Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-16T13:29:04.602Z Has data issue: false hasContentIssue false

1 - Tunable Micro-optics

from Part I - Introduction

Published online by Cambridge University Press:  05 December 2015

Hans Zappe
Affiliation:
University of Freiburg, Germany
Hans Zappe
Affiliation:
Albert-Ludwigs-Universität Freiburg, Germany
Claudia Duppé
Affiliation:
Albert-Ludwigs-Universität Freiburg, Germany
Get access

Summary

Introduction

When considering the structures, fabrication techniques or functionality of miniaturized optics, we see that size does matter. Compared with macroscopic optics, micro-optics is generally manufactured employing different technologies, using different materials, and often relying on entirely different optical effects (Zappe 2012). An upshot of these differences is that micro-optical components and systems may often display functionalities not possible with classical, macroscopic optics. One such functionality is intrinsic tunability, and it is tunable micro-optics that is the subject of this book.

Whereas a macroscopic optical system is usually tuned by a mechanical displacement of components, in micro-optics tunability may often be realized by a controlled change in an intrinsic property of the component itself. Thus the deformation of a soft polymer surface; the change in surface tension of a liquid; or the swelling of surface layers are all mechanisms that may be employed to tune the optical characteristics of micro-optical devices (Friese et al. 2007). The very rich portfolio of effects and materials of which we may take advantage to accomplish tunability is one reason for the broad spectrum of activities in this dynamic discipline.

In this introductory overview chapter, we provide a survey of the current state-of-the art in tunable micro-optics. Using the established knowledge base in micro-optics as a point of departure (Herzig 1998, Sinziger & Jahns 2003, Zappe 2010), we will look at those micro-optical components whose optical characteristics may be tuned using novel mechanisms inapplicable to macroscopic optics.We have organized the following sections by device, allowing for different tuning mechanisms, and will consider tunable lenses; apertures and irises; filters; and diffractive optics. The chapters which follow will address many of the concepts and devices we present here in greater depth.

Microlenses

Microlenses are likely to be the optical components most researched and developed with regard to intrinsic variability (Krogmann et al. 2007, Levy & Shamai 2008, Nguyen 2010, Zeng & Jiang 2013). A wide variety of novel actuation mechanisms for tuning the focal length of microlenses is available, due in large part to the fact that unconventional materials, such as fluids and soft matter structures, may be used to fabricate lenses on the microscale. Since these are generally not useful for manufacturing macroscopic lenses, many of the tuning techniques we will consider are thus usually unique to microlenses.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agarwal, M., Gunasekaran, R., Coane, P. & Varahramyan, K. (2004), ‘Polymer-based variable focal length microlens system’, Journal of Micromechanics and Microengineering 14, 1665–1673.CrossRefGoogle Scholar
Aschwanden, M., Beck, M. & Stemmer, A. (2007), ‘Diffractive transmission grating tuned by dielectric elastomer actuator’, IEEE Photonics Technology Letters 19(14), 1090–1092.CrossRefGoogle Scholar
Aschwanden, M. & Stemmer, A. (2006), ‘Polymeric, electrically tunable diffraction grating based on artificial muscles’, Optics Letters 31(17), 2610–2612.CrossRefGoogle ScholarPubMed
Berge, B. (1993), ‘Électrocapillarité et mouillage de films isolants par l'eau’, Comptes rendus de l'Académie des sciences 317(2), 157–163.Google Scholar
Berge, B. (2005), ‘No moving parts, liquid lens capability realization soon for mass production’, Nikkei Electronics October 24, 129–135.Google Scholar
Berge, B. & Peseux, J. (2000), ‘Variable focal lens controlled by an external voltage: an application of electrowetting’, The European Physical Journal E 3, 159–163.CrossRefGoogle Scholar
