Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-31T22:04:10.925Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  09 December 2021

Neil E. Rowland
Affiliation:
University of Florida
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Thirst and Body Fluid Regulation
From Nephron to Neuron
, pp. 227 - 270
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, S. B. G., & Saper, C. B. (2017). Median preoptic glutamatergic neurons promote thermoregulatory heat loss and water consumption in mice. Journal of Physiology, 595, 65696583. https://doi.org/10.1113/JP274667Google Scholar
Abe, K., Hikada, S., Ishibashi, K., et al. (1987). Developmental changes in the volumes, protein, and some electrolyte concentrations of male and female rat submandibular saliva secreted in response to methoxamine and pilocarpine. Journal of Dental Research, 66, 745750. https://doi.org/10.1177/00220345870660030801Google Scholar
Abraham, S. F., Baker, R. M., Blaine, E. H., Denton, D. A., & McKinley, M. J. (1975). Water drinking induced in sheep by angiotensin: a physiological or pharmacological effect? Journal of Comparative and Physiological Psychology, 88, 503518. https://doi.org/10.1037/h0076405Google Scholar
Adachi, A., Niijima, A., & Jacobs, H. L. (1976). An hepatic osmoreceptor mechanism in the rat: electrophysiological and behavioral studies.American Journal of Physiology, 232, 10431049. https://doi.org/10.1152/ajplegacy.1976.231.4.1043Google Scholar
Adams, J. D., Sekiguchi, Y., Suh, H.-G., et al. (2018). Dehydration impairs cycling performance, independently of thirst: a blinded study. Medical Science and Sports Exercise, 50, 16971703. https://doi.org/10.1249/MSS.0000000000001597Google Scholar
Ader, R., & Grota, L. J. (1970). Rhythmicity in the maternal behaviour of Rattus norvegicus. Animal Behaviour, 18, 144150. https://doi.org/10.1016/0003-3472(70)90083-7Google Scholar
Adolph, E. F. (1939). Measurements of water drinking in dogs. American Journal of Physiology, 125, 7586.Google Scholar
Adolph, E. F. (1943). Physiological regulations. Lancaster, PA: Jacques Cattell Press.Google Scholar
Adolph, E. F., et al. (1947). The physiology of man in the desert. New York: Interscience.Google Scholar
Adolph, E. F. (1950). Thirst and its inhibition in the stomach. American Journal of Physiology, 161, 374386. https://doi.org/10.1152/ajplegacy.1950.161.3.374Google Scholar
Adolph, E. F., Barker, J. P., & Hoy, P. A. (1954). Multiple factors in thirst. American Journal of Physiology, 178, 538562. https://doi.org/10.1152/ajplegacy.1954.178.3.538Google Scholar
Akerman, B., Andsersson, B., Farbicius, E., & Svensson, L. (1960). Observations on central regulation of body temperature and of food and water intake in the pigeon (Columba livia). Acta Physiologica Scandinavica, 50, 328336. http://doi.org/10.1111/j.1748-1716.1960.tb00187.xGoogle Scholar
Allen, A. M., McKinley, M. J., & Mendelsohn, F. A. (1988). Comparative neuroanatomy of angiotensin II receptor localization in the mammalian hypothalamus. Clinical and Experimental Pharmacology and Physiology, 15, 137145. https://doi.org/10.1111/j.1440-1681.1988.tb01055.xGoogle Scholar
Allen, W. E., DeNardo, L. A., Chen, M. Z., et al. (2017). Thirst-associated preoptic neurons encode an aversive motivational drive. Science, 357, 11491155. https://doi.org/10.1126/science.aan6747Google Scholar
Almli, C. R. (1973). The ontogeny of the onset of drinking and plasma osmotic pressure regulation. Developmental Psychobiology, 6, 147158. https://doi.org/10.1002/dev.420060209Google Scholar
Almli, C. R., McMullen, N. T., & Golden, G. T. (1976). Infant rats: hypothalamic unit activity. Brain Research Bulletin, 1, 543552. https://doi.org/10.1016/0361-9230Google Scholar
Almli, C. R., & Weiss, C. S. (1975). Behavioral and physiological responses to dipsogens: a comparative analysis. Physiology and Behavior, 14, 633641. https://doi.org/10.1016/0031-9384(75)90192-4Google Scholar
Altar, A., & Carlisle, H. J. (1979). Intragastric drinking in the rat: evidence for a role of oropharyngeal stimulation. Physiology and Behavior, 22, 12211225. https://doi.org/10.1016/0031-9384Google Scholar
Anderson, C. R., & Houpt, T. R. (1990). Hypertonic and hypovolemic stimulation of thirst in pigs. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 258, R149R154.Google Scholar
Anderson, W. G., Taylor, J. R., Good, J. P., et al. (2007). Body fluid volume regulation in elasmobranch fish. Comparative Biochemistry and Physiology, Part A, 148, 313. https://doi.org/10.1016/j.cpba.2006.07.018Google Scholar
Andersson, B. (1952). Polydipsia caused by intrahypothalamic injections of hypertonic NaCl solutions. Experientia, 8, 157158.Google Scholar
Andersson, B., Jobin, M., & Olsson, K. (1967). A study of thirst and other effects of an increased sodium concentration in the 3rd brain ventricle. Acta Physiologica Scandinavica, 69, 2936. https://doi.org/10.1111/j.1748-1716.1967.tb03488.xGoogle Scholar
Andersson, B., Leksell, R. G., & Lishajko, F. (1975). Perturbations in fluid balance induced by medially placed forebrain lesions. Brain Research, 99, 261275. https://doi.org/10.1016/0006-8993(75)90028-1Google Scholar
Andersson, B., & McCann, S. M. (1955). A further study of polydipsia evoked by hypothalamic stimulation in the goat. Acta Physiologica Scandinavica, 33, 333346. https://doi.org/10.1111/j.1748-1716.1955.tb01213.xGoogle Scholar
Andersson, B., Olsson, K., & Warner, R. G. (1967). Dissilimarities between the central control of thirst and the release of antidiuretic hormone (ADH). Acta Physiologica Scandinavica, 71, 5764. https://doi.org/10.1111/j.1748-1716.1967.tb03709.xGoogle Scholar
Ang, K. K., McKitrick, D. J., Phillips, P. A., & Arnolda, L. F. (2001). Time of day and access to food alter water intake in rats after water deprivation. Clinical and Experimental Pharmacology and Physiology, 28, 764767. https://doi.org/10.1046/j.1440-1681.2001.03519.xGoogle Scholar
Applegren, B. H., Thrasher, T. N., Keil, L. C., & Ramsay, D. J. (1991). Mechanism of drinking-induced inhibition of vasopressin secretion in dehydrated dogs. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 261, R1226R1233. https://doi.org/10.1152/ajpregu.1991.261.5.R1226Google Scholar
Arguelles, J., Perillan, C., Beltz, T. G., et al. (2017). The effects of experimental gestational hypertension on maternal blood pressure and fluid intake and pre-weanling hypothalamic neuronal activity. Appetite, 116, 6574. https://doi.org/10.1016/j.appet.2017.04.008CrossRefGoogle ScholarPubMed
Armstrong, S., Clarke, J., & Coleman, G. (1978). Light-dark variation in laboratory rat stomach and small intestine content. Physiology and Behavior, 21, 785788. https://doi.org/10.1016/0031-9384CrossRefGoogle ScholarPubMed
Athanasatou, A., Kandyliari, A., Malisova, O., & Kapsokefalou, M. (2019). Fluctuation of water intake and of hydration indices during the day in a sample of healthy Greek adults. Nutrients, 6, 793. https://doi.org/10.3390/nu11040793Google Scholar
Augustine, V., Gocke, S. K., Lee, S., et al. (2018). Heirarchical neural architecture underlying thirst regulation. Nature, 555, 204209. https://doi.org/10.1038/nature25488Google Scholar
Back, S. A., Riddle, A., Dean, J., & Hohimer, A. R. (2012). The instrumented sheep as a model of white matter injury in the preterm infant. Neurotherapeutics, 9, 359370. https://doi.org/10.1007/s13311Google Scholar
Badoer, E., McKinley, M. J., Oldfield, B. J., & McAllen, R. M. (1992). Distribution of hypothalamic, medullary, and lamina terminalis neurons expressing Fos after hemorrhage in conscious rats. Brain Research, 582, 323328. https://doi.org/10.1016/0006-8993Google Scholar
Badoer, E., McKinley, M. J., Oldfield, B. J., & McAllen, R. M. (1993). A comparison of hypotensive and non-hypotensive hemorrhage on Fos expression in spinally projecting neurons of the paraventricular nucleus and rostral ventrolateral medulla. Brain Research, 610, 216223. https://doi.org/10.1016/0006-8993CrossRefGoogle ScholarPubMed
Badoer, E., Oldfield, B. J., & McKinley, M. J. (1993). Haemorrhage-induced production of Fos in neurons of the lamina terminalis: role of endogenous angiotensin II. Neuroscience Letters, 159, 151154. https://doi.org/10.1016/0304-3940Google Scholar
Baker, M. A., & Turlejska, E. (1989). Thermal panting in dehydrated dogs: effects of plasma volume expansion and drinking. Pflügers Archiv: European Journal of Physiology, 413, 511515. https://doi.org/10.1007/BF00594182Google Scholar
Barlow, E. D., & de Wardener, H. E. (1959). Compulsive water drinking. Quarterly Journal of Medicine, 28, 235258. (PMID 13658352)Google Scholar
Barney, C. C. (1997). Effects of preloads of water and saline on thermal dehydration-induced thirst. Physiology and Behavior, 61, 763769. doi.org/10.1016/s0031Google Scholar
Barney, C. C., & Kuhrt, D. M. (2016). Intermittent heat exposure and thirst in rats. Physiological Reports, 4, e12767. doi.org/10.14814/phy2.12767Google Scholar
Barney, C. C., Threatte, R. M., & Fregly, M. J. (1983). Water deprivation-induced drinking in rats: role of angiotensin II. American Journal of Physiology: Regulatory, Integrative, and Comparative Physiology, 244, R244R248. doi.org/10.1152/ajpregu.1983.244.2.R244Google ScholarPubMed
Barney, C. C., Vergoth, C., Renkema, L.-A., & Meeuwsen, K. W. (1995). Nycthemeral variation in thermal dehydration-induced thirst. Physiology and Behavior, 58, 329335. doi.org/10.1016/0031-9384Google Scholar
Barney, C. C., & West, D. R. (1990). Control of water intake in thermally dehydrated rats. Physiology and Behavior, 48, 387395. doi.org/10.1016/0031-9384Google Scholar
Barney, C. C., Williams, J. S., & Kuiper, D. H. (1991). Thermal dehydration-induced thirst in rats: role of angiotensin II. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 261, R1171R1175. doi.org/10.1152/ajpregu.1991.261.5.R1171Google Scholar
Barron, W. M., Stamoutsos, B. A., & Lindheimer, M. D. (1984). Role of volume in the regulation of vasopressin secretion during pregnancy in the rat. Journal of Clinical Investigation, 73, 923932. doi.org/10.1172/JCI111316doi.org/10.1172/JCI111316Google Scholar
Barth, S. W., & Gerstberger, R. (1999). Differential regulation of angiotensinogen and AT1A receptor mRNA within the rat subfornical organ during dehydration. Molecular Brain Research, 64, 151164. doi.org/10.1016/S0169Google Scholar
Baylis, C., Engels, K., & Beierwaltes, W. H. (1998). Beta-adrenoceptor-stimulated renin release is blunted in old rats. Journal of the American Society of Nephrology, 9, 13181320. (PMID 9644645)Google Scholar
Baylis, C., Engels, K., Hymel, A., & Navar, L. G. (1997). Plasma renin activity and metabolic clearance rate of angiotensin II in the unstressed aging rat. Mechanisms of Ageing and Development, 97, 163171. https://doi.org/10.1016/S0047Google Scholar
Bealer, S. L. (1983). Sodium excretion following lesions of preoptic recess periventricular tissue in the rat. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 244, R815R822. https://doi.org/10.1152/ajpregu.1983.244.6.R815Google Scholar
Bealer, S. L., Carithers, J., & Johnson, A. K. (1984). Fluid regulation, body weight and drinking responses following hypothalamic knife cuts. Brain Research, 305, 239245. https://doi.org/10.1016/0006-8993Google Scholar
Bealer, S. L., Crofton, J. T., & Share, L. (1983). Hypothalamic knife cuts alter fluid regulation, vasopressin secretion, and natriuresis during water deprivation. Neuroendocrinology, 36, 364370. https://doi.org/10.1159/000123482CrossRefGoogle ScholarPubMed
Bealer, S. L., & Johnson, A. K. (1980). Preoptic-hypothalamic periventricular lesions alter food-associated drinking and circadian rhythms. Journal of Comparative and Physiological Psychology, 94, 547555. https://doi.org/10.1037/h0077685Google Scholar
Beauchamp, G. K., Cowart, B. J., Mennella, J. A., & Marsh, R. R. (1994). Infant salt taste: developmental, methodological, and contextual factors. Developmental Psychobiology, 27, 353–65. https://doi.org/10.1002/dev.420270604Google Scholar
Beck, L. H. (2000). The aging kidney: defending a delicate balance of fluid and electrolytes. Geriatrics, 55, 2628. (PMID 10771700)Google Scholar
Begg, D. P., Sinclair, A. J., & Weisinger, R. S. (2012). Reductions in water and sodium intake by aged male and female rats. Nutrition Research, 32, 865872. https://doi.org/10.1016/j.nutres.2012.09.014Google Scholar
Bekkevold, C. M., Robertson, K. L., Reinhard, M. K., Battles, A. H., & Rowland, N. E. (2013). Dehydration parameters and standards for laboratory mice. Journal of the Association for Laboratory Animal Sciences, 52, 233239. (PMID 23849404)Google Scholar
Bell, R. J., Laurence, B. M., Meehan, P. J., Congiu, M., Scoggins, B. A., & Winotour, E. M. (1986). Regulation and function of arginine vasopressin in pregnant sheep. American Journal of Physiology: RenalGoogle ScholarPubMed
Bellows, R. T. (1939). Time factors in water drinking in dogs. American Journal of Physiology, 125, 8797. https://doi.org/10.1152/ajplegacy.1938.125.1.87Google Scholar
Bernard, C. (1856). Leçons de physiologie expérimentale appliquée à la médicine faites au Collège de France. Vol 2. Paris: Baillière.Google Scholar
Bisley, J. W., Rees, S. M., McKinley, M. J., Hards, D. K., & Oldfield, B. J. (1996). Identification of osmoresponsive neurons in the forebrain of the rat: a Fos study at the ultrastructural level. Brain Research, 720, 2534. https://doi.org/10.1016/0006-8993(96)00079-0Google Scholar
Black, S. L. (1976). Preoptic hypernatremic syndrome and the regulation of water balance in the rat. Physiology and Behavior, 17, 473482. https://doi.org/10.1016/0031-9384Google Scholar
Blair-West, J. R., & Brook, A. H. (1969). Circulatory changes and renin secretion in sheep in response to feeding. Journal of Physiology, 204, 1530. https://doi.org/10.1113/jphysiol.1969.sp008895Google Scholar
Blass, E. M., & Hall, W. G. (1976). Drinking termination: interactions among hydrational, orogastric, and behavioral controls in rats. Psychological Review, 83, 356374. (PMID 1005582)Google Scholar
Blass, E. M., Jobaris, R., & Hall, W. G. (1976). Oropharyngeal control of drinking in rats. Journal of Comparative and Physiological Psychology, 90, 909916. https://doi.org/10.1037/h0077268Google Scholar
Block, M. L., Vallier, G. H., & Glickman, S. E. (1974). Elicitation of water ingestion in the Mongolian gerbil (Meriones unguiculatus) by intracranial injections of angiotensin II and l-norepinephrine. Pharmacology, Biochemistry and Behavior, 2, 235242. https://doi.org/10.1016/0091-3057Google Scholar
Booth, D. A. (1968). Mechanism of action of norepinephrine in eliciting an eating response on injection into the rat hypothalamus. Journal of Pharmacology and Experimental Therapeutics, 160, 336348. (PMID 4296696)Google Scholar
Bott, E., Denton, D. A., & Weller, S. (1965). Water drinking in sheep with oesophageal fistulae. Journal of Physiology, 176, 323336. https://doi.org/10.1113/jphysiol.1965.sp007553Google Scholar
Boulze, D., Montastruc, P., & Cabanac, M. (1983). Water intake, pleasure and water temperature in humans. Physiology and Behavior, 30, 97102. https://doi.org/10.1016/0031-9384Google Scholar
Bourque, C. W. (2008). Central mechanisms of osmosensation and systemic osmoregulation. Nature Reviews Neuroscience, 9, 519531. https://doi.org/10.1038/nrn2400Google Scholar
Bourque, C. W. , Oliet, S. H. , & Richard, D. (1994). Osmoreceptors, osmoreception, and osmoregulation. Frontiers in Neuroendocrinology, 15, 231274. https://doi.org/10.1006/frne.1994.1010Google Scholar
Brandenberger, G., Follenius, M., Muzet, A., Ehrhart, J., & Schieber, J. P. (1985). Ultradian oscillations in plasma renin activity: their relationships to meals and sleep stages. Journal of Clinical Endocrinology and Metabolism, 61, 280284. https://doi/org/10.1210/jcem-61-2-280Google Scholar
Brooks, V. L., Freeman, K. L., & O’Donaughy, T. L. (2004). Acute and chronic increases in osmolality increase excitatory amino acid drive of the rostro ventrolateral medulla in rats. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 287, R1359R1368. https://doi.org/10.1152/ajpregu.00104.2004Google Scholar
Bruno, J. P. (1981). Development of drinking behavior in preweaning rats. Journal of Comparative and Physiological Psychology, 95, 10161027. https://doi.org/10.1037/h0077844Google Scholar
Bruno, J. P., Craigmyle, L. S., & Blass, E. M. (1982). Dehydration inhibits suckling behavior in weanling rats. Journal of Comparative and Physiological Psychology, 96, 405415. https://doi.org/10.1037/h0077888Google Scholar
Buggy, J., Fisher, A. E., Hoffman, W. E., Johnson, A. K., & Phillips, M. I. (1975). Ventricular obstruction: effect on drinking induced by intracranial injection of angiotensin. Science, 190, 7274. https://doi.org/10.1126/science.1166302Google Scholar
Buggy, J., Hoffman, W. E., Phillips, M. I., Fisher, A. E., & Johnson, A. K. (1979). Osmosensitivity of rat third ventricle and interactions with angiotensin. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 236, R75R82. https://doi.org/10.1152/ajpregu.1979.236.1.R75Google Scholar
Buggy, J., & Johnson, A. K. (1977). Preoptic-hypothalamic periventricular lesions: thirst deficits and hypernatremia. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 233, R44R52. https://doi.org/10.1152/ajpregu.1977.233.1.R44Google Scholar
