Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-04T11:55:03.225Z Has data issue: false hasContentIssue false

16 - Sources of scientific software

Published online by Cambridge University Press:  28 January 2010

Suely Oliveira
Affiliation:
University of Iowa
David E. Stewart
Affiliation:
University of Iowa
Get access

Summary

The development of the Internet has contributed to the development of public libraries of scientific software. Some of this development has occurred through the efforts of individuals, through Internet collaborations (as with the development of Linux), and through government supported software development by academics and others (as with the development of LAPACK). There is a wide range of other software packages for scientific computing, many now written in C/C++, although Fortran and other languages are used for parts of many of these systems: PETSc (which supports the use of MPI for parallel computation), IML++ (an iterative methods library in C++), SparseLib++ (for handling sparse matrices in C++), and PLTMG (for solving partial differential equations).

In parallel with this, there has also been a tremendous development of commercial numerical software. Beginning in 1970 the Numerical Algorithms Group (NAG), based in the UK, developed libraries which have been sold commercially as the NAG libraries since 1976; the Harwell library was also developed in the UK; the IMSL libraries were developed commercially in the US. Another set of numerical libraries, called SLATEC, was developed by the Sandia and Los Alamos US National Laboratories and the US Air Force. These are available through netlib (see the next section). Perhaps the most spectacular example of commercial numerical software is the development of MATLAB. Initially a collection of Fortran 77 routines based on the early LINPACK and EISPACK libraries for dense matrix computations with a text interface, MATLAB has evolved into a full-featured interactive programming language with special support for numerical computation and scientific visualization.

Type
Chapter
Information
Writing Scientific Software
A Guide to Good Style
, pp. 219 - 222
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×