Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-c97xr Total loading time: 0.477 Render date: 2022-05-29T00:42:17.779Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Exchange Rates in South America's Emerging Markets

Published online by Cambridge University Press:  22 June 2020

Luis Molinas Sosa
Affiliation:
Central Bank of Paraguay
Caio Vigo Pereira
Affiliation:
University of Kansas

Summary

Since Meese and Rogoff (1983) results showed that no model could outperform a random walk in predicting exchange rates. Many papers have tried to find a forecasting methodology that could beat the random walk, at least for certain forecasting periods. This Element compares the Purchasing Power Parity, the Uncovered Interest Rate, the Sticky Price, the Bayesian Model Averaging, and the Bayesian Vector Autoregression models to the random walk benchmark in forecasting exchange rates between most South American currencies and the US Dollar, and between the Paraguayan Guarani and the Brazilian Real and the Argentinian Peso. Forecasts are evaluated under the criteria of Root Mean Square Error, Direction of Change, and the Diebold-Mariano statistic. The results indicate that the two Bayesian models have greater forecasting power and that there is little evidence in favor of using the other three fundamentals models, except Purchasing Power Parity at longer forecasting horizons.
Get access
Type
Element
Information
Online ISBN: 9781108893671
Publisher: Cambridge University Press
Print publication: 16 July 2020
Copyright
© Luis Molinas Sosa and Caio Vigo Pereira 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abhyankar, A., Sarno, L., and Valente, G. (2005). Exchange rates and fundamentals: Evidence on the economic value of predictability. Journal of International Economics, 66(2): 325–48.CrossRefGoogle Scholar
Alquist, R. and Chinn, M. D. (2008). Conventional and unconventional approaches to exchange rate modelling and assessment. International Journal of Finance & Economics, 13(1): 213.CrossRefGoogle Scholar
Ayres, J., Garcia, M., Guill´en, D. A., and Kehoe, P. J. (2019). The monetary and fiscal history of Brazil, 1960–2016. Technical report, National Bureau of Economic Research.Google Scholar
Bacchetta, P., Van Wincoop, E., and Beutler, T. (2009). Can parameter instability explain the Meese-Rogoff puzzle? NBER International Seminar on Macroeconomics, 6: 125–73. JSTOR.CrossRefGoogle Scholar
Balassa, B. (1964). The purchasing-power parity doctrine: A reappraisal. Journal of Political Economy, 72(6): 584–96.CrossRefGoogle Scholar
Banbura, M., Giannone, D., and Reichlin, L. (2007). Bayesian vars with large panels. Journal of Applied Econometrics, 25.Google Scholar
Banco Central de Bolivia. La Historia del Banco Central de Bolivia. (n.d.). Retrieved from www.bcb.gob.bo/?q=Las%20Reformas%20del%2070Google Scholar
Banco Central de la República Argentina. (BCRA). (n.d.). Historia del Banco Central. Retrieved from www.bcra.gob.ar/Institucional/Historia.aspGoogle Scholar
Banco Central de la Reserva del Peru. (2000). Memoria Anual. Banco Central de la Reserva del Perú. Lima, Perú. Retrieved from www.repositorio.cepal.org/bitstream/handle/11362/40402/1/RVE119Chacaltana.pdfGoogle Scholar
Barnett, W. A., Kwag, C. H., et al. (2005). Exchange rate determination from monetary fundamentals: An aggregation theoretic approach. Frontiers in Finance and Economics, 3(1): 2948.Google Scholar
Bates, J. M. and Granger, C. W. (1969). The combination of forecasts. Journal of the Operational Research Society, 20(4): 451–68.CrossRefGoogle Scholar
Baumann, R. and Fialho Mussi, C. H. (1999). Algunas características de la economía brasileña desde la adopción del Plan Real. Temas de coyuntura. Nº 5 . ECLAC.Google Scholar
Berkowitz, J. and Giorgianni, L. (2001). Long-horizon exchange rate predictability? Review of Economics and Statistics, 83(1): 8191.CrossRefGoogle Scholar