Burdon, C. A., Johnson, N. A., Chapman, P. G., & O’Connor, H. T. (2012). Influence of beverage temperature on palatability and fluid ingestion during endurance exercise: a systematic review. International Journal of Sport Nutrition and Exercise Metabolism, 22, 199211. https://doi.org/10.1123/ijsnem22.3.199Google Scholar
Burke, G., Mook, D. G., & Blass, E. M. (1972). Hyperreactivity to quinine associated with osmotic thirst. Journal of Comparative and Physiological Psychology, 78, 3239. https://doi.org/10.1037/h0032184Google Scholar
Cannon, W. B. (1919). The physiological basis of thirst. Proceedings of the Royal Society, 90, 283301.Google Scholar
Cannon, W. B. (1939). The wisdom of the body. 2nd ed. New York: Norton.Google Scholar
Carlson, S. H., Beitz, A., & Osborn, J. W. (1997). Intragastric hypertonic saline increases vasopressin and central Fos immunoreactivity in conscious rats. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 272, R750R758. https://doi.org/10.1152/ajpregu.1997.272.3.r750Google Scholar
Castillo, M. R., Hochstetler, K. J., Greene, D. M., et al. (2005). Circadian rhythm of core body temperature in two laboratory mouse strains. Physiology and Behavior, 86, 538545. https://doi.org/10.1016/j.physbeh.2005.08.018Google Scholar
Caston-Balderrama, A., Nijland, M. J., McDonald, T. J., & Ross, M. G. (1999). Central Fos expression in fetal and adult sheep after intraperitoneal hypertonic saline. American Journal of Physiology: Heart and Circulatory Physiology, 276, H725H735. https://doi.org/10.1152/ajpheart.1999.276.2.H725Google Scholar
Caston-Balderrama, A., Nijland, M. J., McDonald, T. J., & Ross, M. G. (2001). Intact osmoregulatory centers in the preterm ovine fetus: Fos induction after an osmotic challenge. American Journal of Physiology: Heart and Circulatory Physiology, 281, H2626H2635. https://doi.org/10.1152/ajpheart.2001.281.6.H2626Google Scholar
Chan, R. K., & Sawchenko, P. E. (1994). Spatially and temporally differentiated patterns of c-Fos expression in brainstem catecholaminergic cell groups induced by cardiovascular challenges in the rat. Journal of Comparative Neurology, 348, 433460. https://doi.org/10.1002/cne.903480309Google Scholar
Chapman, H. W., & Epstein, A. N. (1970). Prandial drinking induced by atropine. Physiology and Behavior, 5, 549555. https://doi.org/10.1016/0031-9384Google Scholar
Cheuvront, S. N., & Haymes, E. M. (2001). Ad libitum fluid intakes and thermoregulatory responses of female distance runners in three environments. Journal of Sports Sciences, 19, 845854. https://doi.org/10.1080/026404101753113796Google Scholar
Chew, R. M. (1961). Water metabolism of desert-inhabiting vertebrates. Biological Reviews of the Cambridge Philosophical Society, 36, 131. doi.org/10.1111/j.1469-185x.1961.tb01430.xGoogle Scholar
Choi-Kwon, S., & Baertschi, A. J. (1991). Splanchnic osmoreception and vasopressin: mechanisms and neural pathways. American Journal of Physiology: Endocrinology and Metabolism, 261, E18E25. https://doi.org/10.1152/ajpendo.1991.261.1.E18Google Scholar
Chwalbinska-Moneta, J. (1979). Role of hepatic portal osmoreception in the control of ADH release. American Journal of Physiology: Endocrinology and Metabolism, 236, E603E609. https://doi.org/10.1152/ajpendo.1979.236.6.E603Google Scholar
Ciura, S., & Bourque, C. W. (2006). Transient receptor potential vanilloid 1 is required for intrinsic osmoreception in organum vasculosum lamina terminalis neurons and for normal thirst responses to systemic hyperosmolality. Journal of Neuroscience, 26, 90699075. https://doi.org/10.1523/JNEUROSCI.0877-06.2006Google Scholar
Ciura, S., Liedtke, W., & Bourque, C. W. (2011). Hypertonicity sensing in organum vasculosum lamina terminalis neurons: a mechanical process involving TRPV1 but not TRPV4. Journal of Neuroscience, 31, 1466914676. https://doi.org/10.1523/JNEUROSCI.1420-11.2011CrossRefGoogle Scholar
Cizek, L. (1959). Long-term observations on relationship between food and water ingestion in the dog. American Journal of Physiology, 197, 342346. https://doi.org/10.1152/ajplegacy.1959.197.2.342Google Scholar
Cizek, L. (1961). Relationship between food and water ingestion in the rabbit. American Journal of Physiology, 201, 557566. https://doi.org/10.1152/ajplegacy.1961.201.3.557Google Scholar
Cizek, L. J., & Nocenti, M. R. (1965). Relationship between water and food ingestion in the rat. American Journal of Physiology, 208, 615620. https://doi.org/10.1152/ajplegacy.1965.208.4.615Google Scholar
Clark, G., Magoun, H. W., & Ranson, S. W. (1939). Hypothalamic regulation of body temperature. Journal of Neurophysiology, 2, 6180. https://doi.org/10.1152/jn.1939.2.1.61Google Scholar
Coble, J. P., Grobe, J. L., Johnson, A. K., & Sigmund, C. D. (2015). Mechanisms of brain renin angiotensin system-induced drinking and blood pressure: importance of the subfornical organ. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 308, R238R249. https://doi.org/10.1152/ajpregu.00486.2014Google Scholar
Coburn, P. C., & Stricker, E. M. (1978). Osmoregulatory thirst in rats after lateral preoptic lesions. Journal of Comparative and Physiological Psychology, 92, 350361. https://doi.org/10.1037/h0077464Google Scholar
Cole, D. L. (1955). The excretion of intravenously administered saline by the rat. Acta Endocrinologica, 19, 397405.Google Scholar
Collier, G., Johnson, D. F., & Stanziola, C. (1991). The economics of water and salt balance. Physiology and Behavior, 50, 12211226. https://doi.org/10.1016/0031-9384Google Scholar
Connolly, M. S., & Lynch, C. B. (1981). Circadian variation of strain differences in body temperature and activity in mice. Physiology and Behavior, 27, 10451049. https://doi.org/10.1016/0031-9384Google Scholar
Cook, G., Hodgson, P., Hope, C., Thompson, J., & Shaw, L. (2018). Hydration practices in residential and nursing care homes for older people. Journal of Clinical Nursing, 28, 12051215.Google Scholar
Cooper, C. E. (2017). Endocrinology of osmoregulation and thermoregulation of Australian desert tetrapods: a historical perspective. General and Comparative Endocrinology, 244, 186200. https://doi.org/10.1016/j.ygcen.2015.10.003Google Scholar
Corbit, J. D. (1965). Effect of intravenous sodium chloride on drinking in the rat. Journal of Comparative and Physiological Psychology, 60, 397406. https://doi.org/10.1037/h0022558Google Scholar
Cotter, J. D., Thornton, S. N., Lee, J. K. W., & Laursen, P. B. (2014). Are we being drowned in hydration advice? Thirsty for more? Extreme Physiology and Medicine, 3, 18. https://doi.org/10.1186/2046-7648-3-18Google Scholar
Cowen, L. E., Hodak, S. P., & Verbalis, J. G. (2013). Age-associated abnormalities of water homeostasis. Endocrinology and Metabolism Clinics of North America, 42, 349370. https://doi.org/10.1016/j.ecl.2013.02.005Google Scholar
Cramer, C. P., Blass, E. M., & Hall, W. G. (1980). The ontogeny of nipple-shifting behavior in albino rats: mechanisms of control and possible significance. Developmental Psychobiology, 13, 165180. https://doi.org/10.1002/dev.420130208Google Scholar
Crews, E. C., & Rowland, N. E. (2005). Role of angiotensin in body fluid homeostasis of mice: effect of losartan on water and NaCl intakes. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 288, R638R644. https://doi.org/10.1152/ajpregu.00525.2004Google Scholar
Cunningham, J. T., Beltz, T., Johnson, R. F., & Johnson, A. K. (1992). The effects of ibotenate lesions of the median preoptic nucleus on experimentally-induced and circadian drinking behavior in rats. Brain Research, 580, 325330. https://doi.org/10.1016/0006-8993Google Scholar
Curtis, K. S., Krause, E. G., Wong, D. L., & Contreras, R. J. (2004). Gestational and early postnatal dietary NaCl levels affect NaCl intake, but not stimulated water intake, by adult rats. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 286, R1043R1050. https://doi.org/10.1152/ajpregu.00582.2003Google Scholar
Czech, D. A., & Vander Zanden, J. M. (1991). Drinking behavior in the spiny mouse (Acomys cahirinus) following putative dipsogenic challenges. Pharmacology Biochemistry and Behavior, 38, 913916. https://doi.org/10.1016/0091-3057(91)90263-2Google Scholar
Darlington, D. N., Shinsako, J., & Dallman, M. F. (1986). Responses of ACTH, epinephrine, norepinephrine, and cardiovascular system to hemorrhage. American Journal of Physiology: Heart and Circulatory Physiology, 251, H612H618. https://doi.org/10.1152/ajpheart.1986.251.3.H612Google Scholar
Davies, I., O’Neill, P. A., McLean, K. A., Catania, J., & Bennett, D. (1995). Age-associated alterations in thirst and arginine vasopressin in response to a water or sodium load. Age and Ageing, 24, 151159. https://doi.org/10.1093/ageing/24.2.151Google Scholar
Davison, J. M., Gilmore, E. A., Durr, J., Robertson, G. L., & Lindheimer, M. D. (1984). Altered osmotic thresholds for vasopressin secretion and thirst in human pregnancy. American Journal of Physiology: Renal Physiology, 246, F105F109. https://doi.org/10.1152/ajprenal.1984.246.1.F105Google Scholar
Davison, J. M., Shiells, E. A., Philips, P. R., & Lindheimer, M. D. (1988). Serial evaluation of vasopressin release and thirst in human pregnancy: role of human chorionic gonadotrophin in the osmoregulatory changes of gestation. Journal of Clinical Investigation, 81, 798806. https://doi.org/10.1172/JCI113386Google Scholar
Davison, J. M., Shiells, E. A., Philips, P. R., & Lindheimer, M. D. (1990). Influence of humoral and volume factors on altered osmoregulation of normal human pregnancy. American Journal of Physiology: Renal Physiology, 258, F900F907. https://doi.org/10.1152/ajprenal.1990.258.4.F900Google Scholar
De Araujo, I. E. T., Kringelbach, M. L., Rolls, E. T., & McGlone, F. (2003). Human cortical responses to water in the mouth, and the effects of thirst. Journal of Neurophysiology, 90, 18651876. https://doi.org/10.1152/jn.00297.2003Google Scholar
Deaux, E. (1973). Thirst satiation and the temperature of ingested water. Science, 181, 11661167. https://doi.org/10.1126/science.181.4105.1166Google Scholar
Deaux, E., Sato, E., & Kakolewski, J. W. (1970). Emergence of systemic cues evoking food-associated drinking. Physiology and Behavior, 5, 11771179. https://doi.org/10.1016/0031-9384Google Scholar
De Avila, C., Chometton, S., Lenglos, C., Calvez, J., Gunlach, A. L., & Timofeeva, E. (2018). Differential effects of relaxin-3 and a selective relaxin-3 receptor agonist on food and water intake and hypothalamic neuronal activity in rats. Behavioural Brain Research, 336, 135144. https://doi.org/10/1016/j.bbr.2017.08.044Google Scholar
de Castro, J. M. (1988). A microregulatory analysis of spontaneous fluid intake by humans: evidence that the amount of liquid ingested and its timing is mainly governed by feeding. Physiology and Behavior, 43, 705714. https://doi.org/10.1016/0031-9384Google Scholar
de Castro, J. M. (1989). The interactions of fluid and food intake in the spontaneous feeding and drinking patterns of rats. Physiology and Behavior, 45, 861870. https://doi.org/10.1016/0031-9384Google Scholar
de Castro, J. M. (1992). Age-related changes in natural spontaneous fluid ingestion and thirst in humans. Journal of Gerontology, 47, P321P330. https://doi.org/10.1093/geronj/47.5.p321CrossRefGoogle ScholarPubMed
De Luca, L. A., Menani, J. V., & Johnson, A. K. (2019). Neurobiology of body fluid homeostasis: transduction and integration. Boca Raton, FL: CRC Press.Google Scholar
DeRubertis, F. R., Michelis, M. F., Beck, N., Field, J. B., & Davis, B. B. (1971). “Essential” hypernatremia due to ineffective osmotic and intact volume regulation of vasopressin secretion. Journal of Clinical Investigation, 50, 97111. https://doi.org/10.1172/JCI106489Google Scholar
DeRubertis, F. R., Michelis, M. F., & Davis, B. B. (1974). “Essential” hypernatremia: report of three cases and review of the literature. Archives of Internal Medicine, 134, 889895. https://doi.org/10.1001/archinte.1974.00320230099021Google Scholar
Desor, J. A., Maller, O., & Andrews, K. (1975). Ingestive responses of human newborns to salty, sour, and bitter stimuli. Journal of Comparative and Physiological Psychology, 89, 966970.Google Scholar
Durr, J. A., Stamoutsos, B., & Lindheimer, M. D. (1981). Osmoregulation during pregnancy in the rat: evidence for resetting of the threshold for vasopressin secretion during gestation. Journal of Clinical Investigation, 68, 337346. https://doi.org/10.1172/jci110261Google Scholar
Duvernoy, H. M., & Risold, P.-Y. (2007). The circumventricular organs: an atlas of comparative anatomy and vascularization. Brain Research Reviews, 56, 119147. https://doi.org/10.1016/j.brainresrev.2007.06.002Google Scholar
Egan, G., Silk, T., Zamarripa, J., et al. (2003). Neural correlates of the emergence of consciousness of thirst. Proceedings of the National Academy of Sciences USA, 100, 1524115246. https://doi.org/10.1073/pnas.2136650100Google Scholar
El-Haddad, M. A., Desai, M., Gayle, D., & Ross, M. G. (2004). In utero development of fetal thirst and appetite: potential for programming. Journal of the Society for Gynecological Investigation, 11, 123130. https://doi.org/10.1016/j.jsgi.2003.12.001Google Scholar
Ellis, S., Axt, K., & Epstein, A. N. (1984). The arousal of ingestive behaviors by chemical injection into the brain of the suckling rat. Journal of Neuroscience, 4, 945955. https://doi.org/10.1523/JNEUROSCI.04-04-00945.1984Google Scholar
Eng, R., & Miselis, R. R. (1981). Polydipsia and abolition of angiotensin-induced drinking after transections of subfornical organ efferent projections in the rat. Brain Research, 225, 200206. https://doi.org/10.1016/0006-8993Google Scholar
Epstein, A. N., & Teitelbaum, P. (1962). The lateral hypothalamic syndrome: recovery of feeding and drinking after lateral hypothalamic lesions. Psychological Review, 69, 7490. https://doi.org/10.1037/h0039285Google Scholar
Eriksson, L., Fernandez, L., & Olsson, K. (1971). Differences in the antidiuretic response to intracarotid infusions of various hypertonic solutions in the conscious goat. Acta Physiologica Scandinavica, 83, 554562. https://doi.org/10.1111/j.1748-1716.1971.tb05113.xGoogle Scholar
Evans, D. H. (2010). A brief history of the study of fish osmoregulation: the central role of the Mt. Desert Island Biological Laboratory. Frontiers in Physiology, 1, 13. https://doi.org.10.3389/fphys.2010.00013Google Scholar
Evans, D. H., Piermarini, P. M., & Choe, K. P. (2005). The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiological Review, 85, 97177. https://doi.org/10.1152/physrev.00050.2003Google Scholar
Evered, M. D. (1990). Relationship between thirst and diazoxide-induced hypotension in rats. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 259, R362R370. https://doi.org/10.1152/ajpregu.1990.259.2.R362Google Scholar
Evered, M. D., & Mogenson, G. J. (1977). Impairment in fluid ingestion in rats with lesions of the zona incerta. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 233, R53R58. https://doi.org/10.1152/ajpregu.1977.233.1.R53Google Scholar
Falk, G. (1955). Maturation of renal function in infant rats. American Journal of Physiology, 181: 157170. https://doi.org/10.1152/ajplegacy.1955.181.1.157Google Scholar
Falk, J. L. (1961). Production of polydipsia in normal rats by an intermittent food schedule. Science, 133, 195196. https://doi.org/10.1126/science.133.3447.195Google Scholar
Farrell, M. J., Bowala, T. K., Gavrilescu, M., et al. (2011). Cortical activation and lamina terminalis functional connectivity during thirst and drinking in humans. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 301, R623R631. https://doi.org/10.1152/ajpregu.00817.2010Google Scholar
Farrell, M. J., Zamarripa, F., Shade, R., et al. (2008). Effect of aging on regional cerebral blood flow responses associated with osmotic thirst and its satiation by water drinking: a PET study. Proceedings of the National Academy of Sciences USA, 105, 382387. https://doi.org/10.1073/pnas.0710572105Google Scholar
Fenelon, V. S., Poulain, D. A., & Theodosis, D. T. (1993). Oxytocin neuron activation and Fos expression: a quantitative immunocytochemical analysis of the effect of lactation, parturition, osmotic and cardiovascular stimulation. Neuroscience, 53, 7789. https://doi.org/10.1016/0306-4522Google Scholar
Figaro, M. K., & Mack, G. W. (1997). Regulation of fluid intake in dehydrated humans: role of oropharyngeal stimulation. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 272, R1740R1746. https://doi.org/10.1152/ajpregu.1997.272.6.R1740Google Scholar
Fitts, D. A. (1994). Angiotensin II receptors in SFO but not in OVLT mediate isoproterenol-induced thirst. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 267, R7R15. https://doi.org/10.1152/ajpregu.1994.267.1.R7Google Scholar
Fitzsimons, J. T. (1961a). Drinking by nephrectomized rats injected with various substances. Journal of Physiology, 155, 563579. https://doi.org/10.1113/jphysiol.1961.sp006647Google Scholar
Fitzsimons, J. T. (1961b). Drinking by rats depleted of body fluid without increase in osmotic pressure. Journal of Physiology, 159, 297309. https://doi.org/10.1113/jphysiol.1961.sp006809Google Scholar
Fitzsimons, J. T. (1963). The effects of slow infusions of hypertonic solutions on drinking and drinking thresholds in rats. Journal of Physiology, 167, 344354. https://doi.org/10.1113/jphysiol.1963.sp007154Google Scholar
Fitzsimons, J. T. (1969). The role of a renal thirst factor in drinking induced by extracellular stimuli. Journal of Physiology, 201, 349368. https://doi.org/10.1113/jphysiol.1969.sp008760Google Scholar