Blum, M., Büeler, M., Grätzel, C. & Aschwanden, M. (2011), ‘Compact optical design solutions using focus tunable lenses’, Proceedings of SPIE - Optical Design and Engineering IV 8167, 81670W.CrossRefGoogle Scholar
Carpi, F., Frediani, G., Turco, S. & Rossi, D. D. (2011), ‘Bioinspired tunable lens with muscle-like electroactive elastomers’, Advanced Functional Materials 21(21), 4152–4158.Google Scholar
Chang, J.-H., Jung, K.-D., Lee, E., Choi, M., Lee, S. & Kim, W. (2012), ‘Varifocal liquid lens based on microelectrofluidic technology’, Optics Letters 37(21), 4377–4379.CrossRefGoogle ScholarPubMed
Chang, J.-H., Jung, K.-D., Lee, E., Choi, M., Lee, S. & Kim, W. (2013), ‘Variable aperture controlled by microelectrofluidic iris’, Optics Letters 38(15), 2919.CrossRefGoogle ScholarPubMed
Chang, Y., Mohseni, K. & Bright, V. (2007), ‘Fabrication of tapered SU-8 structure and effect of sidewall angle for a variable focus microlens using EWOD’, Sensors & Actuators: A 136, 546–553.Google Scholar
Chen, Q., Wu, W., Yan, G., Wang, Z. & Hao, Y. (2008a), ‘Novel multifunctional device for optical power splitting, switching, and a attenuating’, IEEE Photonics Technology Letters 20(5-8), 632–634.CrossRefGoogle Scholar
Chen, Q., Wu, W., Yan, G., Wang, Z. & Hao, Y. (2008b), ‘Optical design and performance of a novel multifunction optical device’, Microwave and Optical Technology Letters 50(8), 2185–2189.CrossRefGoogle Scholar
Cheng, C., Chang, C., Liu, C. & Yeh, J. (2006a), ‘A tunable liquid-crystal microlens with hybrid alignment’, Journal of Optics A 8, S365–369.CrossRefGoogle Scholar
Cheng, C., Chang, C. & Yeh, J. (2006b), ‘Variable focus dielectric liquid droplet lens’, Optics Express 14(9), 4101–4106.CrossRefGoogle ScholarPubMed
Cheng, C. & Yeh, J. (2007), ‘Dielectrically actuated liquid lens’, Optics Express 15(12), 7140–7145.CrossRefGoogle ScholarPubMed
Choi, H.-Y., Han, W. & Cho, Y.-H. (2010), ‘Low-power high-speed electromagnetic flapping shutters using trapezoidal shutter blades suspended by H-type torsional springs’, IEEE Journal of Microelectromechanical Systems 19(6), 1422–1429.CrossRefGoogle Scholar
Choi, J.-M., Son, H.-M. & Lee, Y.-J. (2009), ‘Biomimetic variable-focus lens system controlled by winding-type SMA actuator’, Optics Express 17(10), 8152–8164.CrossRefGoogle ScholarPubMed
Choi, M., Lee, S., Chang, J.-H., Lee, E., Jung, K.-D. & Kim, W. (2013), ‘Adaptive optical probe design for optical coherence tomography and microscopy using tunable optics’, Optics Express 21(2), 1567–1573.CrossRefGoogle ScholarPubMed
Choi, S. T., Lee, J. Y., Kwon, J. O., Lee, S. & Kim, W. (2011), ‘Varifocal liquid-filled microlens operated by an electroactive polymer actuator’, Optics Letters 36(10), 1920–1922.CrossRefGoogle ScholarPubMed
Choi, S. T., Son, B. S., Seo, G. W., Park, S.-Y. & Lee, K.-S. (2014), ‘Opto-mechanical analysis of nonlinear elastomer membrane deformation under hydraulic pressure for variable-focus liquid-filled microlenses’, Optics Express 22(5), 6133–6146.
Chronis, N., Liu, G. L., Jeong, K.-H. & Lee, L. P. (2003), ‘Tunable liquid-filled microlens array integrated with microfluidic network’, Optics Express 11(19), 2370–2378.CrossRefGoogle ScholarPubMed
Cu-Nguyen, P.-H., Grewe, A., Hillenbrand, M., Sinzinger, S., Seifert, A. & Zappe, H. (2013), ‘Tunable hyperchromatic lens system for confocal hyperspectral sensing’, Optics Express 21(23), 27611–27621.CrossRefGoogle ScholarPubMed
Deutschmann, T. & Oesterschulze, E. (2013), ‘Micro-structured electrochromic device based on poly(3,4-ethylenedioxythiophene)’, Journal of Micromechanics and Microengineering 23, 065032 (6pp).CrossRefGoogle Scholar
Domash, L., Wu, M., Nemchuk, N. & Ma, E. (2004), ‘Tunable and switchable multiple-cavity thin film filters’, IEEE Journal of Lightwave Technology 22(1), 126–135.CrossRefGoogle Scholar
Dong, L., Agarwal, A., Beebe, D. & Jiang, H. (2007), ‘Variable-focus liquid microlenses and microlens arrays actuated by thermoresponsive hydrogels’, Advanced Materials 19, 401–405.CrossRefGoogle Scholar
