Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-17T03:42:07.792Z Has data issue: false hasContentIssue false

14 - Voltage-dependent sodium currents in hair cells of the inner ear

Published online by Cambridge University Press:  08 August 2009

Julian R. A. Wooltorton
Affiliation:
Department of Clinical Studies at New Bolton Center School of Veterinary Medicine 382 West Street Road Kennett Square, PA 19348
Karen M. Hurley
Affiliation:
Department of Clinical Studies at New Bolton Center School of Veterinary Medicine 382 West Street Road Kennett Square, PA 19348
Hong Bao
Affiliation:
Section of Neurobiology, College of Natural Sciences The University of Texas at Austin Austin, TX 78712
Ruth A. Eatock
Affiliation:
Eaton-Peabody Laboratory Department of Otology and Laryngology Harvard Medical School Boston, MA 02114
James R. Pomerantz
Affiliation:
Rice University, Houston
Get access

Summary

Introduction

The hair cell is the mechanosensory cell of the auditory and vestibular organs of the inner ear. Sounds and head movements deflect the hair cells' apical bundles of specialized microvilli, inducing current flow through mechanosensitive ion channels in the bundles. The resulting change in membrane potential – the receptor potential – in turn modulates diverse voltage-gated ion channels in the basolateral membrane. The most numerous channels are potassium (K+)- selective and may be voltage- and/or calcium (Ca2 +)- activated. Flow of current through K+ channels tends to drive the hair cell towards its resting potential, providing negative feedback on the transduction current or, in some cases, amplifying the voltage response through electrical resonance. The properties of hair cell K+ channels have been the focus of many studies, in part because of the opportunity to link diversity in the repertoire of K+ channels to sensory signaling (Fettiplace & Fuchs, 1999). The voltage-gated Ca2 + channels of hair cells have been investigated because of their functional significance as activators of K+ current (e.g., Art & Fettiplace, 1987; Hudspeth & Lewis, 1988) and/or mediators of chemical transmission (e.g., Beutner et al., 2001; Engel et al., 2002; Parsons et al., 1994).

The voltage-gated sodium (Na+) currents of hair cells have only recently attracted significant attention. Because they have fast inactivation kinetics and frequently very negative voltage ranges of inactivation, hair cell Na+ currents can be negligible during standard voltage protocols, so that their distribution is not fully characterized.

Type
Chapter
Information
Topics in Integrative Neuroscience
From Cells to Cognition
, pp. 385 - 413
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akopian, A. N., Sivilotti, L., and Wood, J. N. (1996). A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature, 379, 257–62.CrossRefGoogle ScholarPubMed
Armstrong, C. E. and Roberts, W. M. (1998). Electrical properties of frog saccular hair cells: distortion by enzymatic dissociation. Journal of Neuroscience, 18, 2962–73.CrossRefGoogle ScholarPubMed
Armstrong, C. E. and Roberts, W. M. (2001). Rapidly inactivating and non-inactivating calcium-activated potassium currents in frog saccular hair cells. Journal of Physiology, 536, 49–65.CrossRefGoogle ScholarPubMed
Arreola, J., Spires, S., and Begenisich, T. (1993). Na+ channels in cardiac and neuronal cells derived from a mouse embryonal carcinoma cell line. Journal of Physiology, 472, 289–303.CrossRefGoogle ScholarPubMed
Art, J. J. and Fettiplace, R. (1987). Variation of membrane properties in hair cells isolated from the turtle cochlea. Journal of Physiology, 385, 207–42.CrossRefGoogle ScholarPubMed
Backx, P. H., Yue, D. T., Lawrence, J. H., Marbán, E., and Tomaselli, G. F. (1992). Molecular localization of an ion-binding site within the pore of mammalian sodium channels. Science, 257, 248–51.CrossRefGoogle ScholarPubMed