Fitzsimons, J. T. (1979). The physiology of thirst and sodium appetite. Cambridge: Cambridge University Press.Google Scholar
Fitzsimons, J. T., & Elfont, R. M. (1982). Angiotensin does contribute to drinking induced by caval ligation in rats. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 243, R558R562. https://doi.org/10.1152/ajpregu.1982.243.5.R558Google Scholar
Fitzsimons, J. T., & Kaufman, S. (1977). Cellular and extracellular dehydration, and angiotensin as stimuli to drinking in the common iguana. Journal of Physiology, 265, 443463. https://doi.org/10.1113/jphysiol.1977.sp011724Google Scholar
Fitzsimons, J. T., Kucharczyk, J., & Richards, G. (1978). Systemic angiotensin-induced drinking in the dog: a physiological phenomenon. Journal of Physiology, 276, 435448. https://doi.org/10.1113/jphysiol.1978.sp012245Google Scholar
Fitzsimons, J. T., & Le Magnen, J. (1969). Eating as a regulatory control of drinking in the rat. Journal of Comparative and Physiological Psychology, 67, 273283. https://doi.org/10.1037/h0026772Google Scholar
Fitzsimons, J. T., & Simons, B. J. (1969). The effect on drinking in the rat of intravenous infusion of angiotensin, given alone or in combination with other stimuli of thirst. Journal of Physiology, 203, 4557. https://doi.org/10.1113/jphysiol.1969.sp008848Google Scholar
Fitzsimons, J. T., & Szczepanska-Sadowska, E. (1974). Drinking and antidiuresis elicited by isoprenaline in the dog. Journal of Physiology, 239, 251267. https://doi.org/10.1113/jphysiol.1974.sp010567Google Scholar
Flynn, F. W., Curtis, K. S., Verbalis, J. G., & Stricker, E. M. (1995). Dehydration anorexia in decerebrate rats. Behavioral Neuroscience, 109, 10091012. https://doi.org/10.1037/0735-7044.109.5.1009Google Scholar
Ford, M. M., Steele, A. M., McCracken, A. D., Finn, D. A., & Grant, K. A. (2013). The relationship between adjunctive drinking, blood ethanol concentration and plasma corticosterone across fixed-time intervals of food delivery in two inbred mouse strains. Psychoneuroendocrinology, 38, 25982610. https://doi.org/10.1016/j.psyneuen.2013.06.011Google Scholar
Fregly, M. J., Paulding, W., & Rowland, N. E. (1990). Comparison of the dipsogenic responsiveness of Long-Evans and Sprague-Dawley rats. Physiology and Behavior, 47, 11871192. https://doi.org/10.1016/0031-9384.Google Scholar
Fregly, M. J., & Rowland, N. E. (1985). Role of renin-angiotensin-aldosterone system in NaCl appetite of rats. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology 248, R1R11. https://doi.org/10.1152/ajpregu.1985.248.1.R1Google Scholar
Fregly, M. J., & Rowland, N. E. (1991a). Effect of a nonpeptide angiotensin II receptor antagonist, DuP753, on angiotensin-related water intake in rats. Brain Research Bulletin, 27, 97100. https://doi.org/10.1016/0361-9230Google Scholar
Fregly, M. J., & Rowland, N. E. (1991b). Bradykinin-induced dipsogenesis in captopril-treated rats. Brain Research Bulletin, 26, 169172. https://doi.org/10.1016/0361-9230Google Scholar
Fregly, M. J., & Rowland, N. E. (1992). Effect of DuP753, a nonpeptide angiotensin II receptor antagonist, on the drinking responses to acutely administered dipsogenic agents in rats. Proceedings of the Society for Experimental Biology and Medicine, 199, 158164. https://doi.org/10.3181/00379727-199-43341Google Scholar
Fregly, M. J., & Rowland, N. E. (1993). Role of angiotensin II receptors in tail skin temperature response to isoproterenol. Proceedings of the Society for Experimental Biology and Medicine, 203, 157162. https://doi.org/10.3181/00379727-199-43341CrossRefGoogle ScholarPubMed
Friedman, M. I. (1975). Some determinants of milk ingestion in suckling rats. Journal of Comparative and Physiological Psychology, 89, 636647. https://doi.org/10.1037/h0077432Google Scholar
Friedman, M. I., & Campbell, B. A. (1974). Ontogeny of thirst in the rat: effects of hypertonic saline, polyethylene glycol, and vena cava ligation. Journal of Comparative and Physiological Psychology, 87, 3746. https://doi.org/10.1037/h0036567Google Scholar
Galaverna, O., Nicolaïdis, S., Yao, S. Z., Sakai, R. R., & Epstein, A. N. (1995). Endocrine consequences of prenatal sodium depletion prepare rats for high need-free NaCl intake in adulthood. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 269, R578R83. https://doi.org/10.1152/ajpregu.1995.269.3.R578Google Scholar
Gardiner, T. W., & Stricker, E. M. (1985a). Hyperdispia in rats after electrolytic lesions of nucleus medianus. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 248, R214R223. https://doi.org/10.1152/ajpregu.1985.248.2.R214Google Scholar
Gardiner, T. W., & Stricker, E. M. (1985b). Impaired drinking responses of rats with lesions of nucleus medianus: circadian dependence. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 248, R224R230. https://doi.org/10.1152/ajpregu.1985.248.2.R224Google Scholar
Geleen, G., Keil, L. C., Kravik, S. E., et al. (1984). Inhibition of plasma vasopressin after drinking in dehydrated humans. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 247, R968R971. https://doi.org/10.1152/ajpregu.1984.247.6.R968Google Scholar
Giersch, G. E. W., Charkoudian, N., Stearns, R. L., & Casa, D. J. (2020). Fluid balance and hydration considerations for women: review and future directions. Sports Medicine, 50, 253261. https://doi.org/10.1007/s40279Google Scholar
Gilman, A. (1937). The relation between blood osmotic pressure, fluid distribution and voluntary water intake. American Journal of Physiology, 120, 323328. https://doi.org/10.1152/ajplegacy.1937.120.2.323Google Scholar
Gisolfi, C., & Copping, J. (1993). Thermal effects of prolonged treadmill exercise in the heat. Medicine & Science in Sports & Exercise, 25, 310315. (PMID 8455443)Google Scholar
Gizowski, C., Zaesler, C., & Bourque, C. W. (2016). Clock-driven vasopressin neurotransmission mediates anticipatory thirst prior to sleep. Nature, 537, 685688. https://doi.org/10.1038/nature19756Google Scholar
Gizowski, C., Zaesler, C., & Bourque, C. W. (2018). Activation of organum vasculosum neurons and water intake in mice by vasopressin neurons in the suprachiasmatic nucleus. Journal of Neuroendocrinology, 30, e12577. https://doi.org/10.1111/jne.12577Google Scholar
Gold, R. M., Kapatos, G., Proswe, J., Quackenbush, P. M., & Oxford, T. W. (1973). Role of water temperature in the regulation of water intake. Journal of Comparative and Physiological Psychology, 85, 5263. https://doi.org/10.1037/h0034881Google Scholar
Goldman, M. B., Luchins, D. J., & Robertson, G. L. (1988). Mechanisms of altered water metabolism in psychotic patients with polydipsia and hyponatremia. New England Journal of Medicine, 318, 397403. https://doi.org/10.1056/NEJM198802183180702Google Scholar
Goldman, M. B., Robertson, G. L., Luchins, D. J., Hedeker, D., & Pandey, G. N. (1997). Psychotic exacerbations and enhanced vasopressin secretion in schizophrenic patients with hyponatremia and polydipsia. Archives of General Psychiatry, 54, 443449. https://doi.org/10.1001/archpsyc.1997.01830170069010Google Scholar
Goldstein, J., Hoff, K., & Hillyard, S. D. (2003). Comparison of dehydration and angiotensin II-stimulated cutaneous drinking in toads, Bufo punctatus. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 136, 557563. https://doi.org/10.1016/S1095Google Scholar
Greenleaf, J. E. (1992). Problem: thirst, drinking behavior, and involuntary dehydration. Medicine & Science in Sports & Exercise, 24, 645656. (PMID 1602937)Google Scholar
Greenleaf, J. E., Brock, P. J., Keil, L. C., & Morse, J. T. (1983). Drinking and water balance during exercise and heat acclimation. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 54, 414419. https://doi.org/10.1152/jappl.1983.54.2.414Google Scholar
Gregersen, M. I. (1932). Studies on the regulation of water intake. II. Conditions affecting the daily water intake of dogs as registered continuously by a potometer. American Journal of Physiology, 102, 344349.Google Scholar
Gregersen, M. I., & Cannon, W. B. (1932). Studies on the regulation of water intake I: The effect of extirpation of the salivary glands on the water intake of dogs while panting. American Journal of Physiology, 102, 336343.Google Scholar
Grob, M., Drolet, G., & Mouginot, D. (2004). Specific Na+ sensors are functionally expressed in a neuronal population of the median preoptic nucleus of the rat. Journal of Neurophysiology, 24, 39743984. https://doi.org/10.1523/JNEUROSCI.3720-03.2004Google Scholar
Grob, M., Trottier, J.-F., Drolet, G., & Mouginot, D. (2003). Characterization of the neurochemical content of neuronal populations of the lamina terminalis activated by acute hydromineral challenge. Neuroscience, 122, 247257. https://doi.org/10.1016/j.neuroscience.2003.07.005Google Scholar
Gross, P. M., Kadekaro, M., Andrews, D. W., Sokoloff, L., & Saavedra, J. M. (1985). Selective metabolic stimulation of the subfornical organ and pituitary neural lobe by peripheral angiotensin II. Peptides, 6, 145152. https://doi.org/10.1016/0196-9781Google Scholar
Grossman, S. P. (1990). Thirst and sodium appetite: physiological basis. San Diego, CA: Academic Press.Google Scholar
Guh, Y.-J., & Hwang, P.-P. (2017). Insights into molecular and cellular mechanisms of hormonal actions on fish ion regulation derived from the zebrafish model. General and Comparative Endocrinology, 251, 1220. https://doi.org/10.1016/j.ygcen.2016.08.009Google Scholar
Gutman, Y., Benzakein, F., & Chaimovitz, M. (1969). Effect of illumination on water intake, thirst, and urine output in the rat. American Journal of Physiology, 217, 471474. https://doi.org/10.1152/ajplegacy.1969.217.2.471Google Scholar
Gutman, M. B., Ciriello, J., & Mogenson, G. J. (1986). Electrophysiological identification of forebrain connections of the subfornical organ. Brain Research, 382, 119128. https://doi.org/10.1016/0006-8993Google Scholar
Gutman, M. B., Ciriello, J., & Mogenson, G. J. (1988). Effects of plasma angiotensin II and hypernatremia on subfornical organ neurons. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 254, R746R754. https://doi.org/10.1152/ajpregu.1988.254.5.R746Google Scholar
Hainsworth, F. R. (1968). Evaporative water loss from rats in the heat. American Journal of Physiology, 214, 979982. https://doi.org/10.1152/ajplegacy.1968.214.5.979Google Scholar
Hainsworth, F. R., & Stricker, E. M. (1971). Evaporative cooling in the rat: differences between salivary glands as thermoregulatory effectors. Canadian Journal of Physiology and Pharmacology, 49, 573580. https://doi.org/10.1139/y71Google Scholar
Hainsworth, F. R., Stricker, E. M., & Epstein, A. N. (1968). Water metabolism of rats in the heat: dehydration and drinking. American Journal of Physiology, 214, 983989. https://doi.org/10.1152/ajplegacy.1968.214.5.983Google Scholar
Hall, W. G. (1979). The ontogeny of feeding in rats: I. Ingestive and behavioral responses to oral infusions. Journal of Comparative and Physiological Psychology, 93, 9771000. https://doi.org/10.1037/h0077628Google Scholar
Hall, W. G., Arnold, H. M., & Myers, K. P. (2000). The acquisition of an appetite. Psychological Science, 11, 101105. https://doi.org/10.1111/1467-9280.00223Google Scholar
Hall, W. G., & Blass, E. M. (1975). Orogastic, hydrational, and behavioral controls of drinking following water deprivation in rats. Journal of Comparative and Physiological Psychology, 89, 939954. https://doi.org/10.1037/h0077162Google Scholar
Hall, W. G., & Browde, J. A. (1986). The ontogeny of independent ingestion in mice: or, why won’t infant mice feed? Developmental Psychobiology, 19, 211222. https://doi.org/10.1002/dev.420190307Google Scholar
Hall, W. G., & Bryan, T. E. (1980). The ontogeny of feeding in rats: II. Independent ingestive behavior. Journal of Comparative and Physiological Psychology, 94, 746756. https://doi.org/10.1037/h0077695Google Scholar
Hall, W. G., & Rosenblatt, J. S. (1979). Developmental changes in the suckling behavior of hamster pups: a comparison with rat pups. Developmental Psychobiology, 12, 553560. https://doi.org/10.1002/dev.420120605Google Scholar
Han, L., & Rowland, N. E. (1995). Sodium depletion and Fos-immunoreactivity in lamina terminalis. Neuroscience Letters, 193, 173176.Google Scholar
Han, L., & Rowland, N. E. (1996). Dissociation of Fos-like immunoreactivity in lamina terminalis and magnocellular hypothalamic nuclei induced by hypernatremia. Brain Research, 708, 4549. https://doi.org/10.1016/0006-8993Google Scholar
Hardy, R. N., Simsek, Z. D., Curry, B., et al. (2018). Aging affects isoproterenol-induced water drinking, astrocyte density, and central neuronal activation in female brown Norway rats. Physiology and Behavior, 192, 9097. https://doi.org/10.1016/j.physbeh.2018.03.005Google Scholar
Harrison, G. A. (1958). The adaptability of mice to high environmental temperatures. Journal of Experimental Biology, 35, 892901.Google Scholar
Hawkins, R. C., & Corbit, J. D. (1973). Drinking in response to cellular dehydration in the pigeon. Journal of Comparative and Physiological Psychology, 84, 265267. https://doi.org/10.1037/h0035276Google Scholar
Helderman, J. H., Vestal, R. E., Rowe, J. W., Tobin, J. D., Andres, R., & Robertson, G. L. (1978). The response of arginine vasopressin to intravenous ethanol and hypertonic saline in man: the impact of aging. Journal of Gerontology, 33, 3947. https://doi.org/10.1093/geronj/33.1.39Google Scholar
Heller, H. (1949). Effects of dehydration on adult and newborn rats. Journal of Physiology, 108, 303314. (PMID 18149766)Google Scholar
Heller, H., & Lederis, K. (1959). Maturation of the hypothalamo-hypophysial system. Journal of Physiology, 147, 299314. https://doi.org/10.1113/jphysiol.1959.sp006244Google Scholar
Heuston, K., & Zeigler, H. P. (1994). Water deprivation and subfornical organ activity in the pigeon: a [14C]2-deoxyglucose study. Brain Research, 654, 331335. https://doi.org/10.1016/0006-8993Google Scholar
Hiyama, T. Y., & Noda, M. (2016). Sodium sensing in the subfornical organ and body-fluid homeostasis. Neuroscience Research, 113, 111. https://doi.org/10.1016/j.neures.2016.07.007Google Scholar
Hiyama, T. Y., Utsunomiya, A. N., Matsumoto, M., et al. (2017). Adipsic hypernatremia without hypothalamic lesions accompanied by autoantibodies to subfornical organ. Brain Pathology, 27, 323331. https://doi.org/10.1111/bpa.12409Google Scholar
Hochstenbach, S. L., & Ciriello, J. (1995). Plasma hypernatremia induces c-Fos activity in medullary catecholaminergic neurons. Brain Research, 674, 4654. https://doi.org/10.1016/0006-8993(94)01434-JGoogle Scholar
Hochstenbach, S. L., & Ciriello, J. (1996). Effect of lesions of forebrain circumventricular organs on c-Fos expression in the central nervous system to plasma hypernatremia. Brain Research, 713, 1728. https://doi.org/10.1016/0006-8993Google Scholar
Hochstenbach, S. L., Solano-Flores, L. P., & Ciriello, J. (1993). Fos induction in brainstem neurons by intravenous hypertonic saline in the conscious rat. Neuroscience Letters, 158, 225228. https://doi.org/10.1016/0304-3940Google Scholar
Holman, G. L. (1969). Intragastric reinforcement effect. Journal of Comparative and Physiological Psychology, 69, 432441. https://doi.org/10.1037/h0028233Google Scholar
Holmes, J. H., & Gregersen, M. I. (1947). Relation of the salivary flow to the thirst produced in man by intravenous injection of hypertonic salt solution. American Journal of Physiology, 151, 252257. https://doi.org/10.1152/ajplegacy.1947.151.2.252Google Scholar
Holmes, J. H., & Gregersen, M. I. (1950). Observations on drinking induced by hypertonic solutions. American Journal of Physiology, 162, 326337. https://doi.org/10.1152/ajplegacy.1950.162.2.326Google Scholar
Holmes, J. H., & Montgomery, A. V. (1953). Thirst as a symptom. American Journal of Medical Science, 225, 281286. (PMID 13030465)Google Scholar
Honda, K., Aradachi, H., Higuchi, T., Takano, S., & Negoro, H. (1992). Activation of paraventricular neurosecretory cells by local osmotic stimulation of the median preoptic nucleus. Brain Research, 594, 335338. https://doi.org/10.1016/0006-8993(92)91147-7Google Scholar
Honda, K., Negoro, H., Dyball, R. E., Higuchi, T., & Takano, S. (1990a). The osmoreceptor complex in the rat: evidence for interactions between the supraoptic and other diencephalic nuclei. Journal of Physiology, 431, 225241. https://doi.org/10.1113/jphysiol.1990.sp018238Google Scholar
Honda, K., Negoro, H., Higuchi, T., & Takano, S. (1990b). Activation of supraoptic neurosecretory cells by osmotic stimulation in the median preoptic nucleus. Neuroscience Letters, 119, 167170. https://doi.org/10.1016/0304-3940(90)90825-tGoogle Scholar
Hori, T., Nakashima, T., Koga, H., Kiyohara, T., & Inoue, T. (1988). Convergence of thermal, osmotic and cardiovascular signals on preoptic and anterior hypothalamic neurons in the rat. Brain Research Bulletin, 20, 879885. https://doi.org/10.1016/0361-9230Google Scholar
Hosutt, J. A., Rowland, N., & Stricker, E. M. (1978). Hypotension and thirst in rats after isoproterenol treatment. Physiology and Behavior, 21, 593598. https://doi.org/10.1016/0031-9384(78)90136-1Google Scholar
Hosutt, J. A., Rowland, N., & Stricker, E. M. (1981). Impaired drinking responses of rats with lesions of the subfornical organ. Journal of Comparative and Physiological Psychology, 95, 104113. https://doi.org/10.1037/h0077759Google Scholar
Houpt, K. A., & Epstein, A. N. (1971). The complete dependence of beta-adrenergic drinking on the renal dipsogen. Physiology and Behavior, 7, 897902. https://doi.org/10.1016/0031-9384Google Scholar