Dong, L., Agarwal, A. K., Beebe, D. J. & Jiang, H. (2006), ‘Adaptive liquid microlenses activated by stimuli-responsive hydrogels’, Nature 442, 551–554.CrossRefGoogle ScholarPubMed
Dong, L. & Jiang, H. (2006), ‘pH-adaptive microlenses using pinned liquid-liquid interfaces actuated by pH-responsive hydrogel’, Applied Physics Letters 89, 211120.CrossRefGoogle Scholar
Draheim, J., Burger, T., Korvink, J. G. & Wallrabe, U. (2011), ‘Variable aperture stop based on the design of a single chamber silicone membrane lens with integrated actuation’, Optics Letters 36(11), 2032–2034.CrossRefGoogle ScholarPubMed
Draheim, J., Schneider, F., Kamberger, R., Mueller, C. & Wallrabe, U. (2009), ‘Fabrication of a fluidic membrane lens system’, Journal of Micromechanics and Microengineering 19, 095013 (7pp).CrossRefGoogle Scholar
Fan, Y., Ren, H., Liang, X., Wang, H. & Wu, S. (2005), ‘Liquid crystal microlens arrays with switchable positive and negative focal lengths’, IEEE/OSA Journal of Display Technology 1(1), 151–156.CrossRefGoogle Scholar
Fei, P., He, Z., Zheng, C., Chen, T., Men, Y. & Huang, Y. (2011), ‘Discretely tunable optofluidic compound microlenses’, Lab Chip 11(17), 2835–2841.CrossRefGoogle ScholarPubMed
Friese, C., Werber, A., Krogmann, F., Mönch, W. & Zappe, H. (2007), ‘Materials, effects and components for tunable micro-optics’, IEEJ Transactions on Electrical and Electronic Engineering 2(3), 232–248.CrossRefGoogle Scholar
Gascoyne, P., Vykoukal, J., Schwartz, J., Anderson, T., Vykoukal, D., Current, K., McConaghy, C., Becker, F. & Andrews, C. (2004), ‘Dielectrophoresis-based programmable fluidic processors’, Lab on a Chip 4, 299–309.CrossRefGoogle ScholarPubMed
Ghisleri, C., Potenza, M. A. C., Ravagnan, L., Bellacicca, A. & Milani, P. (2014), ‘A simple scanning spectrometer based on a stretchable elastomeric reflective grating’, Applied Physics Letters 104(6), 061910.CrossRefGoogle Scholar
Hayes, R. & Feenstra, B. (2003), ‘Video-speed electronic paper based on electrowetting’, Nature 425, 383–385.CrossRefGoogle ScholarPubMed
Hendriks, B. & Kuiper, S. (2004), ‘Through a lens sharply’, IEEE Spectrum December, 32–36.Google Scholar
Herzig, H., ed. (1998), Micro-optics, Taylor & Francis, London.
Hohlfeld, D., Epmeier, M. & Zappe, H. (2003), ‘A thermally tunable, silicon-based optical filter’, Sensors & Actuators A 103, 93–99.CrossRefGoogle Scholar
Hohlfeld, D. & Zappe, H. (2004), ‘An all-dielectric tunable optical filter based on the thermo-optic effect’, Journal of Optics A: Pure and Applied Optics, 6(6), 504–511.CrossRefGoogle Scholar
Hohlfeld, D. & Zappe, H. (2005), ‘Thermally tunable optical thin-film filters with sub-nanometer resolution and 41.7 nm continuous tuning range’, Proceedings of the 2005 IEEE International Conference on Micro Electro Mechanical Systems pp. 100–103.Google Scholar
Hohlfeld, D. & Zappe, H. (2007), ‘Thermal and optical characterization of silicon-based tunable optical thin-film filters’, IEEE Journal of Microelectromechanical Systems 16(3), 500–510.CrossRefGoogle Scholar
Hongbin, Y., Guangya, Z., Siong, C. F. & Feiwen, L. (2008), ‘A variable optical attenuator based on optofluidic technology’, Journal of Micromechanics and Microengineering 18, 115016 (5pp).CrossRefGoogle Scholar
Honma, M., Nose, T. & Sato, S. (1999), ‘Optimization of device parameters for minimizing spherical aberration and astigmatism in liquid crystal microlenses’, Optical Review 6(2), 139–143.CrossRefGoogle Scholar
Honma, M., Nose, T., Yanase, S., Yamaguchi, R. & Sato, S. (2009), ‘Liquid-crystal variable-focus lenses with a spatially-distributed tilt angles’, Optics Express 17(13), 10998– 11006.CrossRefGoogle ScholarPubMed
Hoshino, K. & Shimoyama, I. (2003), ‘Analysis of elastic micro optical components under large deformation’, Journal of Micromechanics and Microengineering 13, 149–154.CrossRefGoogle Scholar
Hung, S., Hsieh, H. & Su, G. (2008), ‘An electro-magnetic micromachined actuator monolithically integrated with a vertical shutter for variable optical attenuation’, Journal of Micromechanics and Microengineering 18, 075003 (8pp).CrossRefGoogle Scholar
