Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-01T10:39:48.588Z Has data issue: false hasContentIssue false

6 - Vorticity Boundary Conditions for the Navier–Stokes Equations

Published online by Cambridge University Press:  21 September 2009

Georges-Henri Cottet
Affiliation:
Université Joseph Fourier, Grenoble
Petros D. Koumoutsakos
Affiliation:
ETH-Zurich and CTR, NASA
Get access

Summary

In this chapter we present boundary conditions for the vorticity–velocity formulation of the Navier–Stokes equations and we describe their implementation in the context of vortex methods. We restrict our discussion to flows bounded by impermeable, solid walls, although several of the ideas can be extended to other cases such as free-surface flows.

The direct numerical simulation of wall-bounded flows requires accurately resolving the unsteady physical processes of vorticity creation and evolution in small regions near the boundary. Vortex methods directly resolve the vorticity field, and they automatically adapt to resolve strong vorticity gradients in regions near the wall, but they are faced with the algorithmic complication of dealing with the no-slip boundary condition. The no-slip boundary condition is expressed in terms of the velocity field at the wall and does not involve explicitly the vorticity.

Mathematically we may understand this difficulty by considering the kinematic and dynamic description of the flow motion and observing that there is an inconsistency between the number of equations and the number of boundary conditions. The kinematic description of the flow, relating the velocity to the vorticity, is an overdetermined set of equations if we prescribe all the components of the velocity at the boundary. On the other hand, no vorticity boundary condition is readily available for the Navier–Stokes equations that govern the dynamic description of the flow.

Physically, the no-slip boundary condition expresses the requirement that the flow field must adhere to the boundary.

Type
Chapter
Information
Vortex Methods
Theory and Practice
, pp. 172 - 205
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×