Houpt, T. R., & Anderson, C. R. (1990). Spontaneous drinking: is it stimulated by hypertonicity or hypovolemia? American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 258, R143R148. https://doi.org/10.1152/ajpregu.1990.253.1.R143Google Scholar
Houpt, T. R., & Yang, H. (1995). Water deprivation, plasma osmolality, blood volume, and thirst in young pigs. Physiology and Behavior, 57, 4954. https://doi.org/10.1016/0031-9384Google Scholar
Houpt, T. R., Yang-Preyer, H., Geyer, J., & Norris, M. L. (1999). A rapid feedback signal is not always necessary for termination of a drinking bout. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 276, R1156R1163. https://doi.org/10.1152/ajpregu.1999.276.4.r1156Google Scholar
Hsiao, S., Epstein, A. N., & Camardo, J. S. (1977). The dipsogenic potency of peripheral angiotensin II. Hormones and Behavior, 8, 129140. https://doi.org/10.1016/0018-506XGoogle Scholar
Hübschle, T., McKinley, M. J., & Oldfield, B. J. (1998). Efferent connections of the lamina terminalis, the preoptic area and the insular cortex to submandibular and sublingual gland of the rat traced with pseudorabies virus. Brain Research, 806, 219231. https://doi.org/10.1016/s0006Google Scholar
Hübschle, T., Mathai, M. L., McKinley, M. J., & Oldfield, B. J. (2001). Multisynaptic neuronal pathways from the submandibular and sublingual glands to the lamina terminalis in the rat: a model for the role of the lamina terminalis in the control of osmo- and thermoregulatory behavior. Clinical and Experimental Pharmacology and Physiology, 28, 558569. https://doi.org/10.1046/j.1440-1681.2001.03487.xGoogle Scholar
Humphrey, S. P., & Williamson, R. T. (2001). A review of saliva: normal composition, flow, and function. Journal of Prosthetic Dentistry, 85, 162169. https://doi.org/10.1067/mpr.2001.113778Google Scholar
Jalowiec, J. E. (1974). Sodium appetite elicited by furosemide: effects of differential dietary maintenance. Behavioral Biology, 10, 313328. https://doi.org/10.1016/s0091Google Scholar
Jansen, A. S. P., Ter Horst, G. J., Mettenleiter, T. C., & Loewy, A. D. (1992). CNS cell groups projecting to the submandibular parasympathetic preganglionic neurons in the rat: a retrograde transneuronal viral cell labeling study. Brain Research, 572, 253260. https://doi.org/10.1016/0006-8993Google Scholar
Jennings, J. H., Ung, R. L., Otte, S., et al. (2015). Visualizing hypothalamic network dynamics for appetitive and consummatory behaviors. Cell, 160, 516527. https://doi.org/10.1016/j.cell.2014.12.026Google Scholar
Jewell, P. A., & Verney, E. B. (1957). An experimental attempt to determine the site of neurohypophysial osmoreceptors in the dog. Philosophical Transactions of the Royal Society of London, 240B, 197324. https://doi.org/10.1098/RSTB.1957.0002Google Scholar
Johnson, A. K., & Buggy, J. (1978). Periventricular preoptic-hypothalamus is vital for thirst and normal water economy. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 234, R122–129. https://doi.org/10.1152/ajpregu.1978.234.3.R122Google Scholar
Johnson, A. K., & Epstein, A. N. (1975). The cerebral ventricles as the avenue for the dipsogenic action of intracranial angiotensin. Brain Research, 86, 399418. https://doi.org/10.1016/0006-8993Google Scholar
Johnson, A. K., & Thunhorst, R. L. (1997). The neuroendocrinology of thirst and salt appetite: visceral sensory signals and mechanisms of central integration. Frontiers in Neuroendocrinology, 18, 292353. https://doi.org/10.1006/frne.1997.0153Google Scholar
Johnson, R. F., Beltz, T. G., Thunhorst, R. L., & Johnson, A. K. (2003). Investigations on the physiological controls of water and saline intake in C57BL/6 mice. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 285, R394R403. https://doi.org/10.1152/ajpregu.00130.2003Google Scholar
Johnson, R. F., & Johnson, A. K. (1990a). Light/dark cycle modulates food to water intake ratios in rats. Physiology and Behavior, 48, 707711. https://doi.org/10.1016/0031-9384Google Scholar
Johnson, R. F., & Johnson, A. K. (1990b). Light-dark cycle modulates drinking to homeostatic challenges. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 259, R1035R1042. https://doi.org/10.1152/ajpregu.1990.259.5.R1035Google Scholar
Johnson, R. F., & Johnson, A. K. (1991a). Drinking after osmotic challenge depends on circadian phase in rats with free-running rhythms. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 261, R334R338. https://doi.org/10.1152/ajpregu.1991.261.2.R334Google Scholar
Johnson, R. F., & Johnson, A. K. (1991b). Meal-related and rhythmic drinking: effects of abolition of rat’s eating rhythm. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 261, R14R19. https://doi.org/10.1152/ajpregu.1991.261.1.R14Google Scholar
Julien, E. A., & Bayer, S. A. (1990). Timetables of cytogenesis in the rat subfornical organ. Developmental Brain Research, 56, 169176. https://doi.org/10.1016/0165-3806Google Scholar
Kahrilas, P. J., & Rogers, R. C. (1984). Rat brainstem neurons responsive to changes in portal blood sodium concentration. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 247, R792R799. https://doi.org/10.1152/ajpregu.1984.247.5.R792Google Scholar
Kakolewski, J. W., & Deaux, E. (1970). Initiation of eating as a function of ingestion of hypoosmotic solutions. American Journal of Physiology, 218, 590585. https://doi.org/10.1152/ajplegacy.1970.218.2.590CrossRefGoogle ScholarPubMed
Kanosue, K., Nakayama, T., Tanaka, H., Yanase, M., & Yasuda, H. (1990). Modes of action of local hypothalamic and skin thermal stimulation on salivary secretion in rats. Journal of Physiology, 424, 459471. https://doi.org/10.1113/jphysiol.1990.sp018077Google Scholar
Kanter, G. S. (1953). Excretion and drinking after salt loading in dogs. American Journal of Physiology, 174, 8794. https://doi.org/10.1152/ajplegacy.1953.174.1.87Google Scholar
Katafuchi, T., Hattori, Y., Nagatomo, I., Koizumi, K., & Silverstein, E. (1991). Involvement of angiotensin II in water intake of genetically polydipsic mice. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 260, R1152R1158. https://doi.org/10.1152/ajpregu.1991.260.6.R1152Google Scholar
Katayama, Y., Sakamoto, T., Saito, K., et al. (2018). Drinking by amphibious fish: convergent evolution of thirst mechanisms during vertebrate terrestrialization. Scientific Reports, 8, 625. https://doi.org/10.1038/s41598Google Scholar
Kaufman, S. (1981). Control of fluid intake in pregnant and lactating rats. Journal of Physiology, 318, 916. https://doi.org/10.1113/jphysiol.1981.sp013846Google Scholar
Kemefick, R. W., & Cheuvront, S. N. (2012). Hydration for recreational sport and physical activity. Nutrition Reviews, 70(Suppl. 2), S137S142. https://doi.org/10.1111/j.1753-4887.2012.00523.xGoogle Scholar
Khan, M. S., Sasidharan, T. O., & Ghosh, P. K. (1979). Water regulation in Barmer goat of the Rajasthan desert. Experientia, 35, 11851186. https://doi.org/BF01963277Google Scholar
Kiecker, C. (2018). The origins of the circumventricular organs. Journal of Anatomy, 232, 540553. https://doi.org/10.1111/joa.12771Google Scholar
Kim, C. K., Adhikari, A., & Diesseroth, K. (2017). Integration of optogenetics with complementary methodologies in systems neuroscience. Nature Reviews Neuroscience, 18, 222235. https://doi.org/10.1038/nrn.2017.15Google Scholar
King, M. S., & Baertschi, A. J. (1991). Central neural pathway mediating splanchnic osmosensation. Brain Research, 550, 268278. https://doi.org/10.1016/0006-8993(91)91328-xGoogle Scholar
Kinsman, B., Cowles, J., Lay, J., Simmonds, S. S., Browning, K. N., & Stocker, S. D. (2014). Osmoregulatory thirst in mice lacking the transient receptor potential vanilloid type 1 (TRPV1) and/or type 4 (TRPV4) receptor. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 307, R1092R1100. https://doi.org/10.1152/ajpregu.00102.2014Google Scholar
Kinsman, B. J., Simmonds, S. S., Browning, K. N., & Stocker, S. D. (2017). The organum vasculosum of the lamina terminalis detects NaCl to elevate sympathetic nerve activity and blood pressure. Hypertension, 69, 163170. https://doi.org/10.1161/hypertensionaha.116.08372Google Scholar
Kinsman, B. J., Simmonds, S. S., Browning, K. N., Wenner, M. M., Farquhar, W. B., & Stocker, S. D. (2020). Integration of hypernatremia and angiotensin II by the organum vasculosum of the lamina terminalis regulates thirst. Journal of Neuroscience, 40, 20692079. https://doi.org/10.1523/JNEUROSCI.2208-19.2020Google Scholar
Kirby, C. R., & Convertino, V. A. (1985). Plasma aldosterone and sweat sodium concentrations after exercise and heat acclimation. Journal of Applied Physiology, 61, 967970. https://doi.org/10.1152/jappl.1986.61.3.967Google Scholar
Kirby, R. F., Novak, C. M., Thunhorst, R. L., & Johnson, A. K. (1994). The role of beta1 and beta2 adrenoceptors in isoproterenol-induced drinking. Brain Research, 656, 7984. https://doi.org/10.1016/0006-8993Google Scholar
Kissileff, H. R. (1969a). Food associated drinking in the rat. Journal of Comparative and Physiological Psychology, 67, 284300. https://doi.org/10.1037/h0026773Google Scholar
Kissileff, H. R. (1969b). Oropharyngeal control of prandial drinking. Journal of Comparative and Physiological Psychology, 67, 309319. https://doi.org/10.1037/h0026774Google Scholar
Kissileff, H. R. (1971). Acquisition of prandial drinking in weanling rats and in rats recovering from lateral hypothalamic lesions. Journal of Comparative and Physiological Psychology, 77, 97109. https://doi.org/10.1037/h0031573Google Scholar
Kissileff, H. R. (1973). Nonhomeostatic controls of drinking. In Epstein, A. N., Kissileff, H. R., & Stellar, E., eds., The neuropsychology of thirst: new findings and advances in concepts. Washington, DC: Winston-Wiley, pp. 163198.Google Scholar
Kobashi, M., Ichikawa, H., Sugimoto, T., & Adachi, A. (1993). Response of neurons in the solitary nucleus, area postrema and lateral parabrachial nucleus to gastric load of hypertonic saline. Neuroscience Letters, 158, 4750. https://doi.org/10.1016/0304-3940Google Scholar
Kobayashi, H., Uemura, H., Takei, Y., Itatsu, N., Ozawa, M., & Ichinohe, K. (1983). Drinking induced by angiotensin II in fishes. General and Comparative Endocrinology, 49, 295306. https://doi.org/10.1016/0016-6480(83)90147-8Google Scholar
Kobayashi, H., Uemura, H., Wada, M., & Takei, Y. (1979). Ecological adaptation of angiotensin-induced thirst mechanisms in tetrapods. General and Comparative Endocrinology, 38, 93104. https://doi.org/10.1016/0016-6480Google Scholar
Koga, H., Hori, T., Kiyohara, T., & Nakashima, T. (1987). Responses of preoptic thermosensitive neurons to changes in blood pressure. Brain Research Bulletin, 18, 749755. https://doi.org/10.1016/0361-9230Google Scholar
Kozlowksi, S., & Drzewiecki, K. (1973). The role of osmoreception in portal circulation in control of water intake. Acta Physiologica Polonia, 24, 325330. (PMID 4711431)Google Scholar
Kozlowski, S., & Szczepanska-Sadowska, E. (1975). Mechanisms of hypovolaemic thirst and interactions between hypovolaemia, hyperosmolality and the antidiuretic system. In Peters, G., Fitzsimons, J. T., & Peters-Haefeli, L., eds., Control mechanisms of drinking. New York: Springer-Verlag, pp. 2535.Google Scholar
Kraly, F. S. (1978). Abdominal vagotomy inhibits osmotically induced drinking in the rat. Journal of Comparative and Physiological Psychology, 92, 9991013. https://doi.org/10.1037/h0077517Google Scholar
Kraly, F. S. (1984a). Physiology of drinking elicited by eating. Psychological Review, 91, 478490. (PMID 6390479)Google Scholar
Kraly, F. S. (1984b). Preabsorptive pregastric vagally mediated histaminergic component of drinking elicited by eating in the rat. Behavioral Neuroscience, 98, 349355. https://doi.org/10.1037//0735-7044.98.2.349Google Scholar
Kraly, F. S., & Corneilson, R. (1990). Angiotensin II mediates drinking elicited by eating in the rat. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 258, R436R442. https://doi.org/10.1152/ajpregu.1990.258.2.R436Google Scholar
Kraly, F. S., Kim, Y. M., Dunham, L. M., & Tribuzio, R. A. (1995). Drinking after intragastric NaCl without increase in plasma osmolality in rats. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 269, R1085R1092. https://doi.org/10.1152/ajpregu.1995.269.5.R1085Google Scholar
Kraly, F. S., & Specht, S. M. (1984). Histamine plays a major role for drinking elicited by spontaneous eating in rats. Physiology and Behavior, 33, 611614. https://doi.org/10.1016/0031-9384Google Scholar
Krause, E. G., de Kloet, A. D., & Sakai, R. R. (2010). Post-ingestive signals and satiation of water and sodium intake of male rats. Physiology and Behavior, 99, 657662. https://doi.org/10.1016/j.physbeh.2010.01.030Google Scholar
Krause, E. G., Melhorn, S. J., Davis, J. F., et al. (2008). Angiotensin type 1 receptors in the subfornical organ mediate the drinking and hypothalamo-pituitary-adrenal responses to systemic isoproterenol. Endocrinology, 149, 64166424. https://doi.org/10.1210/en.2008-0477Google Scholar
Kreček, J., & Krečkova, J. (1957). The development of the regulation of water metabolism: III. Preference in water and milk solution by young rats. Physiological Bohemoslovenica, 6, 1421. (PMID 13461107)Google Scholar
Kültz, D. (2015). Physiological mechanisms used by fish to cope with salinity stress. Journal of Experimental Biology, 218, 19071914. https://doi.org/10.1242/jeb.118695Google Scholar
Kutscher, C. L. (1969). Species differences in the interaction of feeding and drinking. Annals of the New York Academy of Sciences, 157, 539552. https://doi.org/10.1111/j.1749-6632.1969.tb12906.xGoogle Scholar
Latta, T. (1832). Letter from Dr. Latta to the secetary of the Central Board of Health, London, affording a view of the rationale and results of his practice in the treatment of cholera by aqueous and saline injections. Lancet, ii, 274277.Google Scholar
Leenen, F. H., & McDonald, Jr., R. H. (1974). Effect of isoproterenol on blood pressure, plasma renin activity, and water intake in rats. European Journal of Pharmacology, 26, 129135. https://doi.org/10.1016/0014-2999Google Scholar
Leenen, F. H., & Stricker, E. M. (1974). Plasma renin activity and thirst following hypovolemia or caval ligation in rats. American Journal of Physiology, 226, 12381242. https://doi.org/10.1152/ajplegacy.1974.226.5.1238Google Scholar
Lehr, D., Goldman, H. W., & Casner, P. (1975). Evidence against the postulated role of the renin-angiotensin system in putative renin-dependent drinking responses. In Peters, G., Fitzsimons, J. T., & Peters-Haefeli, L., eds., Control mechanisms of drinking. New York: Springer-Verlag, pp. 7983.Google Scholar
Lehr, D., Mallow, J., & Krukowski, M. (1967). Copious drinking and simultaneous inhibition of urine flow elicited by beta-adrenergic stimulation and contrary effect of alpha-adrenergic stimulation. Journal of Pharmacology and Experimental Therapeutics, 158, 150163. (PMID 6054075)Google Scholar
Leib, D. E., Zimmerman, C. A., Poormoghaddam, A., et al. (2017). The forebrain thirst circuit drives drinking through negative reinforcement. Neuron, 96, 1272–1281. https://doi.org/10.1016/j.neuron.2017.11.041Google Scholar
Lepkovsky, S., Lyman, R., Fleming, D., Nagumo, M., & Dimick, M. M. (1957). Gastrointestinal regulation of water and its effect on food intake and rate of digestion. American Journal of Physiology, 188, 327331. https://doi.org/10.1152/ajplegacy.1957.188.2.327Google Scholar
Leschke, E. (1918). Über die Durstempfindung. Archiv fűr Psychiatrie und Nervenkrankenheiten, 59, 773781.Google Scholar
Leshem, M., Boggan, B., & Epstein, A. N. (1988). The ontogeny of drinking evoked by activation of brain angiotensin in the rat pup. Developmental Psychobiology, 21, 6375. https://doi.org//10.1002/dev.420210105Google Scholar
Leshem, M., & Epstein, A. N. (1988). Thirst-induced anorexias and the ontogeny of thirst in the rat. Developmental Psychobiology, 21, 651662. https://doi.org/10.1002/dev.420210704Google Scholar
Leshem, M., Saaadi, A., Alem, N., & Hendi, K. (2008). Enhanced salt appetite, diet and drinking in traditional Bedouin women in the Negev. Appetite, 50, 7182. https://doi.org/10.1016/j.appet.2007.05.010Google Scholar
Lešnik, A., Piko, N., Železnik, D., & Bevc, S. (2017). Dehydration of older patients in institutional care and the home environment. Research in Gerontological Nursing, 10, 260266. https://doi.org/10.3928/19404921-20171013-03Google Scholar
Levick, J. R., & Michel, C. C. (2010). Microvascular fluid exchange and the revised Starling principle. Cardiovascular Research, 87, 198210. https://doi.org/10.1093/cvr/cvq062Google Scholar
Liedtke, W., & Friedman, J. M. (2003). Abnormal osmotic regulation in trpv4-/- mice. Proceedings of the National Academy of Sciences USA, 100, 1369813703. https://doi.org/10.1073/pnas.1735416100Google Scholar
Liljestrand, G., & Zotterman, Y. (1954). The water taste in mammals. Acta Physiologica Scandinavica, 32, 291303. https://doi.org/10.1111/j.1748-1716.1954.tb01177.xGoogle Scholar
Lillywhite, H. B., Sheehy, C. M., Sandfoss, M. R., et al. (2019). Drinking by sea snakes from oceanic freshwater lenses at first rainfall following seasonal drought. PLoS One, 14, e0212099. https://doi.org/10.1371/journal.pone.0212099Google Scholar
Lind, R. W., Thunhorst, R. L., & Johnson, A. K. (1984). The subfornical organ and the integration of multiple factors in thirst. Physiology and Behavior, 32, 6974. https://doi.org/10.1016/0031-9384Google Scholar