Baird, R. A., Desmadryl, G., Fernández, C., and Goldberg, J. M. (1988). The vestibular nerve of the chinchilla. II. Relation between afferent response properties and peripheral innervation patterns in the semicircular canals. Journal of Neurophysiology, 60, 182–203.CrossRefGoogle ScholarPubMed
Baker, M. D. and Bostock, H. (1997). Low-threshold, persistent sodium current in rat large dorsal root ganglion neurons in culture. Journal of Neurophysiology, 77, 1503–13.CrossRefGoogle ScholarPubMed
Bao, H., Wong, W. H., Goldberg, J. M., and Eatock, R. A. (2003). Voltage-gated calcium channel currents in type I and type II hair cells isolated from the rat crista. Journal of Neurophysiology, 90, 155–64.CrossRefGoogle ScholarPubMed
Beutner, D. and Moser, T. (2001). The presynaptic function of mouse cochlear inner hair cells during development of hearing. Journal of Neuroscience, 21, 4593–9.CrossRefGoogle Scholar
Beutner, D., Voets, T., Neher, E., and Moser, T. (2001). Calcium dependence of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse. Neuron, 29, 681–90.CrossRefGoogle ScholarPubMed
Blum, R., Kafitz, K. W., and Konnerth, A. (2002). Neurotrophin-evoked depolarization requires the sodium channel NaV1.9. Nature, 419, 687–93.CrossRefGoogle Scholar
Brown, A. M., Lee, K. S., and Powell, T. (1981). Sodium current in single rat heart muscle cells. Journal of Physiology, 318, 479–500.CrossRefGoogle ScholarPubMed
Chabbert, C., Mechaly, I., Sieso, V., et al. (2003). Voltage-gated Na+ channel activation induces both action potentials in utricular hair cells and brain-derived neurotrophic factor release in the rat utricle during a restricted period of development. Journal of Physiology, 553, 113–23.CrossRefGoogle ScholarPubMed
Chamow, S. M., Peers, D. H., Byrn, R. A., et al. (1990). Enzymatic cleavage of a CD4 immunoadhesin generates crystallizable, biologically active Fd-like fragments. Biochemistry, 29, 9885–91.CrossRefGoogle ScholarPubMed
Chen, J. W. Y. and Eatock, R. A. (2000). Major potassium conductance in type I hair cells from rat semicircular canals: characterization and modulation by nitric oxide. Journal of Neurophysiology, 84, 139–51.CrossRefGoogle ScholarPubMed
Chen, N. and Lucero, M. T. (1999). Transient and persistent tetrodotoxin-sensitive sodium currents in squid olfactory receptor neurons. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 184, 63–72.CrossRefGoogle ScholarPubMed
Chen, Y. H., Dale, T. J., Romanos, M. A., et al. (2000). Cloning, distribution and functional analysis of the type III sodium channel from human brain. European Journal of Neuroscience, 12, 4281–9.Google ScholarPubMed
Choi, E. J., Hong, M. P., Kyoo, S. Y., et al. (2003). ATP modulation of sodium currents in rat dorsal root ganglion neurons. Brain Research, 968, 15–25.CrossRefGoogle Scholar
Cota, G. and Armstrong, C. M. (1989). Sodium channel gating in clonal pituitary cells. The inactivation step is not voltage dependent. Journal of General Physiology, 94, 213–32.CrossRefGoogle Scholar
Cummins, T. R., Aglieco, F., Renganathan, M., et al. (2001). NaV1.3 sodium channels: rapid repriming and slow closed-state inactivation display quantitative differences after expression in a mammalian cell line and in spinal sensory neurons. Journal of Neuroscience, 21, 5952–61.CrossRefGoogle Scholar
Cummins, T. R., Dib-Hajj, S. D., Black, J. A., et al. (1999). A novel persistent tetrodotoxin-resistant sodium current in SNS-null and wild-type small primary sensory neurons. Journal of Neuroscience, 19, RC43.CrossRefGoogle ScholarPubMed
Cummins, T. R., Howe, J. R., and Waxman, S. G. (1998). Slow closed-state inactivation: a novel mechanism underlying ramp currents in cells expressing the hNE/PN1 sodium channel. Journal of Neuroscience, 18, 9607–19.Google Scholar
Dallos, P. (1985). Membrane potential and response changes in mammalian cochlear hair cells during intracellular recording. Journal of Neuroscience, 5, 1609–15.CrossRefGoogle ScholarPubMed
Dallos, P., Santos-Sacchi, J., and Flock, A. (1982). Intracellular recordings from cochlear outer hair cells. Science, 218, 582–4.CrossRefGoogle ScholarPubMed