Irmer, S., Alex, K., Daleiden, J., Kommallein, I., Oliveira, M., Römer, F., Tarraf, A. & Hillmer, H. (2005), ‘Surface micromachined optical low-cost all-air-gap filters based on stress-optimized Si3N4 layers’, Journal of Micromechanics and Microengineering 15, 867–872.CrossRefGoogle Scholar
Irmer, S., Daleiden, J., Rangelov, V., Prott, C., Romer, F., Strassner, M., Tarraf, A. & Hillmer, H. (2003), ‘Ultralow biased widely continuously tunable Fabry–Pérot filter’, IEEE Photonics Technology Letters 15(3), 434–436.CrossRefGoogle Scholar
Jeong, K.-H., Liu, G. L., Chronis, N. & Lee, L. P. (2004), ‘Tunable microdoublet lens array’, Optics Express 12(11), 2494–2500.CrossRefGoogle ScholarPubMed
Jones, T. B. (2002), ‘On the relationship of dielectrophoresis and electrowetting’, Langmuir 18, 4437–4443.CrossRefGoogle Scholar
Kan, T., Matsumoto, K. & Shimoyama, I. (2010), ‘Tunable gold-coated polymer gratings for surface plasmon resonance coupling and scanning’, Journal of Micromechanics and Microengineering 20(8), 085032.CrossRefGoogle Scholar
Kedzierski, J., Berry, S. & Abedian, B. (2009), ‘New generation of digital microfluidic devices’, IEEE Journal of Microelectromechanical Systems 18(4), 845–851.CrossRefGoogle Scholar
Kim, C.-H., Jung, K.-D. & Kim, W. (2008), ‘A wafer-level micro mechanical global shutter for a micro camera’, Proceedings of the 2009 IEEE International Conference on Micro Electro Mechanical Systems pp. 156–159.Google Scholar
Kimmle, C., Schmittat, U., Doering, C. & Fouckhardt, H. (2011), ‘Compact dynamic microfluidic iris for active optics’, Microelectronic Engineering 88(8), 1772–1774.CrossRefGoogle Scholar
Kinoshita, M., Kobayashi, T., Yagi, M. & Ikeda, T. (2007), ‘Fabrication of liquid crystal microlens arrays using dye-doped polymerizable liquid crystals’, Journal of Photopolymer Science and Technology 20(1), 91–92.CrossRefGoogle Scholar
Knittel, J., Richter, H., Hain, M., Somalingam, S. & Tschudi, T. (2005), ‘Liquid crystal lens for spherical aberration compensation in a Blu-ray disc system’, IEE Proceedings - Science, Measurement and Technology 152(1), 15–18.Google Scholar
Knollman, G., Bellin, J. & Weaver, J. (1971), ‘Variable-focus liquid-filled hydroacoustic lens’, The Journal of the Acoustic Society of America 49(1), 253–261.CrossRefGoogle Scholar
Kollosche, M., Doering, S., Stumpe, J. & Kofod, G. (2011), ‘Voltage-controlled compression for period tuning of optical surface relief gratings’, Optics Letters 36(8), 1389–1391.CrossRefGoogle ScholarPubMed
Krogmann, F., Mönch, W., Werber, A. & Zappe, H. (2007), ‘Tunable micro-fluidic micro-lenses’, in K., Buschow, R., Cahn, M., Flemings, P., Veyssiere, E., Kramer & S., Mahajan, eds., The Encyclopedia of Materials: Science and Technology, Pergamon, Amsterdam.Google Scholar
Krogmann, F., Mönch, W. & Zappe, H. (2006), ‘A MEMS-based variable micro-lens system’, Journal of Optics A: Pure and Applied Optics 8, S330–336.CrossRefGoogle Scholar
Krogmann, F., Mönch, W. & Zappe, H. (2008a), ‘Electrowetting for tunable microoptics’, IEEE Journal of Microelectromechanical Systems 17(6), 1501–1512.CrossRefGoogle Scholar
Krogmann, F., Shaik, R., Lasinger, L., Mönch, W. & Zappe, H. (2008b), ‘Reconfigurable liquid micro-lenses with high positioning accuracy’, Sensors & Actuators A 143(1), 129–135.CrossRefGoogle Scholar
Krupenkin, T., Yang, S. & Mach, P. (2003), ‘Tunable liquid microlens’, Applied Physics Letters 82(3), 316–318.CrossRefGoogle Scholar
Kuiper, S. & Hendriks, B. (2004), ‘Variable-focus liquid lens for miniature cameras’, Applied Physics Letters 85(7), 1128–1130.CrossRefGoogle Scholar
Kuiper, S., Hendriks, B., Renders, C. & van As, M. (2005), ‘Zoom camera based on variable-focus liquid lenses’, Proeceedings of the 2005 IEEE/LEOS Conference on Optical MEMS pp. 3–4.Google Scholar
Lee, C., Hsiao, F., Kobayashi, T., Kobayashi, T., Koh, K. H., Ramana, P. V., Xiang, W., Yang, B., Tan, C. W. & Pinjala, D. (2009), ‘A 1-V operated MEMS variable optical attenuator using piezoelectric PZT thin-film actuators’, IEEE Journal of Selected Topics in Quantum Electronics 15(5), 1529–1536.