Bernanke, B. S. and Boivin, J. (2003). Monetary policy in a data-rich environment. Journal of Monetary Economics, 50(3): 525–46.CrossRefGoogle Scholar
Buera, F. J. and Nicolini, J. P. (2019). The monetary and fiscal history of Argentina: 1960–2017. University of Chicago, Becker Friedman Institute for Economics Working Paper.CrossRefGoogle Scholar
Cagan, P. (1956). The monetary dynamics of hyperinflation. In Studies in the Quantity Theory of Money. Chicago: University of Chicago Press, 25117.Google Scholar
Canto, J. P. (1942). El sistema monetario de chile. Revista de Economía y Estadística, 4(4): 487517.Google Scholar
Caputo, R. and Saravia, D. (2018). The monetary and fiscal history of Chile: 1960–2016. University of Chicago, Becker Friedman Institute for Economics Working Paper, 62.CrossRefGoogle Scholar
Carriero, A., Kapetanios, G., and Marcellino, M. (2009). Forecasting exchange rates with a large Bayesian VAR. International Journal of Forecasting, 25(2): 400417.CrossRefGoogle Scholar
Cassel, G. (1918a). Abnormal deviations in international exchanges. The Economic Journal, 28(112): 413–15.CrossRefGoogle Scholar
Central Bank of Bolivia. (2018). Reseña Histórica de Monedas y Billetes de Bolivia.” Nuestra Economía al alcance de todos. Vol. 13. Retrieved from www.bcb.gob.bo/webdocs/seccioneducativa/Boletin%20BCB%20N13.pdfGoogle Scholar
Cerra, V. and Saxena, S. C. (2010). The monetary model strikes back: Evidence from the world. Journal of International Economics, 81(2): 184–96.CrossRefGoogle Scholar
Cerrato, M., Crosby, J., Kim, M., and Zhao, Y. (2015). Modeling dependence structure and forecasting market risk with dynamic asymmetric copula. Available at SSRN 2460168.Google Scholar
Chamon, M. M., Hofman, M. D. J., Magud, M. N. E., and Werner, A. M. (2019). Foreign exchange intervention in inflation targeters in Latin America. Washington, DC: International Monetary Fund.Google Scholar
Charotti, C. J., Ferñandez-Valdovinos, C., and Gonzalez Soley, F. (2019). The monetary and fiscal history of Paraguay, 1960–2017. University of Chicago, Becker Friedman Institute for Economics Working Paper.CrossRefGoogle Scholar
Cheung, Y.-W., Chinn, M. D., and Pascual, A. G. (2005). Empirical exchange rate models of the nineties: Are any fit to survive? Journal of International Money and Finance, 24(7): 1150–75.CrossRefGoogle Scholar
Cheung, Y.-W., Chinn, M. D., Pascual, A. G., and Zhang, Y. (2019). Exchange rate prediction redux: New models, new data, new currencies. Journal of International Money and Finance, 95: 332–62.CrossRefGoogle Scholar
Chinn, M. D. (1991). Some linear and nonlinear thoughts on exchange rates. Journal of International Money and Finance, 10(2): 214–30.CrossRefGoogle Scholar
Chinn, M. D. and Meese, R. A. (1995). Banking on currency forecasts: How predictable is change in money? Journal of International Economics, 38(1–2): 161–78.CrossRefGoogle Scholar
Clark, T. E. and West, K. D. (2006). Using out-of-sample mean squared prediction errors to test the martingale difference hypothesis. Journal of Econometrics, 135(1–2): 155–86.CrossRefGoogle Scholar
Corbo, V. and Hernañdez, L. (2005). Ochenta años de historia del Banco Central de Chile. Documentos de Trabajo (Banco Central de Chile), 345: 1.Google Scholar
Croushore, D. and Stark, T. (2003). A real-time data set for macroeconomists: Does the data vintage matter? Review of Economics and Statistics, 85(3): 605–17.CrossRefGoogle Scholar
Dargent, E. (2018). La Moneda en el Peru: 450 años de historia. Retrieved from http://vbeta.urp.edu.pe/pdf/id/17007/n/la-moneda-en-el-peru-2205–23-feb-2019.pdfGoogle Scholar
Diebold, F. X. and Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business & Economic Statistics, 13(3): 253–63.Google Scholar
Dimand, R. W. and Gomez Betancourt, R. (2012). Retrospectives: Irving Fisher’s appreciation and interest (1896) and the Fisher relation. Journal of Economic Perspectives, 26(4): 185–96.CrossRefGoogle Scholar