Lind, R. W., Van Hoesen, R. W., & Johnson, A. K. (1982). An HRP study of the connections of the subfornical organ in the rat. Journal of Comparative Neurology, 210, 265277. https://doi.org/10.1002/cne.902100306Google Scholar
Lotter, E. C., McKay, L. D., Mangiapane, M. L., et al. (1980). Intraventricular angiotensin elicits drinking in the baboon. Proceedings of the Society for Experimental Biology and Medicine, 163, 4851. https://doi.org/10.3181/00379727-163-40720Google Scholar
Lucas, G. A., Timberlake, W., & Gawley, D. J. (1989). Learning and meal-associated drinking: meal-related deficits produce adjustments in postprandial drinking. Physiology and Behavior, 46, 361367. https://doi.org/10.1016/0031-9384Google Scholar
Luke, R. G. (1973). Natriuresis and chloruresis during hydrogenia in the rat. American Journal of Physiology, 224, 1320. https://doi.org/10.1152/ajplegacy.1973.224.1.13Google Scholar
Lund, J. P., Barker, J. H., Dellow, P. G., & Stevenson, J. A. F. (1969). Water intake of normal and desalivate rats on exposure to environmental heat. Canadian Journal of Physiology and Pharmacology, 47, 849852. https://doi.org/10.1139/y69Google Scholar
Luo, L., Callaway, E. M., & Svoboda, K. (2018). Genetic dissection of neural circuits: a decade of progress. Neuron, 98, 256281. https://doi.org/10.1016/j.neuron.2018.03.040Google Scholar
McCance, R. A. (1948). Renal function in early life. Physiological Review, 28, 331348. https://doi.org/10.1152/physrev.1948.28.3.331Google Scholar
McCleary, R. A. (1953). Taste and post-ingestion factors in specific hunger behavior. Journal of Comparative and Physiological Psychology, 46, 411421. https://doi.org/10.1037/h0059419Google Scholar
McDonald, T. J., Li, C., Nijland, M. J., Caston-Balderrama, A., & Ross, M. G. (1998). Fos response of fetal sheep anterior circumventricular organs to osmotic challenge in late gestation. American Journal of Physiology: Heart and Circulatory Physiology, 275, H609H614. https://doi.org/10.1152/ajpheart.1998.275.2.H609Google Scholar
McGowan, M. K., Brown, B., & Grossman, S. P. (1988). Lesions of the MPO or AV3V: influences on fluid intake. Physiology and Behavior, 42, 331342. https://doi.org/10.1016/0031-9384Google Scholar
McIntosh, G. H., Baghurst, K. I., Potter, B. J., & Hetzel, B. S. (1979). Foetal brain development in the sheep. Neuropathology and Applied Neurobiology, 5, 103114. https://doi.org/10.1111/j.1365-2990.1979.tb00664.xGoogle Scholar
McKenna, T. M., & Haines, H. (1981). Sodium metabolism during acclimation to water restriction by wild mice, Mus musculus. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 240, R319R326. https://doi.org/10.1152/ajpregu.1981.240.5.R319Google Scholar
McKinley, M. J., Badoer, E., & Oldfield, B. J. (1992). Intravenous angiotensin II induces Fos-immnuno-reactivity in circumventricular organs of the lamina terminalis. Brain Research, 594, 295300. https://doi.org/10.1016/0006-8993Google Scholar
McKinley, M. J., Cairns, M. J., Denton, D. A., et al. (2004). Physiological and pathophysiological influences on thirst. Physiology and Behavior, 81, 795803. https://doi.org/10.1016/j.physbeh.2004.04.055Google Scholar
McKinley, M. J., Congiu, M., Denton, D. A., et al. (1984). The anterior wall of the third cerebral ventricle and homeostatic responses to dehydration. Journal de Physiologie (Paris), 79, 421427. (PMID 6536750)Google Scholar
McKinley, M. J., Denton, D. A., Leksell, L. G., et al. (1982). Osmoregulatory thirst in sheep is disrupted by ablation of the anterior wall of the optic recess. Brain Research, 236, 210215. https://doi.org/10.1016/0006-8993Google Scholar
McKinley, M. J., Denton, D. A., Leksell, L. G., Tarjan, E., & Weisinger, R. L. S. (1980). Evidence for cerebral sodium sensors in water drinking in sheep. Physiology and Behavior, 25, 501504. https://doi.org/10.1016/0031-9384Google Scholar
McKinley, M. J., Denton, D. A., Nelson, J. F., & Weisinger, R. S. (1983). Dehydration induces sodium depletion in rats, rabbits, and sheep. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 245, R287R292. https://doi.org/10.1152/ajpregu.1983.245.2.R287Google Scholar
McKinley, M. J., Denton, D. A., Park, R. G., & Weisinger, R. S. (1986). Ablation of the subfornical organ does not prevent angiotensin-induced water drinking in sheep. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 250, R1052R1059. https://doi.org/10.1152/ajpregu.1986.250.6.R1052Google Scholar
McKinley, M. J., Denton, D. A., Ryan, P. J., Yao, S. T., Stefanidis, A., & Oldfield, B. J. (2019). From sensory circumventricular organs to cerebral cortex: neural pathways controlling thirst and hunger. Neuroendocrinology, 31, 12689.https://doi.org/10.1111/jne.12689Google Scholar
McKinley, M. J., Denton, D. A., Thomas, C. J., Woods, R. L., & Mathai, M. L. (2006). Differential effects of aging on fluid intake in response to hypovolemia, hypertonicity, and hormonal stimuli in Munich Wistar rats. Proceedings of the National Academy of Sciences USA, 103, 34503455. https://doi.org/10.1073/pnas.0511099103Google Scholar
McKinley, M. J., Denton, D. A., & Weisinger, R. S. (1978). Sensors for antidiuresis and thirst – osmoreceptors or CSF sodium detectors? Brain Research, 141, 89103. https://doi.org/10.1016/0006-8993Google Scholar
McKinley, M. J., Hards, D. K., & Oldfield, B. J. (1994). Identification of neural pathways activated in dehydrated rats by means of Fos-immunohistochemistry and neural tracing. Brain Research, 653, 305314. https://doi.org/10.1016/0006-8993Google Scholar
McKinley, M. J., McAllen, R. M., Whyte, D., & Mathai, M. L. (2008). Central osmoregulatory influences on thermoregulation. Clinical and Experimental Pharmacology and Physiology, 35, 701705. https://doi.org/10.1111/j.1440-1681.2007.04833.xGoogle Scholar
McKinley, M. J., & Mathai, M. L. (2014). Interdependent preoptic osmoregulatory and thermoregulatory mechanisms influencing body fluid balance and heat defense. In De Luca, L. A., Menani, J. V., & Johnson, A. K., eds., Neurobiology of body fluid homeostasis. Boca Raton, FL: CRC Press, pp. 111121.Google Scholar
McKinley, M. J., Mathai, M. L., Pennington, G., Rundgren, M., & Vivas, L. (1999). Effect of individual or combined ablation of the nuclear groups of the lamina terminalis on water drinking in sheep. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 276, R673R683. https://doi.org/10.1152/ajpregu.1999.276.3.R673Google Scholar
McKinley, M. J., Olsson, K., Fyrhquist, F., & Liljekvist, E. (1980). Transient vasopressin release and thirst in response to prolonged intracerebroventricular infusions of hypertonic mannitol in saline. Acta Physiologica Scandinavica, 109, 427431. https://doi.org/10.1111/j.1748-1716.1980.tb06616.xGoogle Scholar
McKinley, M. J., Walker, L. L., Alexiou, T., et al. (2008). Osmoregulatory fluid intake but not hypovolemic thirst is intact in mice lacking angiotensin. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 294, R1533R1543. https://doi.org/10.1152/ajpregu.00848.2007Google Scholar
McKinley, M. J., Weissenborn, F., & Mathai, M. L. (2009). Drinking-induced thermoregulatory panting in rehydrated sheep: influences of oropharyngeal/esophageal signals, core temperature, and thirst satiety. American Journal of Physiology Regulatory Integrative Comparative Physiology, 296, R1881–1888. https://doi.org/10.1152/ajpregu.90890.2008Google Scholar
Macchione, A. F., Beas, C., Dadam, F. M., et al. (2015). Early free access to hypertonic NaCl solution induces a long-term effect on drinking, brain cell activity and gene expression of adult rat offspring. Neuroscience, 298, 120136. https://doi.org/10.1016/j.neuroscience.2015.04.004Google Scholar
Mack, G. W., Weseman, C. A., Langhans, G. W., Scherzer, H., Gillen, C. M., & Nadel, E. R. (1994). Body fluid balance in dehydrated healthy older men: thirst and renal osmoregulation. Journal of Applied Physiology, 76, 16151623. https://doi.org/10.1152/jappl.1994.76.4.1615Google Scholar
Maddison, S., Wood, R. J., Rolls, E. T., Rolls, B. J., & Gibbs, J. (1980). Drinking in the rhesus monkey: peripheral factors. Journal of Comparative and Physiological Psychology, 94, 365374. https://doi.org/10.1037/h0077664Google Scholar
Maejima, S., Kunno, N., Matsuda, K., & Uchiyama, M. (2010). Central angiotensin II stimulates cutaneous water intake behavior via an angiotensin II type-1 receptor pathway in the Japanese tree frog Hyla japonica. Hormones and Behavior, 58, 457464. https://doi.org/10.1016/j.yhbeh.2010.05.007Google Scholar
Mandelblat-Cerf, Y., Kim, A., Burgess, C. R., et al. (2017). Bidirectional anticipation of future osmotic challenges by vasopressin neurons. Neuron, 93, 5765. https://doi.org/10.1016/j.neuron.2016.11.021Google Scholar
Mangiapane, M. L., & Simpson, J. B. (1980). Subfornical organ lesions reduce the pressor effect of systemic angiotensin II. Neuroendocrinology, 31, 380384. https://doi.org/10.1159/000123107Google Scholar
Mann, J. F. E., Johnson, A. K., & Ganten, D. (1980). Plasma angiotensin II: dipsogenic levels and angiotensin-generating capacity of renin. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 238, R372R377. https://doi.org/10.1152/ajpregu.1980.238.5.R372Google Scholar
Marciante, A. B., Wang, L. A., Farmer, G. E., & Cunningham, J. T. (2019). Selectively inhibiting the median preoptic nucleus attenuates angiotensin II and hyperosmotic-induced drinking behavior and vasopressin release in adult male rats. eNeuro, 6, e0473–18.2019. https://doi.org/10.1523/ENEURO.0473-18.2019Google Scholar
Marson, O., Chernicky, C. L., Barnes, K. L., Diz, D. I., Slugg, R. M., & Ferrario, C. M. (1985). The anteroventral third ventricle region: participation in the regulation of blood pressure in conscious dogs. Hypertension, 7(Suppl. 1), I-80–I-87. https://doi.org/10.1161/01.hyp.7.3_pt_2.i80Google Scholar
Martin, J. R., Fuchs, A., & Harting, J. (1985). Drinking by senescent and adult rats in response to regulatory challenges. Neurobiology of Aging, 6, 5759. https://doi.org/10.1016/0197-4580Google Scholar
Maruyama, M., Nishi, M., Konishi, M., et al. (2003). Brain regions expressing Fos during thermoregulatory behavior in rats. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 285, R1116R1123. https://doi.org/10.1152/ajpregu.00166.2002Google Scholar
Marwine, A., & Collier, G. (1979). The rat at the water hole. Journal of Comparative and Physiological Psychology, 93, 391402. https://doi.org/10.1037/h0077552Google Scholar
Massi, M., DeCaro, G., Mazzarella, L., & Epstein, A. N. (1986). The role of the subfornical organ in the drinking behavior of the pigeon. Brain Research, 381, 289299. https://doi.org/10.1016/0006-8993Google Scholar
Mathai, M. L., Hübschle, T., & McKinley, M. J. (2000). Central angiotensin receptor blockade impairs thermolytic and dipsogenic responses to heat exposure in rats. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 279, R1821R1826. https://doi.org/10.1152/ajpregu.2000.279.5.r1821Google Scholar
Matsuda, T., Hiyama, T. Y., Niimura, F., et al. (2017). Distinct neural mechanisms for the control of thirst and sodium appetite in the subfornical organ. Nature Neuroscience, 20, 230241. https://doi.org/10.1038/nn.4463Google Scholar
Mayer, A. (1901). Essai sur la soif: ses causes et son mécanisme. Paris: Félix Alcan.Google Scholar
Mecawi, A. S., Macchione, A. F., Nuňez, P., et al. (2015). Developmental programming of thirst and sodium appetite. Neuroscience and Biobehavioral Reviews, 51, 114. https://doi.org/10.1016/j.neurobiorev.2014.12.012Google Scholar
Mendelsohn, F. A., Quirion, R., Saavedra, J. M., Aguilera, G., & Catt, K. J. (1984). Autoradiographic localization of angiotensin II receptors in rat brain. Proceedings of the National Academy of Sciences USA, 81, 15751579. https://doi.org/10.1073/pnas.81.5.1575Google Scholar
Metzler, C. H., Thrasher, T. N., Keil, L. C., & Ramsay, D. J. (1986). Endocrine mechanisms regulating sodium excretion during water deprivation in dogs. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 251, R560R568. https://doi.org/10.1152/ajpregu.1986.251.3.R560Google Scholar
Miescher, E., & Fortney, S. M. (1989). Responses to dehydration and rehydration during heat exposure in young and older men. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 257, R1050R1056. https://doi.org/10.1152/ajpregu.1989.257.5.r1050Google Scholar
Miller, N. E., Sampliner, R. I., & Woodrow, P. (1957). Thirst-reducing effects of water by stomach fistula vs. water by mouth measured by both a consummatory and an instrumental response. Journal of Comparative and Physiological Psychology, 50, 15. https://doi.org/10.1037/h0046009Google Scholar
Mimee, A., Smith, P. M., & Ferguson, A. V. (2013). Circumventricular organs: targets for integration of circulating fluid and energy balance signals? Physiology and Behavior, 121, 96102.Google Scholar
Miselis, R. R. (1981). The efferent connections of the subfornical organ of the rat: a circumventricular organ within a neural network subserving water balance. Brain Research, 230, 123. https://doi.org/10.1016/0006-8993Google Scholar
Montain, S. J., & Coyle, E. F. (1992). Influence of graded dehydration on hyperthermia and cardiovascular drift during exercise. Journal of Applied Physiology, 73, 13401350.Google Scholar
Moore-Gillon, M. J. (1980). Effects of vagotomy on drinking in the rat. Journal of Physiology, 308, 417426.Google Scholar
Morgan, J. I., & Curran, T. (1986). Role of ion flux in the control of c-Fos expression. Nature, 322, 552555. https://doi.org/10.1038/322552a0Google Scholar
Morien, A., Garrard, L., & Rowland, N. E. (1999). Expression of Fos immunoreactivity in rat brain during dehydration: effect of duration and timing of water deprivation. Brain Research, 816, 17.Google Scholar
Morimoto, T. (1990). Thermoregulation and body fluids: role of blood volume and central venous pressure. Japanese Journal of Physiology, 40, 165179. https://doi.org/10.2170/jjphysiol.40.165Google Scholar
Morita, S., & Miyata, S. (2012). Different vascular permeability between the sensory and secretory circumventricular organs of adult mouse brain. Cell and Tissue Research, 349, 589603. https://doi.org/10.1007/s00441-012-1421-9Google Scholar
Morita, H., Yamashita, Y., Nishida, Y., Tokuda, M., Hatase, O., & Hosomi, H. (1997). Fos induction in rat brain neurons after stimulation of the hepatoportal Na-sensitive mechanism. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 272, R913R923. https://doi.org/10.1152/ajpregu.1997.272.3.R913Google Scholar
Moriya, T., Shibasaki, R., Kayano, T., et al. (2015). Full-length transient receptor potential vanilloid 1 channels mediate calcium signals and possibly contribute to osmoreception in vasopressin neurons in the rat supraoptic nucleus. Cell Calcium, 11, 003. https://doi.org/10.1016/j.ceca.2014.11.003Google Scholar
Morley, J. E., & Flood, J. F. (1989). The effect of neuropeptide Y on drinking in mice. Brain Research, 494, 129137. https://doi.org/10.1016/0006-8993(89)90151-0.Google Scholar
Morris, P., & Mogenson, G. J. (1980). Dissociation of nocturnal feeding and drinking behavior in the rat. Behavioral and Neural Biology, 30, 299311. https://doi.org/10.1016/s0163Google Scholar
Molecular PharmacologyMurphy, M. S., & DeNardo, D. F. (2019). Rattlesnakes must drink: meal consumption does not improve hydration state. Physiological Biochemistry and Zoology, 92, 381385.Google Scholar
Myer, J. S., & Kowell, A. P. (1971). Loss and subsequent recovery of body weight in water-deprived snakes (Elaphe obsoleta obsoleta). Journal of Comparative and Physiological Psychology, 75, 59. https://doi.org/10.1037/h0030684Google Scholar
Myers, K. P., & Hall, W. G. (2001). Effects of prior experience with dehydration and water on the time course of dehydration-induced drinking in weanling rats. Developmental Psychobiology, 38, 145153. https://doi.org/10.1002/dev.1008Google Scholar
Naeini, R. F., Witty, M.-F., Séguéla, P., & Bourque, C. W. (2006). An N-terminal variant of Trpv1 channel is required for osmosensory transduction. Nature Neuroscience, 9, 9398. https://doi.org/10.1038/nn1614Google Scholar
Nagakura, A., Hiyama, T. Y., & Noda, M. (2010). Nax-deficient mice show normal vasopressin response to dehydration. Neuroscience Letters, 472, 161165. https://doi.org/10.1016/j.neulet.2010.01.077Google Scholar
Nation, H. L., Nicoleau, M., Kinsman, B. J., Browning, K. N., & Stocker, S. D. (2016). DREADD-induced activation of subfornical organ neurons stimulates thirst and salt appetite. Journal of Neurophysiology, 115, 31233129. https://doi.org/10.1152/jn.00149.2016Google Scholar
Nehmé, B., Henry, M., Mouginot, D., & Drolet, G. (2012). The expression pattern of the Na+ sensor, Nax in the hydromineral homeostatic network: a comparative study between the rat and mouse. Frontiers in Neuroanatomy, 6, 26. https://doi.org/10.3389/fnana.2012.00026Google Scholar
Nicolaïdis, S. (1969). Early systemic responses to orogastric stimulation in the regulation of food and water balance: functional and electrophysiological data. Annals of the New York Academy of Sciences, 157, 11761203. https://doi.org/10.1111/j.1749-6632.1969.tb12942.xGoogle Scholar
Nicolaïdis, S., & El Ghissassi, M. (1991). Angiotensin and sodium interaction in the organum cavum pre-lamina terminalis: electrophysiological and drinking responses. Brain Research Bulletin, 27, 469473. https://doi.org/10.1016/0361-9230Google Scholar
Nicolaïdis, S., & Fitzsimons, J. T. (1975). La dépendence de la prise d’eau induite par l’angiotensine II envers la function vasomotrice cérébrale chez le rat. Comptes Rendus de l’Académie des Sciences, 281D, 14171420.Google Scholar