Lee, C. & Yeh, J. (2008), ‘Development and evolution of MOEMS technology in variable optical attenuators’, Journal of Micro/Nanolithography, MEMS, and MOEMS 7(2), 021003.Google Scholar
Lee, S. W. & Lee, S. S. (2007), ‘Focal tunable liquid lens integrated with an electromagnetic actuator’, Applied Physics Letters 90(12), 121129.Google Scholar
Levy, U. & Shamai, R. (2008), ‘Tunable optofluidic devices’, Microfluidics and Nanofluidics 4, 97–105.CrossRefGoogle Scholar
Li, L., Liu, C. & Wang, Q.-H. (2013), ‘Electrowetting-based liquid iris’, IEEE Photonics Technology Letters 25(10), 989–991.CrossRefGoogle Scholar
Liebetraut, P., Petsch, S., Liebeskind, J. & Zappe, H. (2013a), ‘Elastomeric lenses with tunable astigmatism’, Light: Science and Applications 2(9), e98.CrossRefGoogle Scholar
Liebetraut, P., Petsch, S. & Zappe, H. (2012), ‘A versatile fabrication process for reaction injection molded elastomeric micro-lenses’, Proceedings of the 2012 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics pp. 176–177.Google Scholar
Liebetraut, P., Waibel, P., Nguyen, P. H. C., Reith, P., Aatz, B. & Zappe, H. (2013b), ‘Optical properties of liquids for fluidic optics’, Applied Optics 52(14), 3203–3215.CrossRefGoogle ScholarPubMed
Lin, H.-C. & Lin, Y.-H. (2012), ‘An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes’, Optics Express 20(3), 2045–2052.Google ScholarPubMed
Lin, Y., Chen, H., Lin, H., Tsou, Y.-S., Hsu, H.-K. & Li, W.-Y. (2010), ‘Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals’, Applied Physics Letters 96, 113505 (3pp).CrossRefGoogle Scholar
Liu, C., Park, J. & Choi, J. (2008), ‘A planar lens based on the electrowetting of two immiscible liquids’, Journal of Micromechanics and Microengineering 18, 035023.CrossRefGoogle Scholar
Lu, Y.-S., Tu, H., Xu, Y. & Jiang, H. (2013), ‘Tunable dielectric liquid lens on flexible substrate’, Applied Physics Letters 103(26), 261113.CrossRefGoogle ScholarPubMed
Mader, D., Waibel, P., Seifert, A. & Zappe, H. (2009), ‘Multichamber tunable liquid microlenses with active aberration correction’, Proceedings of the 2009 IEEE International Conference on Micro Electro Mechanical Systems pp. 991–994.Google Scholar
Mao, X., Waldeisen, J., Juluri, B. & Huang, T. (2007), ‘Hydrodynamically tunable optofluidic cylindrical microlens’, Lab on a Chip 7, 1303–1308.CrossRefGoogle ScholarPubMed
Marxer, C., Griss, P. & de Rooij, N. (1999), ‘A variable optical attenuator based on silicon micromechanics’, Photonics Technology Letters 11(2), 233–235.CrossRefGoogle Scholar
Mikš, A. & Novák, P. (2014), ‘Calculation of a surface shape of a pressure actuated membrane liquid lens’, Optics and Lasers in Engineering 58(C), 60–66.CrossRefGoogle Scholar
Milne, J. S., Dell, J. M., Keating, A. J. & Faraone, L. (2009), ‘Widely tunable MEMS-based Fabry–Perot filter’, IEEE Journal of Microelectromechanical Systems 18(4), 905–913.CrossRefGoogle Scholar
Mönch, W., Dehnert, J., Prucker, O., Rühe, J. & Zappe, H. (2006), ‘Tunable Bragg filters based on polymer swelling’, Applied Optics 45(18), 4284–4290.CrossRefGoogle ScholarPubMed
Müller, P., Feuerstein, R. & Zappe, H. (2012), ‘Integrated optofluidic iris’, IEEE Journal of Microelectromechanical Systems 21(5), 1156–1164.CrossRefGoogle Scholar
Müller, P., Kloss, A., Liebetraut, P., Mönch, W. & Zappe, H. (2011a), ‘A fully integrated optofluidic attenuator’, Journal of Micromechanics and Microengineering 21(12), 125027.CrossRefGoogle Scholar
Müller, P., Kloss, A., Mönch, W. & Zappe, H. (2011b), ‘Bistable optofluidic attenuator with integrated electrowetting actuation and high dynamic range’, Transducers 2011 - International Conference on Solid-State Sensors, Actuators and Microsystems pp. 1550–1553.Google Scholar
Müller, P., Spengler, N., Zappe, H. & Mönch, W. (2010), ‘An optofluidic concept for a tunable micro-iris’, IEEE Journal of Microelectromechanical Systems 19(6), 1477–1484.CrossRefGoogle Scholar
Murade, C. U., Oh, J. M., van den Ende, D. & Mugele, F. (2011), ‘Electrowetting driven optical switch and tunable aperture’, Optics Express 19(16), 15525–15531.CrossRefGoogle ScholarPubMed
Murade, C. U., van der Ende, D. & Mugele, F. (2012), ‘High speed adaptive liquid microlens array’, Optics Express 20(16), 18180–18187.CrossRefGoogle ScholarPubMed
Naumov, A., Loktev, M., Guralnik, I. & Vdovin, G. (1998), ‘Liquid-crystal adaptive lenses with modal control’, Optics Letters 23(13), 992–994.CrossRefGoogle ScholarPubMed
Nguyen, N.-T. (2010), ‘Micro-optofluidic lenses: a review’, Biomicrofluidics 4(3), 031501.CrossRefGoogle ScholarPubMed
Nose, T., Masuda, S. & Sato, S. (1991), ‘Optical properties of a hybrid-aligned liquid crystal microlens’, Molecular Crystals and Liquid Crystals 199, 27–35.CrossRefGoogle Scholar
Nose, T. & Sato, S. (1989), ‘A liquid crystal microlens obtained with a non-uniform electric field’, Liquid Crystals 5(5), 1425–1433.