Dornbusch, R. (1976). Expectations and exchange rate dynamics. Journal of Political Economy, 84(6): 1161–76.CrossRefGoogle Scholar
Edge, R. M., Kiley, M. T., and Laforte, J.-P. (2010). A comparison of forecast performance between Federal Reserve staff forecasts, simple reduced-form models, and a DSGE model. Journal of Applied Econometrics, 25(4): 720–54.CrossRefGoogle Scholar
Engel, C. (1994). Can the Markov switching model forecast exchange rates? Journal of International Economics, 36(1–2): 151–65.CrossRefGoogle Scholar
Engel, C., Mark, N. C., West, K. D., Rogoff, K., and Rossi, B. (2007). Exchange rate models are not as bad as you think [with comments and discussion]. NBER Macroeconomics Annual, 22: 381473.CrossRefGoogle Scholar
Engel, C. and West, K. D. (2005). Exchange rates and fundamentals. Journal of Political Economy, 113(3): 485517.CrossRefGoogle Scholar
Faust, J., Rogers, J. H., and Wright, J. H. (2003). Exchange rate forecasting: The errors we’ve really made. Journal of International Economics, 60(1): 3559.CrossRefGoogle Scholar
Fernández Valdovinos, C. and Monge Naranjo, A. (2003). Economic growth in Paraguay. Economic and Social Study Series. Inter-American Development Bank.Google Scholar
Ferraro, D., Rogoff, K., and Rossi, B. (2015). Can oil prices forecast exchange rates? An empirical analysis of the relationship between commodity prices and exchange rates. Journal of International Money and Finance, 54: 116–41.CrossRefGoogle Scholar
French-Davis, R. (2003). Chile, entre el neoliberalismo y el crecimiento con equidad. Nueva Sociedad, 183: 7090.Google Scholar
Fisher, I. (1896). Appreciation and interest: A study of the influence of monetary appreciation and depreciation on the rate of interest with applications to the bimetallic controversy and the theory of interest, vol. 11. New York: American Economic Association.Google Scholar
Fontaine, J. A. (1993). Transición económica y política en Chile:1970–1990. Estudios Públicos, 50: 229–79.Google Scholar
Frankel, J. A. (1979). On the mark: A theory of floating exchange rates based on real interest differentials. The American Economic Review, 69(4): 610–22.Google Scholar
Frankel, J. A.(1982). The mystery of the multiplying marks: A modification of the monetary model. The Review of Economics and Statistics, 64(3): 515–19.CrossRefGoogle Scholar
Frankel, J. A. and Rose, A. K. (1994). A survey of empirical research on nominal exchange rates. Technical report, National Bureau of Economic Research.CrossRefGoogle Scholar
Frenkel, J. A. (1976). A monetary approach to the exchange rate: doctrinal aspects and empirical evidence. The Scandinavian Journal of Economics, 78: 200–24.CrossRefGoogle Scholar
Froot, K. A. and Rogoff, K. (1995). Perspectives on PPP and long-run real exchange rates. Handbook of International Economics, 3: 1647–88.CrossRefGoogle Scholar
Froot, K. A. and Thaler, R. H. (1990). Anomalies: Foreign exchange. Journal of Economic Perspectives, 4(3): 179–92.CrossRefGoogle Scholar
Ghosh, T. and Bhadury, S. (2018). Money’s causal role in exchange rate: Do Divisia monetary aggregates explain more? International Review of Economics & Finance, 57: 402–17.CrossRefGoogle Scholar
Gourinchas, P.-O. and Rey, H. (2007). International financial adjustment. Journal of Political Economy, 115(4): 665703.CrossRefGoogle Scholar
Gozzi, E. and Tappatá, R. (2010). Primera iniciativa de reforma financiera profunda en América Latina la misión Kemmerer. Fitproper: www.fitproper.com/documentos/propios/Mision_Kemmerer.pdf. Accessed January 6, 2017.Google Scholar
Hoeting, J. A., Madigan, D., Raftery, A. E., and Volinsky, C. T. (1999). Bayesian model averaging: A tutorial. Statistical Science, 14(4): 382401.Google Scholar
Hooper, P. and Morton, J. (1982). Fluctuations in the dollar: A model of nominal and real exchange rate determination. Journal of International Money and Finance, 1: 3956.CrossRefGoogle Scholar