Nicolaïdis, S., Galaverna, O., & Metzler, C. H. (1990). Extracellular dehydration during pregnancy increases salt appetite of offspring. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 258, R281R283. https://doi.org/%2010.1152/ajpregu.1990.258.1.R281Google Scholar
Nicolaïdis, S., & Rowland, N. (1975). Regulatory drinking in rats with permanent access to a bitter fluid source. Physiology and Behavior, 14, 819824. https://doi.org/10.1016/0031-9384Google Scholar
Nishihara, E., Hiyama, T. Y., & Noda, M. (2011). Osmosensitivity of transient receptor potential vanilloid 1 is synergistically enhanced by distinct activating stimuli such as temperature and protons. PLoS ONE, 6, e22246. https://doi.org/10.1371/journal.pone.0022246Google Scholar
Nobata, S., Ando, M., & Takei, Y. (2013). Hormonal control of drinking behavior in teleost fishes: insights from studies using eels. General and Comparative Endocrinology, 192, 214221. https://doi.org/10.1016/j.ygcen.2013.05.009Google Scholar
Nose, H., Morimoto, T., & Ogura, K. (1983). Distribution of water losses among fluid compartments of tissues under thermal dehydration in the rat. Japanese Journal of Physiology, 33, 10191029. https://doi.org/10.2170/jjphysiol.33.1019Google Scholar
Nose, H., Sugimoto, E., Okuno, T., & Moromoto, T. (1987). Changes in blood volume and plasma sodium concentration after water intake in rats. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 253, R15R19. https://doi.org/10.1152/ajpregu.1987.253.1.R15Google Scholar
Nose, H., Yawata, T., & Morimoto, T. (1985). Osmotic factors in restitution from thermal dehydration in rats. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 249, R166R171. https://doi.org/10.1152/ajpregu.1985.249.2.R166Google Scholar
Nothnagel, C. W. H. (1881). Durst und polydipsie. Archiv fűr Pathologische Anatomie und Physiologie, 86, 435447.Google Scholar
Novin, D. (1962). The relation between electrical conductivity of brain tissue and thirst in the rat. Journal of Comparative and Physiological Psychology, 55, 145154. https://doi.org/10.1037/h0044312Google Scholar
Oatley, K. (1964). Changes of blood volume and osmotic pressure in the production of thirst. Nature, 202, 13411342. https://doi.org/10.1038/2021341a0Google Scholar
Oatley, K. (1967a). Diurnal influences on postdeprivational drinking in rats. Journal of Comparative and Physiological Psychology, 64, 183185. https://doi.org/10.1037/h0024804Google Scholar
Oatley, K. (1967b). Drinking in response to salt injections at different times of day. Psychonomic Science, 9, 439440.Google Scholar
Oatley, K. (1971). Dissociation of the circadian drinking pattern from eating. Nature, 229, 494496. https://doi.org/10.1038/229494a0Google Scholar
Oatley, K., & Toates, F. M. (1969). The passage of food through the gut of rats and its uptake of fluid. Psychonomic Science, 16, 225226.Google Scholar
O’Connor, W. J. (1977). Drinking caused by exposing dogs to radiant heat. Journal of Physiology, 264, 229237. https://doi.org/10.1113/jphysiol.1977.sp011665Google Scholar
Oka, Y., Ye, M., & Zuker, C. S. (2015). Thirst driving and suppressing signal encoded by distinct neural populations in the brain. Nature, 520, 349352. https://doi.org/10.1038/nature14108Google Scholar
Oldfield, B. J., Badoer, E., Hards, D. K., & McKinley, M. J. (1994). Fos production in retrogradely labelled neurons of the lamina terminalis following intravenous infusion of either hypertonic saline or angiotensin II. Neuroscience, 60, 255262. https://doi.org/10.1016/0306-4522Google Scholar
Oldfield, B. J., Bicknell, R. J., McAllen, R. M., Weisinger, R. S., & McKinley, M. J. (1991). Intravenous hypertonic saline induced Fos immunoreactivity in neurons throughout the lamina terminalis. Brain Research, 561, 151156. https://doi.org/10.1016/0006-8993(91)90760-SGoogle Scholar
Oldfield, B. J., Miselis, R. R., & McKinley, M. J. (1991). Median preoptic nucleus projections to vasopressin-containing neurons of the supraoptic nucleus in sheep: a light and electron microscopic study. Brain Research, 542, 193200. https://doi.org/10.1016/0006-8993Google Scholar
Oliet, S. H., & Bourque, C. W. (1992). Properties of supraoptic magnocellular neurons isolated from the adult rat. Journal of Physiology, 455, 291306. https://doi.org/10.1113/jphysiol.1992.sp019302Google Scholar
Olsson, K. (1973). Further evidence for the importance of CSF Na+ concentration in the central control of fluid balance. Acta Physiologica Scandinavica, 88, 183188. https://doi.org/10.1111/j.1748-1716.1973.tb05445.xGoogle Scholar
Ormerod, J. K., Elliott, T. A., Scheet, V. P., et al. (2003). Drinking behavior and perception of thirst in untrained women during 6 weeks of heat acclimation and outdoor training. International Journal of Sport Nutrition and Exercise Metabolism, 13, 1528. https://doi.org/10.1123/ijsnem.13.1.15Google Scholar
Ortiz, R. M. (2001). Osmoregulation in marine mammals. Journal of Experimental Biology, 204, 18311844. (PMID 11441026)Google Scholar
Overmann, S. R., & Yang, M. G. (1973). Adaptation to water restriction through dietary selection in weanling rats. Physiology and Behavior, 11, 781786. https://doi.org/10.1016/0031-9384Google Scholar
Paes-Leme, B., Dos-Santos, R. C., Mecawi, A. S., & Ferguson, A. V. (2018). Interaction between angiotensin II and glucose sensing at the subfornical organ. Journal of Neuroendocrinology, 30, e12645. https://doi.org/10.1111/jne.12654Google Scholar
Paget, S. (1897). On cases of voracious hunger and thirst from injury or disease of the brain. Transactions of the Clinical Society of London, 30, 113119.Google Scholar
Paque, C. (1980). Sahara Bedouins and the salt water of the Sahara: a model for salt intake. In Kare, M., ed., Biological and behavioral aspects of salt intake. Orlando, FL: Academic Press, pp. 3147.Google Scholar
Patke, A., Young, M. W., & Axelrod, S. (2020). Molecular mechanisms and physiological importance of circadian rhythms. Nature Reviews Molecular and Cell Biology, 21, 6784. https://doi.org/10.1038/s41580Google Scholar
Patronas, P., Horowitz, M., Simon, E., & Gerstberger, R. (1998). Differential stimulation of c-Fos expression in hypothalamic nuclei of the rat brain during short-term heat acclimation and mild dehydration. Brain Research, 798, 127139. https://doi.org/10.1016/s0006Google Scholar
Peck, J. W., & Blass, E. M. (1975). Localization of thirst and antidiuretic osmoreceptors by intracranial injections in rats. American Journal of Physiology, 228, 15011509. https://doi.org/10.1152/ajplegacy.1975.228.5.1501Google Scholar
Perillan, C., Costales, M., Diaz, F., Vijande, M., & Arguelles, J. (2004). Thirst changes in offspring of hyperreninemic rat dams. Pharmacology, Biochemistry and Behavior, 79, 709713. https://doi.org/10.1016/j.pbb.2004.09.023Google Scholar
Perillan, C., Costales, M., Vijande, M., & Arguelles, J. (2007). Maternal RAS influence on the ontogeny of thirst. Physiology and Behavior, 92, 554559. https://doi.org/10.1016/j.physbeh.2007.04.031Google Scholar
Perillan, C., Costales, M., Vijande, M., & Arguelles, J. (2008). In utero extracellular dehydration modifies thirst in neonatal rats. Appetite, 51, 599603. https://doi.org/10.1016/j.appet.2008.04.015Google Scholar
Perrier, E. T. (2017). Shifting focus: from hydration for performance to hydration for health. Annals of Nutrition and Metabolism, 70(Suppl. 1), 412. https://doi.org/10.1159/000462996Google Scholar
Perrier, E., Demazières, A., Girard, N., et al. (2013). Circadian variation and responsiveness of hydration biomarkers to changes in daily water intake. European Journal of Applied Physiology, 113, 21432151. https://doi.org/10.1007/s00421Google Scholar
Petter, L. P. M., Hourihane, J. O’B., & Rolles, C. J. (1994). Is water out of vogue? A survey of the drinking habits of 2–7 year olds. Archives of Diseases of Childhood, 72, 137140. https://doi.org/10.1136/adc.72.2.137Google Scholar
Phillips, P. A., Bretherton, M., Johnston, C. I., & Gray, L. (1991). Reduced osmotic thirst in healthy elderly men. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 261, R166R171. https://doi.org/10.1152/ajpregu.1991.261.1.R166Google Scholar
Phillips, P. A., Bretherton, M., Risvanis, J., Casley, D., Johnston, C., & Gray, L. (1993). Effects of drinking on thirst and vasopressin in dehydrated elderly men. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 264, R877R881. https://doi.org/10.1152/ajpregu.1993.264.5.R877Google Scholar
Phillips, P. A., Rolls, B. J., Ledingham, J. G., et al. (1984). Reduced thirst after water deprivation in healthy elderly men. New England Journal of Medicine, 311 , 753759. https://doi.org/10.1056/NEJM198409203111202Google Scholar
Phillips, P. A., Rolls, B. J., Ledingham, J. G. G., Forsling, M. L., & Morton, J. J. (1985). Osmotic thirst and vasopressin release in humans: a double-blind crossover study. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 248, R645R650. https://doi.org/10.1152/ajpregu.1985.248.6.R645Google Scholar
Phillips, P. A., Rolls, B. J., Ledingham, J. G. G., Morton, J. J., & Forsling, M. L. (1985). Angiotensin II-induced thirst and vasopressin release in man. Clinical Science, 68, 669674. https://doi.org/10.1042/cs0680669Google Scholar
Pitts, G. C., Johnson, R. E., & Consolazio, F. C. (1944). Work in the heat as affected by intake of water, salt, and glucose. American Journal of Physiology, 142, 253259.Google Scholar
Possidente, B., & Birnbaum, S. (1979). Circadian rhythms for food and water consumption in the mouse, Mus musculus. Physiology and Behavior, 22, 657660. https://doi.org/10.1016/0031-9384Google Scholar
Prager-Khoutorsky, M., & Bourque, C. W. (2015). Anatomical organization of the rat organum vasculosum laminae terminalis. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 309, R324R337. https://doi.org/10.1152/ajpregu.00134.2015Google Scholar
Proctor, G. B. (2016). The physiology of salivary secretion. Periodontology, 70, 1125. https://doi.org/10.1111/prd.12116Google Scholar
Propper, C. R., Hillyard, S. D., & Johnson, W. E. (1995). Central angiotensin II induces thirst-related responses in an amphibian. Hormones and Behavior, 29, 7484. https://doi.org.10.1006/hbeh.1995.1006Google Scholar
Purdy, J. (1990). Danger at the water hole. Journal of General Psychology, 117, 107113. https://doi.org/10.1080/00221309.1990.9917778Google Scholar
Rabe, E. F. (1975). Relationship between absolute body-fluid deficits and fluid intake in the rat. Journal of Comparative and Physiological Psychology, 89, 468477. https://doi.org/10.1037/h0077057Google Scholar
Radford, E. P. (1959). Factors modifying water metabolism in rats fed dry diets. American Journal of Physiology, 196, 10981108. https://doi.org/10.1152/ajplegacy.1959.196.5.1098Google Scholar
Radke, K. J., Willis, L. R., Zimmerman, G. W., Weinberger, M. H., & Selkurt, E. E. (1986). Effects of histamine-receptor antagonists on histamine-stimulated renin secretion. European Journal of Pharmacology, 123, 421426. https://doi.org/10.1016/0014-2999Google Scholar
Ramsay, D. J., & Booth, D. A., eds. (1991). Thirst: physiological and psychological aspects. London: Springer-Verlag.Google Scholar
Ramsay, D. J., Rolls, B. J., & Wood, R. J. (1977a). Body fluid changes which influence drinking in the water deprived rat. Journal of Physiology, 266, 453469. https://doi.org/10.1113/jphysiol.1977.sp011777Google Scholar
Ramsay, D. J., Rolls, B. J., & Wood, R. J. (1977b). Thirst following water deprivation in dogs. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 232, R93R100. https://doi.org/10.1152/ajpregu.1977.232.3.R93Google Scholar
Rand, R. P., Burton, A. C., & Ing, T. (1965). The tail of the rat in temperature regulation and acclimatization. Canadian Journal of Physiology and Pharmacology, 43, 257267. https://doi.org/10.1139/y65Google Scholar
Redman, R. S., & Sweney, L. R. (1976). Changes in diet and patterns of feeding activity of developing rats. Journal of Nutrition, 106, 615626. https://doi.org/10.1093/jn/106.5.615Google Scholar
Rettig, R., Ganten, D., & Johnson, A. K. (1981). Isoproterenol-induced thirst: renal and extrarenal mechanisms. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 241, R152R157. https://doi.org/10.1152/ajpregu.1981.241.3.R152Google Scholar
Rinaman, L., Stricker, E. M., Hoffman, G. E., & Verbalis, J. G. (1997). Central c-Fos expression in neonatal and adult rats after subcutaneous injection of hypertonic saline. Neuroscience, 79, 11651175. https://doi.org/10.1016/s0306Google Scholar
Rinaman, L., Vollmer, R. R., Karam, J., Phillips, D., Li, X., & Amico, J. A. (2005). Dehydration anorexia is attenuated in oxytocin-deficient mice. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 288, R1791R1799. https://doi.org/10.1152/ajpregu.00860.2004Google Scholar
Ritter, R. C., & Epstein, A. N. (1974). Saliva lost by grooming: a major item in the rat’s water economy. Behavioral Biology, 11, 581585. https://doi.org/10.1016/s0091Google Scholar
Roberts, M. M., Robinson, A. G., Fitzsimmons, M. D., Grant, F., Lee, W. S., & Hoffman, G. E. (1993). C-Fos expression in vasopressin and oxytocin neurons reveals functional heterogeneity within magnocellular neurons. Neuroendocrinology, 57, 388400. https://doi.org/10.1159/000126384Google Scholar
Robinson, M. M., & Evered, M. D. (1983). Effects of systemic and intracranial inhibition of angiotensin-converting enzyme on isoproterenol-induced drinking in the rat. European Journal of Pharmacology, 90, 343348. https://doi.org/10.1016/0014-2999Google Scholar
Robinson, M. M., & Evered, M. D. (1987). Pressor action of intravenous angiotensin II reduces drinking response in rats. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 252, R754R759. https://doi.org/10.1152/ajpregu.1987.252.4.R754Google Scholar
Röcker, L., Kirsch, K., Stoboy, H., Schmidt, H. M., & Wicke, J. (1977). The influence of heat stress on plasma volume and intravascular proteins in sedentary females. European Journal of Applied Physiology, 36, 187192. https://doi.org/10.1007/BF00421749Google Scholar
Rodriguez, M. M., Overshiner, C., Leander, J. D., et al. (2017). Behavioral effects of a novel benzofuranyl-piperazine serotonin-2C receptor agonist suggest a potential therapeutic application in the treatment of obsessive-compulsive disorder. Frontiers in Psychiatry, 8, 89. https://doi.org/10.3389/fpsyt.2017.00089Google Scholar
Rolls, B. J. (1975). Interaction of hunger and thirst in rats with lesions of the preoptic area. Physiology and Behavior, 14, 537543. https://doi.org/10.1016/0031-9384Google Scholar
Rolls, B. J., & Rolls, E. T. (1982). Thirst. Cambridge: Cambridge University Press.Google Scholar
Rolls, B. J., Wood, R. J., & Rolls, E. T. (1980). Thirst: the initiation, maintenance, and termination of drinking. In Sprague, J. M. & Epstein, A. N., eds., Progress in psychobiology and physiological psychology. Cambridge: Academic Press, pp. 263321.Google Scholar
Rosen, A. M., Roussin, A. T., & DiLorenzo, P. M. (2010). Water as an independent taste modality. Frontiers in Neuroscience, 4, 175. https://doi.org/10.3389/fnins.2010.00175Google Scholar
Ross, M. G., Kullama, L. K., Ogundipe, A., Chan, K., & Ervin, M. G. (1985). Central angiotensin II stimulation of ovine fetal swallowing. Journal of Applied Physiology, 76, 13401345. https://doi.org/10.1152/jappl.1994.76.3.1340Google Scholar
Ross, M. G., & Nijland, M. J. (1998). Development of ingestive behavior. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 274, R879R893. http://doi.org/10.1152/ajpregu.1998.274.4.R879Google Scholar
Ross, M. G., Sherman, D. J., Ervin, M. G., et al. (1989). Stimuli for fetal swallowing: systemic factors. American Journal of Obstetrics and Gynecology, 161, 15591565. https://doi.org/10.1016/0002-9378Google Scholar
Ross, M. G., Sherman, D. J., Schreyer, P., et al. (1991). Fetal rehydration via intraamniotic fluid: contribution of fetal swallowing. Pediatric Research, 29, 214217. https://doi.org/10.1203/00006450-199102000-0023Google Scholar
Roth, B. L. (2016). DREADDs for neuroscientists. Neuron, 89, 683694. https://doi.org/10.1016/j.neuron.2016.01.040Google Scholar
Rowe, B. P., Grove, K. L., Saylor, D. L., & Speth, R. C. (1991). Discrimination of angiotensin II receptor subtype distribution in the rat brain using non-peptidic receptor antagonists. Regulatory Peptides, 33, 4553. https://doi.org/10.1016/0167-0115Google Scholar
Rowland, N. E. (1976a). Circadian rhythms and partial recovery of regulatory drinking in rats after lateral hypothalamic lesions. Journal of Comparative and Physiological Psychology, 90, 383393. https://doi.org/10.1016/0031-9384Google Scholar
Rowland, N. (1976b). Endogenous circadian rhythms in rats recovered from lateral hypothalamic lesions. Physiology and Behavior, 16, 257266. https://doi.org/10.1016/0031-9384Google Scholar
Rowland, N. E. (1988). Water intake of Djungarian and Syrian hamsters treated with various dipsogenic stimuli. Physiology and Behavior, 43, 851854. https://doi.org/10.1016/0031-9384Google Scholar
Rowland, N. E. (1991). Ontogeny of preference and aversion to salt in Fischer 344 rats and Syrian hamsters. Developmental Psychobiology, 24, 211218. https://doi.org/10.1002/dev.420240306Google Scholar
Rowland, N. E. (1995). Neural activity and meal-associated drinking in rats. Neuroscience Letters, 189, 125127. https://doi.org/10.1016/0304-3940Google Scholar