Oku, H. & Ishikawa, M. (2009), ‘High-speed liquid lens with 2 ms response and 80.3 nm root-mean-square wavefront error’, Applied Physics Letters 94(22), 221108.CrossRefGoogle Scholar
Pelrine, R., Kornbluh, R., Pei, Q. & Joseph, J. (2000), ‘High-speed electrically actuated elastomers with strain greater than 100%’, Science 287(5454), 836–839.CrossRefGoogle ScholarPubMed
Petsch, S., Rix, R., Reith, P., Khatri, B., Schuhladen, S., Ruh, D., Zentel, R. & Zappe, H. (2014), ‘A thermotropic liquid crystal elastomer micro-actuator with integrated deformable micro-heater’, Proceedings of the 2014 IEEE International Conference on Micro Electro Mechanical Systems pp. 905–908.Google Scholar
Quilliet, C. & Berge, B. (2001), ‘Electrowetting: a recent outbreak’, Current Opinion in Colloid & Interface Science 6, 34–39.CrossRefGoogle Scholar
Rajic, S., Corbeil, J. & Datskos, P. (2003), ‘Feasibility of tunable MEMS photonic crystal devices’, Ultramicroscopy 97, 473–479.CrossRefGoogle ScholarPubMed
Reichelt, S. & Zappe, H. (2007), ‘Design of spherically corrected, achromatic variable-focus liquid lenses’, Optics Express.
Ren, H., Fan, Y. & Wu, S. (2003), ‘Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals’, Applied Physics Letters 83(8), 1515–1517.CrossRefGoogle Scholar
Ren, H. & Wu, S. (2003), ‘Tunable electronic lens using a gradient polymer network liquid crystal’, Applied Physics Letters 82(1), 22–24.CrossRefGoogle Scholar
Ren, H., Xu, S. & Wu, S.-T. (2010), ‘Effects of gravity on the shape of liquid droplets’, Optics Communications 283(17), 3255–3258.CrossRefGoogle Scholar
Rosenauer, M. & Vellekoop, M. (2009), ‘3d fluidic lens shaping – a multiconvex hydrodynamically adjustable optofluidic microlens’, Lab on a Chip 9, 1040–1042.CrossRefGoogle ScholarPubMed
Roth, S., Ignatowitz, M., Müller, P., Mönch, W. & Oesterschulze, E. (2011), ‘Non-mechanical variable apertures based on poly(3,4-ethylenedioxythiophene) (PEDOT)’, Microelectronic Engineering 88(8), 2349–2351.CrossRefGoogle Scholar
Santiago-Alvarado, A., Vázquez-Montiel, S., Granados-Agustin, F., González-García, J., Rueda-Soriano, E. & Campos-Garcia, M. (2010), ‘Measurement of aberrations of a solid elastic lens using a point-diffraction interferometer’, Optical Engineering 49(12), 123401.Google Scholar
Schuhladen, S., Petsch, S., Liebetraut, P., Müller, P. & Zappe, H. (2013), ‘Miniaturized tunable imaging system inspired by the human eye’, Optics Letters 38(20), 3991–3994.CrossRefGoogle ScholarPubMed
Shian, S., Diebold, R. M. & Clarke, D. R. (2013), ‘Tunable lenses using transparent dielectric elastomer actuators’, Optics Express 21(7), 8669.CrossRefGoogle ScholarPubMed
Simon, E., Berge, B., Fillit, F., Gaton, H., Guillet, M., Jacques-Sermet, O., Laune, F., Legrand, J., Maillard, M. & Tallaron, N. (2010), ‘Optical design rules of a camera module with a liquid lens and principle of command for AF and OIS functions’, Proceedings of SPIE - Optical Design and Testing IV 7849, 784903.Google Scholar
Simonov, A. N., Akhzar-Mehr, O. & Vdovin, G. (2005), ‘Light scanner based on a viscoelastic stretchable grating’, Optics Letters 30(9), 949–951.CrossRefGoogle ScholarPubMed
Sinziger, S. & Jahns, J. (2003), Microoptics, 2nd edn, Wiley–VCH, Weinheim.CrossRefGoogle Scholar
Solgaard, O., Lee, D., Yu, K., Krishnamoorthy, U., Li, K. & Heritage, J. (2003), ‘Microoptical phased arrays for spatial and spectral switching’, IEEE Communications Magazine March, 96–102.Google Scholar