Desai, S. S., Ali, H., and Lysakowski, A. (2005a). Comparative morphology of rodent vestibular periphery. II. Cristae ampullares. Journal of Neurophysiology, 93, 267–80.CrossRefGoogle Scholar
Desai, S. S. and Lysakowski, A. (2005b). Comparative morphology of rodent vestibular periphery. I. Saccular and utricular maculae. Journal of Neurophysiology, 93, 251–66.CrossRefGoogle Scholar
Desmadryl, G. and Sans, A. (1990). Afferent innervation patterns in crista ampullaris of the mouse during ontogenesis. Brain Research., Developmental Brain Research, 52, 183–9.CrossRefGoogle ScholarPubMed
Dib-Hajj, S. D., Tyrrell, L., Black, J. A., and Waxman, S. G. (1998). NaN, a novel voltage-gated Na channel, is expressed preferentially in peripheral sensory neurons and down-regulated after axotomy. Proceedings of the National Academy of Sciences USA, 95, 8963–8.CrossRefGoogle ScholarPubMed
Dietrich, P. S., McGivern, J. G., Delgado, S. G., et al. (1998). Functional analysis of a voltage-gated sodium channel and its splice variant from rat dorsal root ganglia. Journal of Neurochemistry, 70, 2262–72.CrossRefGoogle ScholarPubMed
DiFrancesco, D., Ferroni, A., Visentin, S., and Zaza, A. (1985). Cadmium-induced blockade of the cardiac fast Na channels in calf Purkinje fibres. Proceedings of the Royal Society of London B: Biological Sciences, 223, 475–84.CrossRefGoogle ScholarPubMed
Don, D. M., Newman, A. N., Micevych, P. E., and Popper, P. (1997). Expression of brain-derived neurotrophic factor and its receptor mRNA in the vestibuloauditory system of the bullfrog. Hearing Research, 114, 10–20.CrossRefGoogle ScholarPubMed
Eatock, R. A. and Hurley, K. M. (2003). Functional development of hair cells. In. Romand, R. and Varela-Nieto, I., eds., Development of the Auditory and Vestibular Systems 3: Molecular Development of the Inner Ear. San Diego: Academic Press, pp. 389–448.Google Scholar
El Sherif, Y., Wieraszko, A., Banerjee, P., and Penington, N. J. (2001). ATP modulates Na+ channel gating and induces a non-selective cation current in a neuronal hippocampal cell line. Brain Research, 904, 307–17.CrossRefGoogle Scholar
Engel, J., Michna, M., Platzer, J., and Striessnig, J. (2002). Calcium channels in mouse hair cells: function, properties and pharmacology. Advances in Otorhinolaryngology, 59, 35–41.Google ScholarPubMed
Ernfors, P., Lee, K. F., and Jaenisch, R. (1994). Mice lacking brain-derived neurotrophic factor develop with sensory deficits. Nature, 368, 147–50.CrossRefGoogle ScholarPubMed
Escayg, A., MacDonald, B. T., Meisler, M. H., et al. (2000). Mutations of SCN1 A, encoding a neuronal sodium channel, in two families with GEFS + 2. Nature Genetics, 24, 343–5.CrossRefGoogle Scholar
Evans, M. G. and Fuchs, P. A. (1987). Tetrodotoxin-sensitive, voltage-dependent sodium currents in hair cells for the alligator cochlea. Biophysical Journal, 52, 649–52.CrossRefGoogle ScholarPubMed
Fahmi, A. I., Patel, M., Stevens, E. B., et al. (2001). The sodium channel β-subunit SCN3b modulates the kinetics of SCN5a and is expressed heterogeneously in sheep heart. Journal of Physiology, 537, 693–700.CrossRefGoogle ScholarPubMed
Favre, I., Moczydlowski, E., and Schild, L. (1995). Specificity for block by saxitoxin and divalent cations at a residue which determines sensitivity of sodium channel subtypes to guanidinium toxins. Journal of General Physiology, 106, 203–29.CrossRefGoogle Scholar
Fettiplace, R. and Fuchs, P. A. (1999). Mechanisms of hair cell tuning. Annual Review of Physiology, 61, 809–34.CrossRefGoogle ScholarPubMed
Frelin, C., Cognard, C., Vigne, P., and Lazdunski, M. (1986). Tetrodotoxin-sensitive and tetrodotoxin-resistant Na+ channels differ in their sensitivity to Cd2 + and Zn2 +. European Journal of Pharmacology, 122, 245–50.CrossRefGoogle ScholarPubMed