Rowland, N. E. (1998). Brain mechanisms of mammalian fluid homeostasis: insights from use of immediate early gene mapping. Neuroscience and Biobehavioral Reviews, 23, 4963.Google Scholar
Rowland, N. E. (2020). Thirst. In Oxford research encyclopedia of psychology. Oxford: Oxford University Press. https://doi.org/10.1093/acrefore/9780190236557.013.723Google Scholar
Rowland, N. E., Del Bianco, A., & Fregly, M. J. (1996). Age-related decline in thirst and sodium appetite in rats related to kininase II inhibition. Regulatory Peptides, 66, 163167. https://doi.org/10.1016/S0167Google Scholar
Rowland, N. E., Farnbauch, L. J., & Crews, E. C. (2004). Sodium deficiency and salt appetite in ICR:CD1 mice. Physiology and Behavior, 80, 629635. https://doi.org/10.1016/j.physbeh.2003.11.004Google Scholar
Rowland, N. E., & Flamm, C. (1977). Quinine drinking: more regulatory puzzles. Physiology and Behavior, 18, 11651170. https://doi.org/10.1016/0031-9384Google Scholar
Rowland, N. E., & Fregly, M. J. (1988a). Characteristics of thirst and sodium appetite in mice (Mus musculus). Behavioral Neuroscience, 102, 969974. https://doi.org/10.1037//0735-7044.102.6.969Google Scholar
Rowland, N. E., & Fregly, M. J. (1988b). Induction of an appetite for sodium in rats that show no spontaneous preference for sodium chloride solution. Behavioral Neuroscience, 102, 961968. https://doi.org/10.1037//0735-7044.102.6.961Google Scholar
Rowland, N. E., & Fregly, M. J. (1997). Role of angiotensin in the dipsogenic effect of bradykinin in rats. Pharmacology, Biochemistry and Behavior, 57, 699705. https://doi.org/10.1016/s0091Google Scholar
Rowland, N. E., Fregly, M. J., & Cimmerer, A. L. (1995). Bradykinin-induced water intake and brain Fos-like immunoreactivity in rats. Brain Research, 669, 7378. https://doi.org/10.1016/0006-8993Google Scholar
Rowland, N. E., Fregly, M. J., Li, B., & Smith, G. C. (1994). Action of angiotensin converting enzyme inhibitors in rat brain: interaction with isoproterenol assessed by Fos immunocytochemistry. Brain Research, 654, 3440. https://doi.org/10.1016/0006-8993Google Scholar
Rowland, N. E., Goldstein, B. E., & Robertson, K. L. (2003). Role of angiotensin in body fluid homeostasis of mice: fluid intake, plasma hormones, and brain Fos. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 284, R1586R1594. https://doi.org/10.1152/ajpregu.00730.2002Google Scholar
Rowland, N. E., Grossman, S. P., & Grossman, L. (1979). Zona incerta lesions: regulatory drinking deficits to intravenous NaCl, angiotensin, but not to salt in the food. Physiology and Behavior, 23, 745750. https://doi.org/10.1016/0031-9384Google Scholar
Rowland, N. E., Li, B.-H., Rozelle, A. K., Fregly, M. J., Garcea, M., & Smith, G. C. (1994). Localization of changes in immediate early genes in brain in relation to hydromineral balance: intravenous angiotensin II. Brain Research Bulletin, 33, 427436. https://doi.org/10.1016/0361-9230Google Scholar
Rowland, N. E., Li, B.-H., Rozelle, A. K., & Smith, G. C. (1994). Comparison of Fos-like immunoreactivity induced in rat brain by central injection of angiotensin II and carbachol. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 267, R792R798. https://doi.org/10.1152/ajpregu.1994.267.3.R792Google Scholar
Rowland, N. E., Minaya, D. M., Cervantez, M. R., Minervini, V., & Robertson, K. L. (2015). Differences in temporal aspects of food acquisition between rats and two strains of mice in a closed economy. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 309, R93R108. https://doi.org/10.1152/ajpregu.00085.2015Google Scholar
Rowland, N. E., & Morian, K. R. (1999). Roles of aldosterone and angiotensin in maturation of sodium appetite in furosemide-treated rats. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 276, R1453R1460. https://doi.org/10.1152/ajpregu.1999.276.5.R1453Google Scholar
Rowland, N. E., Morien, A., & Fregly, M. J. (1996). Losartan inhibition of angiotensin-related drinking and Fos-immunoreactivity in hypertensive and hypotensive contexts. Brain Research, 742, 253259. https://doi.org/10.1016/s0006Google Scholar
Rowland, N. E., Morien, A., Garcea, M., & Fregly, M. J. (1997). Aging and fluid homeostasis in rats. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 273, R1441R1450. https://doi.org/10.1152/ajpregu.1997.273.4.R1441Google Scholar
Rowland, N. E., & Nicolaïdis, S. (1976). Metering of fluid intake and determinants of ad libitum drinking in rats. American Journal of Physiology, 231, 18. https://doi.org/10.1152/ajplegacy.1976.231.1.1Google Scholar
Rullier, . (1821). Soif. In Dictionnaire des sciences médicales par une société des médecins et de chirurgiens. Paris: Panckoucke, pp. 51, 448490.Google Scholar
Russell, P. J. D., Abdelaal, A. E., & Mogenson, G. J. (1975). Graded levels of hemorrhage, thirst and angiotensin II in the rat. Physiology and Behavior, 15, 117119.Google Scholar
Saker, P., Farrell, M. J., Adib, F. R. M., Egan, G. F., McKinley, M. J., & Denton, D. A. (2014). Regional brain responses associated with drinking water during thirst and after its satiation. Proceedings of the National Academy of Sciences USA, 111, 53795384. https://doi.org/10.1016/0031-9384Google Scholar
Saker, P., Farrell, M. J., Egan, G. F., McKinley, M. J., & Denton, D. A. (2016). Overdrinking, swallowing inhibition, and regional brain responses prior to swallowing. Proceedings of the National Academy of Sciences USA, 113, 1227412279. https://doi.org/10.1073/pnas.1613929113Google Scholar
Saker, P., Farrell, M. J., Egan, G. F., McKinley, M. J., & Denton, D. A. (2018). Influence of anterior midcingulate cortex on drinking behavior during thirst and following satiation. Proceedings of the National Academy of Sciences USA, 115, 786791. https://doi.org/10.1073/pnas.1717646115Google Scholar
Sakuta, H., Nishihara, E., Hiyama, T. Y., Lin, C.-H., & Noda, M. (2016). Nax signaling evoked by an increase in [Na+] in CSF induces water intake via EET-mediated TRPV4 activation. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 311, R299R306. https://doi.org/10.1152/ajpregu.00352.2015Google Scholar
Salisbury, J. J., & Rowland, N. E. (1990). Sham drinking in rats: osmotic and volumetric manipulations. Physiology and Behavior, 47, 625630. https://doi.org/10.1016/0031-9384Google Scholar
Sandick, B. L., Engell, D. B., & Maller, O. (1984). Perception of drinking water temperature and effects for humans after exercise. Physiology and Behavior, 32, 851855. https://doi.org/10.1016/0031-9384Google Scholar
Satinoff, E., Liran, J., & Clapman, R. (1982). Aberrations of circadian body temperature rhythms in rats with medial preoptic lesions. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 242, R352R357. https://doi.org/10.1152/ajpregu.1982.242.3.R352Google Scholar
Sawka, M. N., Montain, S. J., & Latzka, W. A. (2001). Hydration effects on thermoregulation and performance in the heat. Comparative Biochemistry and Physiology, Part A, 128, 670690. https://doi.org/10.1016/s1095Google Scholar
Schmidt-Nielsen, K., & Schmidt-Nielsen, B. (1952). Water metabolism of desert mammals. Physiological Review, 32, 135166. https://doi.org/10.1152/physrev.1952.32.2.135Google Scholar
Schoorlemmer, G. H. M., & Evered, M. D. (2002). Reduced feeding during water deprivation depends on hydration of the gut. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 283, R1061R1069. https://doi.org/10.1152/ajpregu.00236.2002Google Scholar
Schwartz, N. (2003). Self-reports in consumer research: the challenge of comparing cohorts and cultures. Journal of Consumer Research, 29, 588594. https://doi.org/10.1086/346253Google Scholar
Shadt, J. C., & Ludbrook, J. (1991). Hemodynamic and neurohumoral responses to acute hypovolemia in conscious mammals. American Journal of Physiology: Heart and Circulatory Physiology, 260, H305H318. https://doi.org/10.1152/ajpheart.1991.260.2.H305Google Scholar
Sharpe, L. G., & Swanson, L. W. (1974). Drinking induced by injections of angiotensin into forebrain and mid-brain sites of the monkey. Journal of Physiology, 239, 595622. https://doi.org/10.1113/jphysiol.1974.sp010584Google Scholar
Shen, E., Dun, S. L., Ren, C., Bennett-Clarke, C., & Dun, N. J. (1992). Hypotension preferentially induces c-Fos immunoreactivity in supraoptic vasopressin neurons. Brain Research, 593, 136139. https://doi.org/10.1016/0006-8993Google Scholar
Shi, P., Martinez, M. A., Calderon, A. S., Chen, Q., Cunningham, T. J., & Toney, G. M. (2008). Intra-carotid hyperosmotic stimulation increases Fos staining in forebrain organum vasculosum laminae terminalis neurons that project to the hypothalamic paraventricular nucleus. Journal of Physiology, 586, 52315245. https://doi.org/10.1113/jphysiol.2008.159665Google Scholar
Shinghai, T. (1980). Water fibers in the superior laryngeal nerve of the rat. Japanese Journal of Physiology, 30, 305307. https://doi.org/10.2170/jjphysiol.30.305Google Scholar
Siegel, P. S., & Stuckey, H. L. (1947). The diurnal course of water and food intake in the normal mature rat. Journal of Comparative and Physiological Psychology, 40, 365370. https://doi.org/10.1037/h0062185Google Scholar
Silver, A. J., Flood, J. F., & Morley, J. E. (1991). Effect of aging on fluid ingestion in mice. Journal of Gerontology, 46, B117B121. https://doi.org/10.1093/geronj/46.3.b117Google Scholar
Silver, A. J., Morley, J. E., Ishimaru-Tseng, V., & Morley, P. M. K. (1993). Angiotensin II and fluid ingestion in old rats. Neurobiology of Aging, 14, 519522. https://doi.org/10.1016/0197-4580Google Scholar
Simpkins, J. W., Field, F. P., & Ress, P. J. (1983). Age-related decline in adrenergic responsiveness of the kidney, heart and aorta of male rats. Neurobiology of Aging, 4, 233238. https://doi.org/10.1016/0197-4580Google Scholar
Simpson, J. B., Epstein, A. N., & Camardo, J. S. (1978). Localization of receptors for the dipsogenic action of angiotensin II in the subfornical organ of rat. Journal of Comparative and Physiological Psychology, 92, 581601. https://doi.org/10.1037/h0077503Google Scholar
Simpson, J. B., & Routtenberg, A. (1975). Subfornical organ lesions reduce intravenous angiotensin-induced drinking. Brain Research, 88, 154161. https://doi.org/10.1016/0006-8993Google Scholar
Sinnayah, P., Burns, P., Wade, J. R., Weisinger, R. S., & McKinley, M. J. (1999). Water drinking in rats resulting from intravenous relaxin and its modification by other dipsogenic factors. Endocrinology, 140, 50825086. https://doi.org/10.1210/endo.140.11.7091Google Scholar
Sladek, C. D., & Johnson, A. K. (1983). Effect of anteroventral third ventricle lesions on vasopressin release by organ-cultured hypothalamo-hypophyseal explants. Neuroendocrinology, 37, 7884. https://doi.org/10.1159/000123519Google Scholar
Smith, D. W., & Day, T. A. (1995). Hypovolaemic and osmotic simuli induce distinct patterns of c-Fos expression in the rat subfornical organ. Brain Research, 698, 232236. https://doi.org/10.1016/0006-8993Google Scholar
Smith, D., Moore, K., Tormey, W., Baylis, P. H., & Thompson, C. J. (2004). Downward resetting of the osmotic threshold for thirst in patients with SIADH. American Journal of Physiology: Endocrinology and Metabolism, 287, E1019E1023. https://doi.org/10.1152/ajpendo.00033.2004Google Scholar
Spiers, D. E., Barney, C. C., & Fregly, M. J. (1981). Thermoregulatory responses of tailed and tailless rats to isoproterenol. Canadian Journal of Physiology and Pharmacology, 59, 847852. https://doi.org/10.1139/y81Google Scholar
Spiteri, N. J. (1982). Circadian patterning of feeding, drinking and activity during diurnal food access in rats. Physiology and Behavior, 28, 139147. https://doi.org/10.1016/0031-9384Google Scholar
Stachenfeld, N. S., DiPietro, L., Nadel, E. R., & Mack, G. W. (1997). Mechanism of attenuated thirst in aging. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 272, R148R157. https://doi.org/10.1152/ajpregu.1997.272.1.R148.Google Scholar
Stachenfeld, N. S., Mack, G. W., Takamata, A., DiPietro, L., & Nadel, E. R. (1996). Thirst and fluid regulatory responses to hypertonicity in older adults. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 271, R757R765. https://doi.org/10.1152/ajpregu.1996.271.3.R757Google Scholar
Stacy, B. D., & Warner, A. C. I. (1966). Balances of water and sodium in the rumen during feeding: osmotic stimulation of sodium absorption. Quarterly Journal of Experimental Physiology, 51, 7993. https://doi.org/10.1113/expphysiol.1966.sp001843Google Scholar
Starbuck, E. M., & Fitts, D. A. (1998). Effects of SFO lesion or captopril on drinking induced by intragastric hypertonic saline. Brain Research, 795, 3743. https://doi.org/10.1016/s0006Google Scholar
Starbuck, E. M., & Fitts, D. A. (2002). Subfornical organ disconnection and Fos-like immunoreactivity in hypothalamic nuclei after intragastric hypertonic saline. Brain Research, 951, 202208. https://doi.org/10.1016/s0006Google Scholar
Starbuck, E. M., Wilson, W. L., & Fitts, D. A. (2002). Fos-like immunoreactivity and thirst following hyperosmotic loading in rats with subdiaphragmatic vagotomy. Brain Research, 931, 159167. https://doi.org/10.1016/s0006Google Scholar
Stellar, E., Hyman, R., & Samet, S. (1954). Gastric factors controlling water- and salt-solution-drinking. Journal of Comparative and Physiological Psychology, 47, 220226. https://doi.org/10.1037/h0063148Google Scholar
Stephan, F. K., & Zucker, I. (1972a). Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proceedings of the National Academy of Sciences USA, 69, 15831586. https://doi.org/10.1073/pnas.69.6.1583Google Scholar
Stephan, F. K., & Zucker, I. (1972b). Rat drinking rhythms: central visual pathways and endocrine factors mediating responsiveness to environmental illumination. Physiology and Behavior, 8, 315326. https://doi.org/10.1016/0031-9384Google Scholar
Stocker, S. D., Hunwick, K. J., & Toney, G. M. (2005). Hypothalamic paraventricular nucleus differentially supports lumbar and renal sympathetic outflow in water-deprived rats. Journal of Physiology, 563, 249263. https://doi.org/10.1113/jphysiol.2004.076661Google Scholar
Stoynev, A. G., & Ikonomov, O. C. (1983). Effect of constant light and darkness on the circadian rhythms in rats: I. Food and water intake, urine output and electrolyte excretion. Acta Physiologica Pharmacologica Bulgaria, 9, 5864. (PMID 8870837)Google Scholar
Stoynev, A. G., Ikonomov, O. C., & Usunoff, K. G. (1982). Feeding pattern and light-dark variations in water intake and renal excretion after suprachiasmatic nuclei lesions in rats. Physiology and Behavior, 29, 3540. https://doi.org/10.1016/0031-9384Google Scholar
Stricker, E. M. (1971a). Effects of hypovolemia and/or caval ligation on water and NaCl solution drinking by rats. Physiology and Behavior, 6, 299305. https://doi.org/10.1016/0031-9384Google Scholar
Stricker, E. M. (1971b). Inhibition of thirst in rats following hypovolemia and/or caval ligation. Physiology and Behavior, 6, 293298. https://doi.org/10.1016/0031-9384Google Scholar
Stricker, E. M., Callahan, J. B., Huang, W., & Sved, A. F. (2002). Early osmoregulatory stimulation of neurohypophyseal hormone secretion and thirst after gastric NaCl loads. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 282, R1710R1717. https://doi.org/10.1152/ajpregu.00548.2001Google Scholar
Stricker, E. M., & Hainsworth, F. R. (1970a). Evaporative cooling in the rat: effects of hypothalamic lesions and chorda tympani damage. Canadian Journal of Physiology and Pharmacology, 48, 1117. https://doi.org/10.1139/y70Google Scholar
Stricker, E. M., & Hainsworth, F. R. (1970b). Evaporative cooling in the rat: effects of dehydration. Canadian Journal of Physiology and Pharmacology, 48, 1827. https://doi.org/10.1139/y70Google Scholar
Stricker, E. M., & Hainsworth, F. R. (1971). Evaporative cooling in the rat: interaction with heat loss from the tail. Quarterly Journal of Experimental Physiology, 56, 231241. https://doi.org/10.1113/expphysiol.1971.sp002124Google Scholar
Summerlee, A. J., & Robertson, G. F. (1995). Central administration of porcine relaxin stimulates drinking behavior in rats: an effect mediated by central angiotensin II. Endocrine, 3, 377381. https://doi.org/10.1007/BF03021422Google Scholar
Sun, Z., Fregly, M. J., Rowland, N. E., & Cade, J. R. (1996). Comparison of changes in blood pressure and dipsogenic responsiveness to angiotensin II in male and female rats chronically exposed to cold. Physiology and Behavior, 60, 15431549. https://doi.org/10.1016/s0031Google Scholar
Sunn, N., Egli, M., Burazin, T. C. D., et al. (2002). Circulating relaxin acts on subfornical organ neurons to stimulate water drinking in the rat. Proceedings of the National Academy of Sciences USA, 99, 17011706. https://doi.org/10.1073/pnas.022647699Google Scholar
Sunn, N., McKinley, M. J., & Oldfield, B. J. (2001). Identification of efferent neural pathways from the lamina terminalis activated by blood-borne relaxin. Journal of Neuroendocrinology, 13, 432437. https://doi.org/10.1046/j.1365-2826.2001.00650.xGoogle Scholar
Symons, J. P., & Sprott, R. L. (1976). Genetic analysis of schedule induced polydipsia. Physiology and Behavior, 17, 837839. https://doi.og/10.1016/0031-9384Google Scholar
Tabarin, A., Diz-Chaves, Y., Consoli, D., et al. (2007). Role of the corticotropin-releasing factor receptor type 2 in the control of food intake in mice: a meal pattern analysis. European Journal of Neuroscience, 26, 23032314. https://doi.org/10.1111/j.1460-9568.2007.05856.xGoogle Scholar