Song, C., Nguyen, N.-T., Asundi, A. K. & Low, C. L.-N. (2011), ‘Tunable optofluidic aperture configured by a liquid-core/liquid-cladding structure’, Optics Letters 36(10), 1767–1769.CrossRefGoogle ScholarPubMed
Song, C., Nguyen, N., Tan, S. & Asundi, A. (2009), ‘A micro optofluidic lens with short focal length’, Journal of Micromechanics and Microengineering 19, 085012.CrossRefGoogle Scholar
Srinivasan, V., Pamula, V. & Fair, R. (2004), ‘An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids’, Lab on a Chip 4, 310–315.Google ScholarPubMed
Strassner, M., Daleiden, J., Chitica, N., Keiper, D., Stålnacke, B., Greek, S. & Hjort, K. (2000), ‘III–V semiconductor material for tunable Fabry–Perot filters for coarse and dense WDM systems’, Sensors & Actuators A 85, 249–255.CrossRefGoogle Scholar
Sugiura, N. & Morita, S. (1993), ‘Variable-focus liquid-filled optical lens’, Applied Optics 32(22), 4181–4186.CrossRefGoogle ScholarPubMed
Syms, R., Zou, H., Stagg, J. & Moore, D. (2004a), ‘Multistate latching MEMS variable optical attenuator’, IEEE Photonics Technology Letters 16(1), 191–193.CrossRefGoogle Scholar
Syms, R., Zou, H., Stagg, J. & Veladi, H. (2004b), ‘Sliding-blade MEMS iris and variable optical attenuator’, Journal of Micromechanics and Microengineering 14(12), 1700–1710.CrossRefGoogle Scholar
Tran, A., Lo, Y., Zhu, Z., Haronian, D. & Mozdy, E. (1996), ‘Surface micromachined Fabry–Perot tunable filter’, IEEE Photonics Technology Letters 8(3), 393–395.CrossRefGoogle Scholar
Tsai, C. G., Chen, C.-N., Cheng, L.-S., Cheng, C.-C., Yang, J.-T. & Yeh, J. A. (2009), ‘Planar liquid confinement for optical centering of dielectric liquid lenses’, IEEE Photonics Technology Letters 21(19), 1396–1398.CrossRefGoogle Scholar
Tsai, C. G. & Yeh, J. A. (2010), ‘Circular dielectric liquid iris’, Optics Letters 35(14), 2484–2486.CrossRefGoogle ScholarPubMed
Valley, P., Mathine, D. L., Dodge, M. R., Schwiegerling, J., Peyman, G. & Peyghambarian, N. (2010), ‘Tunable-focus flat liquid-crystal diffractive lens’, Optics Letters 35(3), 336–338.CrossRefGoogle ScholarPubMed
Waibel, P., Mader, D., Liebetraut, P., Zappe, H. & Seifert, A. (2011), ‘Chromatic aberration control for tunable all-silicone membrane microlenses’, Optics Express 19(19), 18584–18592.CrossRefGoogle ScholarPubMed
Wang, Y., Kanamori, Y. & Hane, K. (2009), ‘Pitch-variable blazed grating consisting of freestanding silicon beams’, Optics Express 17(6), 4419–4426.Google ScholarPubMed
Wei, K., Domicone, N. W. & Zhao, Y. (2014), ‘Electroactive liquid lens driven by an annular membrane’, Optics Letters 39(5), 1318.CrossRefGoogle ScholarPubMed
Werber, A. & Zappe, H. (2005), ‘Tunable microfluidic microlenses’, Applied Optics 44(16), 3238–3245.CrossRefGoogle ScholarPubMed
Werber, A. & Zappe, H. (2006), ‘Thermo-pneumatically actuated, membrane-based micro-mirror devices’, Journal of Micromechanics and Microengineering.CrossRefGoogle Scholar
Werber, A. & Zappe, H. (2008), ‘Tunable pneumatic microoptics’, IEEE Journal of Microelectromechanical Systems 17(5), 1218–1227.CrossRefGoogle Scholar
Wright, B. M. (1968), ‘Improvements in or relating to variable focus lenses’, British Patent # 1 209 234.Google Scholar
Xiao, W. & Hardt, S. (2010), ‘An adaptive liquid microlens driven by a ferrofluidic transducer’, Journal of Micromechanics and Microengineering 20, 055032 (8pp).CrossRefGoogle Scholar
Yang, C.-C., Tsai, C.-W. G. & Yeh, J. A. (2011), ‘Dynamic behavior of liquid microlenses actuated using dielectric force’, IEEE Journal of Microelectromechanical Systems 20(5), 1143–1149.CrossRefGoogle Scholar