Géléoc, G. S. G., Risner, J. R., and Holt, J. R. (2004). Developmental acquisition of voltage-dependent conductances and sensory signalling in hair cells of the embryonic mouse inner ear. Journal of Neuroscience, 24, 11148–59.CrossRefGoogle Scholar
Goldberg, J. M. (1991). The vestibular end organs: morphological and physiological diversity of afferents. Current Opinion in Neurobiology, 1, 229–35.CrossRefGoogle ScholarPubMed
Goldberg, J. M., Desmadryl, G., Baird, R. A., and Fernández, C. (1990). The vestibular nerve of the chinchilla. V. Relation between afferent discharge properties and peripheral innervation patterns in the utricular macula. Journal of Neurophysiology, 63, 791–804.CrossRefGoogle Scholar
Goldin, A. L., Barchi, R. L., Caldwell, J. H., et al. (2000). Nomenclature of voltage-gated sodium channels. Neuron, 28, 365–8.CrossRefGoogle ScholarPubMed
Gonoi, T. and Hille, B. (1987). Gating of Na channels. Inactivation modifiers discriminate among models. Journal of General Physiology, 89, 253–74.CrossRefGoogle ScholarPubMed
Gu, X. Q., Dib-Hajj, S., Rizzo, M. A., and Waxman, S. G. (1997). TTX-sensitive and – resistant Na+ currents, and mRNA for the TTX-resistant rH1 channel, are expressed in B104 neuroblastoma cells. Journal of Neurophysiology, 77, 236–46.CrossRefGoogle ScholarPubMed
Hartshorne, R. P. and Catterall, W. A. (1984). The sodium channel from rat brain. Purification and subunit composition. Journal of Biological Chemistry, 259, 1667–75.Google ScholarPubMed
Herzog, R. I., Liu, C., Waxman, S. G., and Cummins, T. R. (2003). Calmodulin binds to the C terminus of sodium channels NaV1.4 and NaV1.6 and differentially modulates their functional properties. Journal of Neuroscience, 23, 8261–70.CrossRefGoogle Scholar
Hille, B. (2001). Ion Channels of Excitable Membranes. Sunderland: Sinauer Associates, Inc.Google Scholar
Hodgkin, A. L. and Huxley, A. F. (1952). The components of membrane conductance in the giant axon of Loligo. Journal of Physiology, 116, 473–96.CrossRefGoogle ScholarPubMed
Holt, J. R., Corey, D. P., and Eatock, R. A. (1997). Mechanoelectrical transduction and adaptation in hair cells of the mouse utricle, a low-frequency vestibular organ. Journal of Neuroscience, 17, 8739–48.CrossRefGoogle ScholarPubMed
Holton, T. and Weiss, T. F. (1983). Receptor potentials of lizard cochlear hair cells with free-standing stereocilia in response to tones. Journal of Physiology, 345, 205–40.CrossRefGoogle ScholarPubMed
Horn, R. and Marty, A. (1988). Muscarinic activation of ionic currents measured by a new whole-cell recording method. Journal of General Physiology, 92, 145–59.CrossRefGoogle ScholarPubMed
Hudspeth, A. J. and Lewis, R. S. (1988). Kinetic analysis of voltage- and ion-dependent conductances in saccular hair cells of the bull-frog, Rana catesbeiana. Journal of Physiology, 400, 237–74.CrossRefGoogle ScholarPubMed
Hurley, K. M., Gaboyard, S., Zhong, M., et al. (2006). M-like K+ currents in type I hair cells and calyx afferent endings of the developing rat utricle. Journal of Neuroscience, 26, 10253–69.CrossRefGoogle ScholarPubMed
Isom, L. L. (2002). β subunits: players in neuronal hyperexcitability?Novartis Foundation Symposium, 241, 124–38.Google ScholarPubMed
Isom, L. L., Jongh, K. S., Patton, D. E., et al. (1992). Primary structure and functional expression of the β1 subunit of the rat brain sodium channel. Science, 256, 839–42.CrossRefGoogle Scholar
Krafte, D. S., Volberg, W. A., Dillon, K., and Ezrin, A. M. (1991). Expression of cardiac Na channels with appropriate physiological and pharmacological properties in Xenopus oocytes. Proceedings of the National Academy of Sciences USA, 88, 4071–4.CrossRefGoogle ScholarPubMed
Kros, C. J., Ruppersberg, J. P., and Rüsch, A. (1998). Expression of a potassium current in inner hair cells during development of hearing in mice. Nature, 394, 281–4.CrossRefGoogle ScholarPubMed
Kuo, C. C., Lin, T. J., and Hsieh, C. P. (2002). Effect of Na+ flow on Cd2 + block of tetrodotoxin-resistant Na+ channels. Journal of General Physiology, 120, 159–72.CrossRefGoogle Scholar