Takamata, A., Yoshida, T., Nishida, N., & Morimoto, T. (2001). Relationship of osmotic inhibition in thermoregulatory responses and sweat concentration in humans. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 280, R623R629.Google Scholar
Takei, Y. (1977). The role of the subfornical organ in drinking induced by angiotensin in the Japanese quail. Cell and Tissue Research, 185, 175181. https://doi.org/10.1007/BF00220662Google Scholar
Takei, Y. (2000). Comparative physiology of body fluid regulation in vertebrates with special reference to thirst regulation. Japanese Journal of Physiology, 50, 171186. https://doi.org/10.2170/jjphysiol.50.171Google Scholar
Takei, Y., Hiroi, J., Takahashi, H., & Sakamoto, T. (2014). Diverse mechanisms for body fluid regulation in teleost fishes. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 307, R778R792. https://doi.org/10.1152.ajpregu.00104.2014Google Scholar
Takei, Y., Okawara, Y., & Kobayashi, H. (1988). Drinking induced by cellular dehydration in the quail, Coturnix coturnix japonica. Comparative Biochemistry and Physiology: A Comparative Physiology, 90, 291296. https://doi.org.10.1016/0300-9629Google Scholar
Takeuchi, K., Yamakuni, H., Nobuhara, Y., & Okabem, S. (1986). Functional and morphological alterations in the rat stomach following exposure to hypertonic NaCl solution. Japanese Journal of Pharmacology, 42, 549560. https://doi.org/10.1254/jjp.42.549Google Scholar
Tanaka, J., Kaba, H., Saito, H., & Seto, K. (1985). Subfornical organ neurons with efferent projections to the hypothalamic paraventricular nucleus: an electrophysiological study in the rat. Brain Research, 346, 151154. https://doi.org/10.1016/0006-8993Google Scholar
Tang, M., & Falk, J. L. (1974). Sar1-Ala8-angiotensin II blocks renin-angiotensin but not beta-adrenergic dipsogenesis. Pharmacology, Biochemistry and Behavior, 2, 401408. https://doi.org/10.1016/0091-3057Google Scholar
Taylor, A. C., McCarthy, J. J., & Stocker, S. D. (2008). Mice lacking the transient receptor vanilloid potential 1 channel display normal thirst responses and central Fos activation to hypernatremia. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 294, R1285R1293. https://doi.org/10.1152/ajpregu.00003.2008Google Scholar
Taylor, C. R. (1970). Strategies of temperature regulation: effect on evaporation in East African ungulates. American Journal of Physiology, 219, 11311135. https://doi.org/10.1152/ajplegacy.1970.219.4.1131Google Scholar
Taylor, K., Mayer, L. P., & Propper, C. R. (1999). Intra- and extracellular dehydration-induced thirst-related behavior in an amphibian. Physiology and Behavior, 65, 717721. https://doi.org/10.1016/s0031Google Scholar
Thompson, C. J., Edwards, C. R. W., & Baylis, P. H. (1991). Osmotic and non-osmotic regulation of thirst and vasopressin secretion in patients with compulsive water drinking. Clinical Endocrinology, 35, 221228. https://doi.org/10.1111/j.1365-2265.1991.tb03526.xGoogle Scholar
Thornton, S. N. (1984). A central Na+ receptor and its influence on osmotic and angiotensin II induced drinking in the pigeon Columba livia. Journal of Physiology (Paris), 79, 505510. (PMID 6443127)Google Scholar
Thornton, S. N. (1986). The influence of intracerebroventricular infusions on osmotically induced urine excretion in the pigeon (Columba livia). Physiology and Behavior, 37, 673679. https://doi.org/10.1016/0031-9384Google Scholar
Thornton, S. N., & Fitzsimons, J. T. (1995). The effects of centrally administered porcine relaxin on drinking behavior in male and female rats. Journal of Neuroendocrinology, 7, 165169. https://doi.org/10.1111/j.1365-2826.1995.tb00743.xGoogle Scholar
Thrasher, T. N., Brown, C. J., Keil, L. C., & Ramsay, D. J. (1980). Thirst and vasopressin release in the dog: an osmoreceptor or sodium receptor mechanism? American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 238, R333R339. https://doi.org/10.1152/ajpregu.1980.238.5.R333Google Scholar
Thrasher, T. N., Chen, H. G., & Keil, L. C. (2000). Arterial baroreceptors control plasma vasopressin responses to graded hypotension in conscious dogs. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 278, R469R475. https://doi.org/10.1152/ajpregu.2000.278.2.R469Google Scholar
Thrasher, T. N., Jones, R. G., Keil, L. C., Brown, C. J., & Ramsay, D. J. (1980). Drinking and vasopressin release during ventricular infusions of hypertonic solutions. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 238, R340R345. https://doi.org/10.1152/ajpregu.1980.238.5.R340Google Scholar
Thrasher, T. N., & Keil, L. C. (1987). Regulation of drinking and vasopressin secretion: role of organum vasculosum laminae terminalis. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 253, R108R120. https://doi.org/10.1152/ajpregu.1987.253.1.R108Google Scholar
Thrasher, T. N., Keil, L. C., & Ramsay, D. J. (1982). Hemodynamic, hormonal and drinking responses to reduced venous return in the dog. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 243, R354–R62. https://doi.org/10.1152/ajpregu.1982.243.3.R354Google Scholar
Thrasher, T. N., Simpson, J. B., & Ramsay, D. J. (1982). Lesions of the subfornical organ block angiotensin-induced drinking in the dog. Neuroendocrinology, 35, 6872. https://doi.org/10.1159/000123357Google Scholar
Thunhorst, R. L., Beltz, T. N., & Johnson, A. K. (2009). Hypotension- and osmotically induced thirst in old brown Norway rats. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 297, R149R157. https://doi.org/10.1152/ajpregu.00118.2009Google Scholar
Thunhorst, R. L., Beltz, T. N., & Johnson, A. K. (2010). Drinking and arterial blood pressure responses to ANG II in young and old rats. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 299, R1135R1141. https://doi.org/10.1152/ajpregu.00360.2010Google Scholar
Thunhorst, R. L., Beltz, T. N., & Johnson, A. K. (2014). Age-related declines in thirst and salt appetite responses in male Fischer 344 × brown Norway rats. Physiology and Behavior, 135, 180188. https://doi.org/10.1016/j.physbeh.2014.06.010Google Scholar
Thunhorst, R. L., Grobe, C. L., Beltz, T. G., & Johnson, A. K. (2011). Effects of β-adrenergic receptor agonists on drinking and arterial blood pressure in young and old rats. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 300, R1001R1008. https://doi.org/10.1152/ajpregu.00737.2010Google Scholar
Thunhorst, R. L., & Johnson, A. K. (2003). Thirst and salt appetite responses in young and old brown Norway rats. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 284, R317R327. https://doi.org/10.1152/ajpregu.00368.2002Google Scholar
Toth, D. M. (1973). Temperature regulation and salivation following preoptic lesions in the rat. Journal of Comparative and Physiological Psychology, 82, 480488. https://doi.org/10.1037/h0034118Google Scholar
Towbin, E. J. (1949). Gastric distention as a factor in the satiation of thirst in esophagostomized dogs. American Journal of Physiology, 159, 533541. https://doi.org/10.1152/ajplegacy.1949.159.3.533Google Scholar
Towbin, E. J. (1955). Thirst and hunger behavior in normal dogs and the effects of vagotomy and sympathectomy. American Journal of Physiology, 182, 377382. https://doi.org/10.1152/ajplegacy.1955.182.2.377Google Scholar
Trimble, M. E. (1970). Renal response to solute loading in infant rats: relation to anatomical development. American Journal of Physiology, 291, 10891097. https://doi.org/10.1152/ajplegacy.1970.219.4.1089Google Scholar
Tsutsumi, K., & Saavedra, J. M. (1991). Quantitative autoradiography reveals different angiotensin II receptor subtypes in selected rat brain nuclei. Journal of Neurochemistry, 56, 348351. https://doi.org/10.1111/j.1471-4159.1991.tb02602.xGoogle Scholar
Uschakov, A., McGinty, D., Szymusiak, R., & McKinley, M. J. (2009). Functional correlates of activity in neurons projecting from the lamina terminalis to the ventrolateral periaqueductal gray. European Journal of Neuroscience, 30, 23472355. https://doi.org/10.1111/j.1460-9568.2009.07024.x.Google Scholar
van Belzen, L., Postma, E. M., & Boesveldt, S. (2017). How to quench your thirst: the effect of water-based products varying in temperature and texture, flavor, and sugar content on thirst. Physiology and Behavior, 180, 4552. https://doi.org/10.1016/j/physbeh.2017.08.007Google Scholar
Vokes, T. J., Weiss, N. M., Schreiber, J., Gaskill, M. B., & Robertson, G. L. (1988). Osmoregulation of thirst and vasopressin during normal menstrual cycle. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 254, R641R647. https://doi.org/10.1152/ajpregu.1988.254.4.R641Google Scholar
Waldbillig, R. J., & Lynch, W. C. (1979). Oroesophageal factors in the patterning of drinking. Physiology and Behavior, 22, 205209. https://doi.org/10.1016/0031-9384Google Scholar
Watanabe, E., Fujikawa, A., Matsunaga, H., et al. (2000). Nav2/NaG channel is involved in control of salt-intake behavior in the CNS. Journal of Neuroscience, 20, 77437751.Google Scholar
Watanabe, E., Hiyama, T. Y., Shimizu, H., et al. (2006). Sodium-level-sensitive sodium channel nax is expressed in glial laminate processes in the sensory circumventricular organs. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 290, R568R576. https://doi.org/10.1152/ajpregu.00618.2005Google Scholar
Watts, A. G. (1999). Dehydration-associated anorexia: development and rapid reversal. Physiology and Behavior, 65, 871878. https://doi.org/10.1016/s0031Google Scholar
Watts, A. G. (2001). Neuropeptides and the integration of motor responses to dehydration. Annual Review of Neuroscience, 24, 357384. https://doi.org/10.1146/annurev.neuro.24.1.357Google Scholar
Watts, A. G., & Boyle, C. N. (2010). The functional architecture of dehydration-anorexia. Physiology and Behavior, 100, 472477. https://doi.org/10.1016/j.physbeh.2010.04.010Google Scholar
Weisinger, R. S., Burns, P., Eddie, L. W., & Winotour, E. M. (1993). Relaxin alters the plasma osmolality-arginine vasopressin relationship in the rat. Journal of Endocrinology, 137, 505510. https://doi.org/10.1677/joe.0.1370505Google Scholar
Wettendorff, H. (1901). Modifications du sang sous l’influence de la privation d’eau: contribution à l’étude de la soif. Travaux du Laboratoire de Physiologie, Instituts Solvay, 4, 353484.Google Scholar
Whyte, D. G., Thunhorst, R. L., & Johnson, A. K. (2004). Reduced thirst in old, thermally dehydrated rats. Physiology and Behavior, 81, 569576. https://doi.org/10.1016/j.physbeh.2004.02.030Google Scholar
Wiepkema, P. R., Prins, A. J., & Steffens, A. B. (1972). Gastrointestinal food transport in relation to meal occurrence in rats. Physiology and Behavior, 9, 759763. https://doi.org/10.1016/0031-9384Google Scholar
Wilk, B., & Bar-Or, O. (1996). Effect of drink flavor and NaCl on voluntary drinking and hydration in boys exercising in the heat. Journal of Applied Physiology, 80, 11121117.Google Scholar
Wilson, J. X. (1984). The renin-angiotensin system in nonmammalian vertebrates. Endocrine Review, 5, 4161. https://doi.org/10.1210/edrv-5-1-45Google Scholar
Wilson, K. M., & Fregly, M. J. (1985). Factors affecting angiotensin II–induced hypothermia in rats. Peptides, 6, 695701. https://doi.org/10.1016/0196-9781Google Scholar
Wilson, L. M., Chan, S.-S. P., Henning, S. J., & Margules, D. M. (1981). Suckling: developmental indicator of genetic obesity in mice. Developmental Psychobiology, 14, 6774. https://doi.org/10.1002/dev.420140109Google Scholar
Wirth, J. B., & Epstein, A. N. (1976). Ontogeny of thirst in the infant rat. American Journal of Physiology, 230, 188198. https://doi.org/10.1152/ajplegacy.1976.230.1.188Google Scholar
Wolf, A. V. (1950). Osmometric analysis of thirst in man and dog. American Journal of Physiology, 161, 7586. https://doi.org/10.1152/ajplegacy.1950.161.1.75Google Scholar
Wolf, A. V. (1958). Thirst: physiology of the urge to drink and problems of water lack. Springfield, IL: C. C. Thomas.Google Scholar
Wong, P. C., Hart, S. D., Zaspel, A. M., et al. (1990). Functional studies of nonpeptide angiotensin II receptor subtype-specific ligands: DuP753 (AII-1) and PD123177 (AII-2). Journal of Pharmacology and Experimental Therapeutics, 255, 584592. (PMID 2243344)Google Scholar
Wood, R. J., Maddison, S., Rolls, E. T., Rolls, B. J., & Gibbs, J. (1980). Drinking in rhesus monkeys: roles of presystemic and systemic factors in control of drinking. Journal of Comparative and Physiological Psychology, 94, 11351148. https://doi.org/10.1037/h0077745Google Scholar
Wood, R. J., Rolls, E. T., & Rolls, B. J. (1982). Physiological mechanisms for thirst in the nonhuman primate. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 242, R423R428. https://doi.org/10.1152/ajpregu.1982.242.5.R423Google Scholar
Wright, J. W., Morseth, S. L., Fairley, P. C., Petersen, E. P., & Harding, J. W. (1986). Angiotensin’s contribution to dipsogenic additivity in several rodent species. Behavioral Neuroscience, 101, 361370. https://doi.org/10.1037//0735-7044.101.3.361Google Scholar
Wright, J. W., Morseth, S. L., LaCrosse, E., & Harding, J. W. (1984). Angiotensin III-induced dipsogenic and pressor responses in rodents. Behavioral Neuroscience, 98, 640651. https://doi.org/10.1037//0735-7044.98.4.640Google Scholar
Wright, J. W., Schulz, E. M., & Harding, J. W. (1982). An evaluation of dipsogenic stimuli in the African green monkey. Journal of Comparative and Physiological Psychology, 96, 7888. https://doi.org/10.1037/h0077867Google Scholar
Xu, Z., & Herbert, J. (1996). Effects of unilateral or bilateral lesions within the anteroventral third ventricular region on c-Fos expression induced by dehydration or angiotensin II in the supraoptic and paraventricular nuclei of the hypothalamus. Brain Research, 713, 3643.Google Scholar
Xu, Z., Nijland, M. J. M., & Ross, M. G. (2001). Plasma osmolality dipsogenic thresholds and c-Fos expression in the near-term ovine fetus. Pediatric Research, 49, 678685.Google Scholar
Yan, J.-J., & Hwang, P.-P. (2019). Novel discoveries in acid-base regulation and osmoregulation: a review of selected hormonal actions in zebrafish and medaka. General and Comparative Endocrinology, 277, 2029. https://doi.org/10.1016/j.ygcen.2019.03.007Google Scholar
Yawata, T., Okuno, T., Nose, H., & Morimoto, T. (1987). Change in salt appetite due to rehydration level in rats. Physiology and Behavior, 40, 363368. https://doi.org/10.1016/0031-9384Google Scholar
Yeomans, M. L., & Savory, C. J. (1988). Intravenous hypertonic saline injections and drinking in domestic fowls. Physiology and Behavior, 42, 307312. https://doi.org/10/1016/0031-9384Google Scholar
Yeomans, M. L., & Savory, C. J. (1989). Altered spontaneous and osmotically induced drinking for fowls with permanent access to silute quinine. Physiology and Behavior, 46, 917922. https://doi.org/10.1016/0031-9384Google Scholar
Yoshimura, M., Matsuura, T., Ohkubo, J., et al. (2014). A role of nestafin-1/NucB2 in dehydration-induced anorexia. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 307, R225R236. https://doi.org/10.1152/ajpregu.00488.2013Google Scholar
Zerbe, R. L., & Robertson, G. L. (1983). Osmoregulation of thirst and vasopressin secretion in human subjects: effect of various solutes. American Journal of Physiology: Endocrinology and Metabolism, 244, E607E614. https://doi.org/10.1152/ajpendo.1983.244.6.E607Google Scholar
Zhang, H., Fan, Y., Xia, F., et al. (2011). Prenatal water deprivation alters brain angiotensin system and dipsogenic changes in the offspring. Brain Research, 1382, 128–136. https://doi.org/10.1016/j.brainres.2011.01.031Google Scholar
Zhao, S., Malmgren, C. H., Shanks, R. D., & Sherwood, O. D. (1995). Monoclonal antibodies specific for rat relaxin. VIII. Passive immunization with monoclonal antibodies throughout the second half of pregnancy reduces water consumption in rats. Endocrinology, 136, 18921897. https://doi.org/10.1210/endo.136.5.7720635Google Scholar
Zimmerman, C. A., Huey, E. L., Ahn, J. S., et al. (2019). A gut-to-brain signal of fluid osmolality controls thirst satiation. Nature, 568, 98102.Google Scholar
Zimmerman, C. A., Lin, Y.-C., Leib, D. E., et al. (2016). Thirst neurons anticipate the homeostatic consequences of eating and drinking. Nature, 537, 680684.Google Scholar
Zocchi, D., Wennemuth, G., & Oka, Y. (2017). The cellular mechanism for water detection in the mammalian taste system. Nature Neuroscience, 20, 927933. https://doi.org/10.1038/nn.4575Google Scholar
Zorilla, E. P., Inoue, K., Fekete, E. M., et al. (2005). Measuring meals: structure of prandial food and water intake of rats. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 288, R1450R1467. https://doi.org/10.1152/ajpregu.00175.2004Google Scholar
Zotterman, Y., & Diamant, H. (1959). Has water a specific taste? Nature, 183, 191192.Google Scholar
Zucker, I. (1971). Light-dark rhythms in rat eating and drinking behavior. Physiology and Behavior, 6, 115126. https://doi.org/10.1016/0031-9384Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Neil E. Rowland, University of Florida
  • Book: Thirst and Body Fluid Regulation
  • Online publication: 09 December 2021
  • Chapter DOI: https://doi.org/10.1017/9781108878166.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Neil E. Rowland, University of Florida
  • Book: Thirst and Body Fluid Regulation
  • Online publication: 09 December 2021
  • Chapter DOI: https://doi.org/10.1017/9781108878166.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Neil E. Rowland, University of Florida
  • Book: Thirst and Body Fluid Regulation
  • Online publication: 09 December 2021
  • Chapter DOI: https://doi.org/10.1017/9781108878166.014
Available formats
×