2005c). Mater. Sci. Eng. A, submitted.
Veprek, S., Karvankova, P., and Veprek-Heijman, M. G. J., (2005d). J. Vac. Sci. Technol., B23, L17.CrossRef
Vinogradov, A. Y., and Agnew, S. R. (2004). Nanocrystalline materials: fatigue. In Dekker Encyclopedia of Nanoscience and Nanotechnology, Marcel Dekker, Inc., pp. 2269–2288.Google Scholar
Voevodin, A. A., Prasad, S. V., and Zabinski, J. S. (1997). J. Appl. Phys., 82, 855.CrossRef
Voevodin, A. A., Fitz, T. A., Hu, J. J., and Zabinski, J. S. (2002). J. Vac. Sci. Technol., A20, 1434.CrossRef
Voevodin, A. A., and Zabinski, J. S. (2005). Surf. Coat. Technol., 65, 741.
Wang, D. L., Kong, Q. P., and Shui, J. P. (1994). Scripta Metall. Mater., 31, 47–54.CrossRef
Wang, N., Wang, Z., Aust, K. T., and Erb, U. (1997). Mater. Sci. Engr. A, 237, 150–158.CrossRef
Wang, Y. M., and Ma, E. (2004). Appl. Phys. Lett., 85, 2750–2752.CrossRef
Wang, Y., Chen, M., Zhou, F., and Ma, E. (2002). Nature, 419, 912–915.CrossRef
Wang, Y. M., Hodge, A. M., Biener, J., Hamza, A. V., Barnes, D. E., Liu, K., and Nieh, T. G., (2005). Appl. Phys. Lett., 86, 101915-1-3.
Weertman, J. R. (2002). In Nanostructured Materials: Processing, Properties, and Applications, ed. Koch, C. C.Norwich, NY: William Andrew Pub., pp. 397–421.Google Scholar
Weertman, J. R., and Averback, R. S. (1996). In Nanomaterials: Synthesis, Properties, and Applications, ed. Edelstein, A. S., and Cammarata, R. C.Bristol: Institute of Physics Publ., p. 323.CrossRefGoogle Scholar
Wei, Q., Cheng, S., Ramesh, K. T., and Ma, E. (2004). Mater. Sci. Engr. A., 381, 71–79CrossRef
Wei, Q., Jia, D., Ramesh, K. T., and Ma, E. (2002). Appl. Phys. Lett., 81, 1240–1242.CrossRef
Wilde, J. R., and Greer, A. L. (2001). Mater. Sci. Engr. A., 304–306, 932–936.CrossRef
Witkin, D., Lee, Z., Rodreguez, R., Nutt, S., and Lavernia, E. J. (2003). Scripta Mater., 49, 297–302.CrossRef
Witney, A. B., Sanders, P. G., Weertman, J. R., and Eastman, J. A. (1995). Scripta Metall. Mater., 33, 2025–2030.CrossRef
Wong., L., Ostrander, D., Erb, U., Palumbo, G., and Aust, K. T. (1993). In Nanophases and Nanocrystalline Structures, ed. Shull, R. D., and Sanchez, J. M.Warrendale, PA: TMS, p. 85.Google Scholar
Xiao, M., and Kong, Q. P. (1997). Scripta Mater., 36, 299–303.CrossRef
Yin, W. M., Whang, S. H., Mirshams, R., and Xiao, C. H. (2001). Mater. Sci. Engr. A, 301, 18–22.CrossRef
Yin, W. M., Whang, S. H., and Mirshams, R. A. (2005). Acta Mater., 53, 383–392.CrossRef
Yoo, S. H., Sudarshan, T. S., Sethuram, K., Subhash, G., and Aifantis, E. C. (1999). Nano-Structured Mater., 12, 23.CrossRef
Youngdahl, C. J., Sanders, P. G., Eastman, J. A., and Weertman, J. R. (1997). Scripta Mater., 37, 809.CrossRef
Youngdahl, C. J., Weertman, J. R., Hugo, R. C., and Kung, H. H. (2001). Scripta Mater., 44, 1475–1478.CrossRef
Youssef, K. M., Scattergood, R. O., Murty, K. L., and Koch, C. C. (2004). Appl. Phys. Lett., 85, 929–931.CrossRef
Youssef, K. M., Scattergood, R. O., Murty, K., Horton, J. A., and Koch, C. C. (2005). Appl. Phys. Lett., 87, 091904-1–091904-13.CrossRef
Zhang, K., Weertman, J. R., and Eastman, J. A. (2004). 85, 5197–5199.
Zhang, X., Wang, H., Scattergood, R. O., Narayan, J., Koch, C. C., Sergueeva, A. V., and Mukherjee, A. K. (2002). Appl. Phys. Lett., 81, 823–825.CrossRef
Zhang, S., Sun, D., Fu, Y., and Du, H., (2005). Surf. Coat. Technol., 198, 2.CrossRef
Zhang, R. F., and Veprek, S. (2006). Mater. Sci. Eng. A., 424, 128.CrossRef
Zhu, X. K., Zhang, X., Wang, H., Sergueeva, A. V., Mukherjee, A. K., Scattergood, R. O., Narayan, J., and Koch, C. C. (2003). Scripta Mater., 49, 429–433.CrossRef
Zimmermann, A. F., Palumbo, G., Aust, K. T., and Erb, U. (2002). Mater. Sci. Engr. A, 328, 137–146.CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×