Lelli, A., Perin, P., Martini, M., et al. (2003). Presynaptic calcium stores modulate afferent release in vestibular hair cells. Journal of Neuroscience, 23, 6894–903.CrossRefGoogle ScholarPubMed
Lennan, G. W. T., Steinacker, A., and Lehouelleur, J. (1999). Ionic currents and current-clamp depolarisations of type I and type II hair cells from the developing rat utricle. Pflügers Archiv, 438, 40–6.CrossRefGoogle ScholarPubMed
Leonard, R. B. and Kevetter, G. A. (2002). Molecular probes of the vestibular nerve. I. Peripheral termination patterns of calretinin, calbindin and peripherin containing fibers. Brain Research, 928, 8–17.CrossRefGoogle ScholarPubMed
Lewis, R. S. and Hudspeth, A. J. (1983). Voltage- and ion-dependent conductances in solitary vertebrate hair cells. Nature, 304, 538–41.CrossRefGoogle ScholarPubMed
Lindeman, H. H. (1973). Anatomy of the otolith organs. Advances in Otorhinolaryngology, 20, 405–33.Google ScholarPubMed
Lossin, C., Rhodes, T. H., Desai, R. R., et al. (2003). Epilepsy-associated dysfunction in the voltage-gated neuronal sodium channel SCN1 A. Journal of Neuroscience, 23, 11289–95.CrossRefGoogle Scholar
Magistretti, J. and Alonso, A. (1999). Biophysical properties and slow voltage-dependent inactivation of a sustained sodium current in entorhinal cortex layer-II principal neurons: a whole-cell and single-channel study. Journal of General Physiology, 114, 491–509.CrossRefGoogle ScholarPubMed
Maier, S. K. G., Westenbroek, R. E., McCormick, K. A., et al. (2004). Distinct subcellular localization of different sodium channel α and β subunits in single ventricular myocytes from mouse heart. Circulation, 109, 1421–7.CrossRefGoogle ScholarPubMed
Malhotra, J. D., Chen, C., Rivolta, I., et al. (2001). Characterization of sodium channel α- and β-subunits in rat and mouse cardiac myocytes. Circulation, 103, 1303–10.CrossRefGoogle Scholar
Marcotti, W., Géléoc, G. S. G., Lennan, G. W. T., and Kros, C. J. (1999). Transient expression of an inwardly rectifying potassium conductance in developing inner and outer hair cells along the mouse cochlea. Pflügers Archiv, 439, 113–22.CrossRefGoogle ScholarPubMed
Marcotti, W., Johnson, S. L., Holley, M. C., and Kros, C. J. (2003a). Developmental changes in the expression of potassium currents of embryonic, neonatal and mature mouse inner hair cells. Journal of Physiology, 548, 383–400.CrossRefGoogle Scholar
Marcotti, W., Johnson, S. L., Rüsch, A., and Kros, C. J. (2003b). Sodium and calcium currents shape action potentials in immature mouse inner hair cells. Journal of Physiology, 552, 743–61.CrossRefGoogle Scholar
Masetto, S., Bosica, M., Correia, M. J., et al. (2003). Na+ currents in vestibular type I and type II hair cells of the embryo and adult chicken. Journal of Neurophysiology, 90, 1266–78.CrossRefGoogle ScholarPubMed
McCormick, K. A., Isom, L. L., Ragsdale, D., et al. (1998). Molecular determinants of Na+ channel function in the extracellular domain of the β1 subunit. Journal of Biological Chemistry, 273, 3954–62.CrossRefGoogle ScholarPubMed
Meadows, L. S., Chen, Y. H., Powell, A. J., Clare, J. J., and Ragsdale, D. S. (2002). Functional modulation of human brain NaV1.3 sodium channels, expressed in mammalian cells, by auxiliary β1, β2 and β3 subunits. Neuroscience, 114, 745–53.CrossRefGoogle Scholar
Mechaly, I., Scamps, F., Chabbert, C., Sans, A., and Valmier, J. (2005). Molecular diversity of voltage-gated sodium channel alpha subunits expressed in neuronal and non-neuronal excitable cells. Neuroscience, 130, 389–96.CrossRefGoogle ScholarPubMed
Moran, O., Picollo, A., and Conti, F. (2003). Tonic and phasic guanidinium toxin-block of skeletal muscle Na channels expressed in mammalian cells. Biophysical Journal, 84, 2999–3006.CrossRefGoogle ScholarPubMed
Napolitano, C., Rivolta, I., and Priori, S. G. (2003). Cardiac sodium channel diseases. Clinical Chemistry and Laboratory Medicine, 41, 439–44.CrossRefGoogle ScholarPubMed