Yang, S., Krupenkin, T., Mach, P. & Chandross, E. (2003), ‘Tunable and latchable liquid microlens with photopolymerizable components’, Advanced Materials 15(11), 940–943.CrossRefGoogle Scholar
Yeh, Y.-W., Chiu, C.-W. E. & Su, G.-D. J. (2006), ‘Organic amorphous fluoropolymer membrane for variable optical attenuator applications’, Journal of Optics A: Pure and Applied Optics 8, S377–383.CrossRefGoogle Scholar
Yu, H., Zhou, G., Leung, H. & Chau, F. (2010a), ‘Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation’, Optics Express 18(10), 9945–9954.CrossRefGoogle ScholarPubMed
Yu, Y., Yuan, W., Li, T. & Yan, B. (2010b), ‘Development of a micromechanical pitch-tunable grating with reflective/transmissive dual working modes’, Journal of Micromechanics and Microengineering 20, 065002 (6pp).CrossRefGoogle Scholar
Zappe, H. (2010), Fundamentals of Micro-optics, Cambridge University Press.CrossRefGoogle Scholar
Zappe, H. (2012), ‘Micro-optics: a micro tutorial’, Advanced Optical Technologies 1, 117–126.CrossRefGoogle Scholar
Zeng, X. & Jiang, H. (2008), ‘Tunable liquid microlens actuated by infrared light-responsive hydrogel’, Applied Physics Letters 93, 151101.CrossRefGoogle Scholar
Zeng, X. & Jiang, H. (2013), ‘Liquid tunable microlenses based on MEMS techniques’, Journal of Physics D 46(32), 323001.CrossRefGoogle ScholarPubMed
Zeng, X., Li, C., Zhu, D., Cho, H. J. & Jiang, H. (2010), ‘Tunable microlens arrays actuated by various thermo-responsive hydrogel structures’, Journal of Micromechanics and Microengineering 20(11), 115035.CrossRefGoogle Scholar
Zentel, R. (1989), ‘Liquid crystalline elastomers’, Advanced Materials 10, 321–329.Google Scholar
Zhang, D.-Y., Lien, V., Berdichevsky, Y., Choi, J. & Lo, Y.-H. (2003), ‘Fluidic adaptive lens with high focal length tunability’, Applied Physics Letters 82(19), 3171–3172.CrossRefGoogle Scholar
Zhang, W., Zappe, H. & Seifert, A. (2014), ‘Wafer-scale fabricated thermo-pneumatically tunable microlenses’, Light: Science and Applications 3, e145.CrossRefGoogle Scholar
Zhou, G., Leung, H. M., Yu, H., Kumar, A. S. & Chau, F. S. (2009), ‘Liquid tunable diffractive/refractive hybrid lens’, Optics Letters 34(18), 2793–2795.CrossRefGoogle ScholarPubMed
Zhou, G., Yu, H., Du, Y. & Chau, F. S. (2012), ‘Microelectromechanical-systems-driven two-layer rotary-blade-based adjustable iris diaphragm’, Optics Letters 37(10), 1745–1747.CrossRefGoogle ScholarPubMed
Zhu, L., Huang, Y. & Yariv, A. (2005), ‘Integrated microfluidic variable optical attenuator’, Optics Express 13(24), 9916–9921.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Tunable Micro-optics
  • Edited by Hans Zappe, Albert-Ludwigs-Universität Freiburg, Germany, Claudia Duppé, Albert-Ludwigs-Universität Freiburg, Germany
  • Book: Tunable Micro-optics
  • Online publication: 05 December 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139506052.001
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Tunable Micro-optics
  • Edited by Hans Zappe, Albert-Ludwigs-Universität Freiburg, Germany, Claudia Duppé, Albert-Ludwigs-Universität Freiburg, Germany
  • Book: Tunable Micro-optics
  • Online publication: 05 December 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139506052.001
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Tunable Micro-optics
  • Edited by Hans Zappe, Albert-Ludwigs-Universität Freiburg, Germany, Claudia Duppé, Albert-Ludwigs-Universität Freiburg, Germany
  • Book: Tunable Micro-optics
  • Online publication: 05 December 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139506052.001
Available formats
×