Noda, M., Ikeda, T., Suzuki, H., et al. (1986). Expression of functional sodium channels from cloned cDNA. Nature, 322, 826–8.CrossRefGoogle ScholarPubMed
Ohmori, I., Ouchida, M., Ohtsuka, Y., Oka, E., and Shimizu, K. (2002). Significant correlation of the SCN1 A mutations and severe myoclonic epilepsy in infancy. Biochemical and Biophysical Research Communications, 295, 17–23.CrossRefGoogle Scholar
O'Leary, M. E. (1998). Characterization of the isoform-specific differences in the gating of neuronal and muscle sodium channels. Canadian Journal of Physiology and Pharmacology, 76, 1041–50.CrossRefGoogle ScholarPubMed
Oliver, D., Plinkert, P., Zenner, H. P., and Ruppersberg, J. P. (1997). Sodium current expression during postnatal development of rat outer hair cells. Pflügers Archiv: European Journal of Physiology, 434, 772–8.CrossRefGoogle ScholarPubMed
Parsons, T. D., Lenzi, D., Almers, W., and Roberts, W. M. (1994). Calcium-triggered exocytosis and endocytosis in an isolated presynaptic cell: capacitance measurements in saccular hair cells. Neuron, 13, 875–83.CrossRefGoogle Scholar
Pirvola, U. and Ylikoski, J. (2003). Neurotrophic factors during inner ear development. Current Topics in Developmental Biology, 57, 207–23.CrossRefGoogle ScholarPubMed
Qu, W., Moorhouse, A. J., Rajendra, S., and Barry, P. H. (2000). Very negative potential for half-inactivation of, and effects of anions on, voltage-dependent sodium currents in acutely isolated rat olfactory receptor neurons. Journal of Membrane Biology, 175, 123–38.CrossRefGoogle ScholarPubMed
Rabert, D. K., Koch, B. D., Ilnicka, M., et al. (1998). A tetrodotoxin-resistant voltage-gated sodium channel from human dorsal root ganglia, hPN3/SCN10 A. Pain, 78, 107–14.CrossRefGoogle Scholar
Renganathan, M., Dib-Hajj, S., and Waxman, S. G. (2002). NaV1.5 underlies the ‘third TTX-R sodium current’ in rat small DRG neurons. Brain Research. Molecular Brain Research, 106, 70–82.CrossRefGoogle Scholar
Roberts, R. H. and Barchi, R. L. (1987). The voltage-sensitive sodium channel from rabbit skeletal muscle. Chemical characterization of subunits. Journal of Biological Chemistry, 262, 2298–303.Google ScholarPubMed
Roberts, W. M., Jacobs, R. A., and Hudspeth, A. J. (1990). Colocalization of ion channels involved in frequency selectivity and synaptic transmission at presynaptic active zones of hair cells. Journal of Neuroscience, 10, 3664–84.CrossRefGoogle ScholarPubMed
Roberts, W. M., Jacobs, R. A., and Hudspeth, A. J. (1991). The hair cell as a presynaptic terminal. Annals of the New York Academy of Sciences, 635, 221–33.CrossRefGoogle ScholarPubMed
Roy, M. L. and Narahashi, T. (1992). Differential properties of tetrodotoxin-sensitive and tetrodotoxin-resistant sodium channels in rat dorsal root ganglion neurons. Journal of Neuroscience, 12, 2104–111.CrossRefGoogle ScholarPubMed
Rubel, E. W. and Fritzsch, B. (2002). Auditory system development: primary auditory neurons and their targets. Annual Review of Neuroscience, 25, 51–101.CrossRefGoogle ScholarPubMed
Ruben, R. J. (1967). Development of the inner ear of the mouse: a radioautographic study of terminal mitoses. Acta Otolaryngologica. Supplementum, 220, 1–31.Google Scholar
Rübsamen, R. and Lippe, W. R. (1998). The development of cochlear function. In Rubel, E. W., Popper, A. N., and Fay, R. R., eds., Development of the Auditory System. New York: Springer-Verlag, pp. 193–270.CrossRefGoogle Scholar
Rugiero, F., Mistry, M., Sage, D., et al. (2003). Selective expression of a persistent tetrodotoxin-resistant Na+ current and NaV1.9 subunit in myenteric sensory neurons. Journal of Neuroscience, 23, 2715–25.CrossRefGoogle ScholarPubMed
Rüsch, A. and Eatock, R. A. (1996). A delayed rectifier conductance in type I hair cells of the mouse utricle. Journal of Neurophysiology, 76, 995–1004.CrossRefGoogle ScholarPubMed
Rüsch, A. and Eatock, R. A. (1997). Sodium currents in hair cells of the mouse utricle. In Lewis, E. R., Long, G. R., Lyon, R. F., Steele, C. R., Narins, P. M., and Hecht-Poinar, E., eds., Diversity in Auditory Mechanics. Singapore: World Scientific Press, pp. 549–55.CrossRefGoogle Scholar
Rüsch, A., Lysakowski, A., and Eatock, R. A. (1998). Postnatal development of type I and type II hair cells in the mouse utricle: acquisition of voltage-gated conductances and differentiated morphology. Journal of Neuroscience, 18, 7487–501.CrossRefGoogle ScholarPubMed
Russell, I. J. and Kossl, M. (1991). The voltage responses of hair cells in the basal turn of the guinea-pig cochlea. Journal of Physiology, 435, 493–511.CrossRefGoogle ScholarPubMed
Russell, I. J. and Sellick, P. M. (1983). Low-frequency characteristics of intracellularly recorded receptor potentials in guinea-pig cochlear hair cells. Journal of Physiology, 338, 179–206.CrossRefGoogle ScholarPubMed
Sangameswaran, L., Delgado, S. G., Fish, L. M., et al. (1996). Structure and function of a novel voltage-gated, tetrodotoxin-resistant sodium channel specific to sensory neurons. Journal of Biological Chemistry, 271, 5953–6.CrossRefGoogle ScholarPubMed
Sangameswaran, L., Fish, L. M., Koch, B. D., et al. (1997). A novel tetrodotoxin-sensitive, voltage-gated sodium channel expressed in rat and human dorsal root ganglia. Journal of Biological Chemistry, 272, 14805–9.CrossRefGoogle ScholarPubMed
Sans, A. and Chat, M. (1982). Analysis of temporal and spatial patterns of rat vestibular hair cell differentiation by tritiated thymidine radioautography. Journal of Comparative Neurology, 206, 1–8.CrossRefGoogle ScholarPubMed
Satin, J., Kyle, J. W., Chen, M., et al. (1992). A mutant of TTX-resistant cardiac sodium channels with TTX-sensitive properties. Science, 256, 1202–5.CrossRefGoogle ScholarPubMed
Sheets, M. F. and Hanck, D. A. (1992). Mechanisms of extracellular divalent and trivalent cation block of the sodium current in canine cardiac Purkinje cells. Journal of Physiology, 454, 299–320.CrossRefGoogle ScholarPubMed
Sheets, M. F. and Hanck, D. A. (1999). Gating of skeletal and cardiac muscle sodium channels in mammalian cells. Journal of Physiology, 514, 425–36.CrossRefGoogle ScholarPubMed
Sivilotti, L., Okuse, K., Akopian, A. N., Moss, S., and Wood, J. N. (1997). A single serine residue confers tetrodotoxin insensitivity on the rat sensory-neuron-specific sodium channel SNS. FEBS Letters, 409, 49–52.CrossRefGoogle ScholarPubMed
Smith, M. R., Smith, R. D., Plummer, N. W., Meisler, M. H., and Goldin, A. L. (1998). Functional analysis of the mouse Scn8a sodium channel. Journal of Neuroscience, 18, 6093–102.CrossRefGoogle ScholarPubMed
Smith, R. D. and Goldin, A. L. (1998). Functional analysis of the rat I sodium channel in xenopus oocytes. Journal of Neuroscience, 18, 811–20.CrossRefGoogle ScholarPubMed
Sobkowicz, H. M., Rose, J. E., Scott, G. E., and Slapnick, S. M. (1982). Ribbon synapses in the developing intact and cultured organ of Corti in the mouse. Journal of Neuroscience, 2, 942–57.CrossRefGoogle ScholarPubMed
Sobkowicz, H. M., Rose, J. E., Scott, G. L., and Levenick, C. V. (1986). Distribution of synaptic ribbons in the developing organ of Corti. Journal of Neurocytology, 15, 693–714.CrossRefGoogle ScholarPubMed
Sokolowski, B. H., Stahl, L. M., and Fuchs, P. A. (1993). Morphological and physiological development of vestibular hair cells in the organ-cultured otocyst of the chick. Developmental Biology, 155, 134–46.CrossRefGoogle ScholarPubMed
Stühmer, W., Methfessel, C., Sakmann, B., Noda, M., and Numa, S. (1987). Patch clamp characterization of sodium channels expressed from rat brain cDNA. European Biophysics Journal, 14, 131–8.CrossRefGoogle ScholarPubMed
Sugihara, I. and Furukawa, T. (1989). Morphological and functional aspects of two different types of hair cells in the goldfish sacculus. Journal of Neurophysiology, 62(6), 1330–43.CrossRefGoogle ScholarPubMed
Tyrrell, L., Renganathan, M., Dib-Hajj, S. D., and Waxman, S. G. (2001). Glycosylation alters steady-state inactivation of sodium channel NaV1.9/NaN in dorsal root ganglion neurons and is developmentally regulated. Journal of Neuroscience, 21, 9629–37.CrossRefGoogle ScholarPubMed
White, J. A., Alonso, A., and Kay, A. R. (1993). A heart-like Na+ current in the medial entorhinal cortex. Neuron, 11, 1037–47.CrossRefGoogle ScholarPubMed
Witt, C. M., Hu, H. -Y., Brownell, W. E., and Bertrand, D. (1994). Physiologically silent sodium channels in mammalian outer hair cells. Journal of Neurophysiology, 72, 1037–40.CrossRefGoogle ScholarPubMed
Wooltorton, J. R. A., Gaboyard, S., Hurley, K. M., et al. (2007). Developmental changes in two voltage-dependent sodium currents in utricular hair cells. Journal of Neurophysiology, 97, 1684–1704.CrossRefGoogle ScholarPubMed
Yamamoto, Y., Fukuta, H., and Suzuki, H. (1993). Blockade of sodium channels by divalent cations in rat gastric smooth muscle. Japanese Journal of Physiology, 43, 785–96.CrossRefGoogle ScholarPubMed
Yoshida, S. (1994). Tetrodotoxin-resistant sodium channels. Cellular and Molecular Neurobiology, 14, 227–44.CrossRefGoogle ScholarPubMed
Yu, F. H., Westenbroek, R. E., Silos-Santiago, I., et al. (2003). Sodium channel β4, a new disulfide-linked auxiliary subunit with similarity to β2. Journal of Neuroscience, 23, 7577–85.CrossRefGoogle ScholarPubMed
Zidanic, M. and Fuchs, P. A. (1995). Kinetic analysis of barium currents in chick cochlear hair cells. Biophysical Journal, 68, 1323–36.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Voltage-dependent sodium currents in hair cells of the inner ear
    • By Julian R. A. Wooltorton, Department of Clinical Studies at New Bolton Center School of Veterinary Medicine 382 West Street Road Kennett Square, PA 19348, Karen M. Hurley, Department of Clinical Studies at New Bolton Center School of Veterinary Medicine 382 West Street Road Kennett Square, PA 19348, Hong Bao, Section of Neurobiology, College of Natural Sciences The University of Texas at Austin Austin, TX 78712, Ruth A. Eatock, Eaton-Peabody Laboratory Department of Otology and Laryngology Harvard Medical School Boston, MA 02114
  • Edited by James R. Pomerantz, Rice University, Houston
  • Book: Topics in Integrative Neuroscience
  • Online publication: 08 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541681.020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Voltage-dependent sodium currents in hair cells of the inner ear
    • By Julian R. A. Wooltorton, Department of Clinical Studies at New Bolton Center School of Veterinary Medicine 382 West Street Road Kennett Square, PA 19348, Karen M. Hurley, Department of Clinical Studies at New Bolton Center School of Veterinary Medicine 382 West Street Road Kennett Square, PA 19348, Hong Bao, Section of Neurobiology, College of Natural Sciences The University of Texas at Austin Austin, TX 78712, Ruth A. Eatock, Eaton-Peabody Laboratory Department of Otology and Laryngology Harvard Medical School Boston, MA 02114
  • Edited by James R. Pomerantz, Rice University, Houston
  • Book: Topics in Integrative Neuroscience
  • Online publication: 08 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541681.020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Voltage-dependent sodium currents in hair cells of the inner ear
    • By Julian R. A. Wooltorton, Department of Clinical Studies at New Bolton Center School of Veterinary Medicine 382 West Street Road Kennett Square, PA 19348, Karen M. Hurley, Department of Clinical Studies at New Bolton Center School of Veterinary Medicine 382 West Street Road Kennett Square, PA 19348, Hong Bao, Section of Neurobiology, College of Natural Sciences The University of Texas at Austin Austin, TX 78712, Ruth A. Eatock, Eaton-Peabody Laboratory Department of Otology and Laryngology Harvard Medical School Boston, MA 02114
  • Edited by James R. Pomerantz, Rice University, Houston
  • Book: Topics in Integrative Neuroscience
  • Online publication: 08 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541681.020
Available formats
×