Hsing, Y. and Sergi, B. S. (2009). The dollar/euro exchange rate and a comparison of major models. Journal of Business Economics and Management, 10(3): 199205.CrossRefGoogle Scholar
Humerez Quiroz, J. and Ayaviri, M. M. (2005). Sostenibilidad y gestión de la deuda pública externa. Análisis Económico Volumen, 20.Google Scholar
Insfrán Pelozo, J. A. (2003). El sector financiero paraguayo. Evaluando 10 años de transición (liberalización y crisis). The Paraguayan Financial Sector. An assessment of. Series Enfoques, Centro Paraguayo para la Promoción de la Libertad Económica y de la Justicia Social (CEPPRO). No. 26, AprilGoogle Scholar
International Monetary Fund. (2001). Silent revolution: The IMF 1979–1989, Chapter 9 – Containing the crisis, 1983–85. Retrieved from www.imf.org/external/pubs/ft/history/2001/index.htmGoogle Scholar
Jaramillo, J. C., Steiner, R., and Salazar, N. (1999). The political economy of exchange rate policy in Colombia. (No. 3064). Inter-American Development Bank, Research Department.CrossRefGoogle Scholar
Kehoe, T. J., Machicado, C. G., and Peres-Caj´ıas, J. (2019). The monetary and fiscal history of bolivia, 1960–2017. Technical report, National Bureau of Economic Research.CrossRefGoogle Scholar
Keynes, J. M. (1923). A tract on monetary reform. London: Macmillan.Google Scholar
Kilian, L. and Taylor, M. P. (2003). Why is it so difficult to beat the random walk forecast of exchange rates? Journal of International Economics, 60(1): 85107.CrossRefGoogle Scholar
Koenig, E. F., Dolmas, S., and Piger, J. (2003). The use and abuse of real-time data in economic forecasting. Review of Economics and Statistics, 85(3): 618–28.CrossRefGoogle Scholar
Ladefroux, R. (1994). Brasil: Consecuencias de los planes de estabilización sobre los problemas alimentarios. Retrieved from https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers17-07/42029.pdfGoogle Scholar
Lam, L., Fung, L., and Yu, I.-W. (2008). Comparing forecast performance of exchange rate models. Available at SSRN 1330705.CrossRefGoogle Scholar
Lara, R., Pankow, M., Insfrán, H., Caballero, L., and Cantero, J. (2013). El Guaraní 70 Años de Estabilidad Una Conquista Social. Retrieved from: www.portalguarani.com/267_felix_toranzos_miers/4864_misiones_2008__obras_de_felix_toranzos.htmlGoogle Scholar
Leamer, E. E. (1978). Specification searches: Ad hoc inference with nonexperimental data. New York: Wiley.Google Scholar
Lebdioui, A. (2019). Chile’s export diversification since 1960: A free market miracle or mirage? Development and Change, 50(6): 1624–63.CrossRefGoogle Scholar
Lewis, K. K. (1994). Puzzles in international financial markets. Technical report, National Bureau of Economic Research.CrossRefGoogle Scholar
Litterman, R. B. (1986). Forecasting with Bayesian vector autoregressions – five years of experience. Journal of Business & Economic Statistics, 4(1): 2538.Google Scholar
Lothian, J. R. and Wu, L. (2011). Uncovered interest-rate parity over the past two centuries. Journal of International Money and Finance, 30(3): 448–73.CrossRefGoogle Scholar
Malkiel, B. G. and Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. The Journal of Finance, 25(2): 383417.CrossRefGoogle Scholar
Mark, N. C. (1995). Exchange rates and fundamentals: Evidence on long-horizon predictability. American Economic Review, 85(1): 201–18.Google Scholar
Marongiu, F. (2007). High inflation and adjustment in Brazil during the return to democracy – 1985–1994. Munich Personal RePEc Archive. Retrieved from http://mpra.ub. unimuenchen. de/18956/Google Scholar
Martinelli, C. and Vega, M. (2019). Experimentos Radicales de Política, Inflación y Estabilización. Retrieved from www.bcrp.gob.pe/docs/Publicaciones/Documentos-de-Trabajo/2018/documento-detrabajo-007–2018-esp.pdfGoogle Scholar
Meese, R. A. and Rogoff, K. (1983). Empirical exchange rate models of the seventies: Do they fit out of sample? Journal of International Economics, 14(1–2): 324.CrossRefGoogle Scholar
Molodtsova, T. and Papell, D. H. (2009). Out-of-sample exchange rate predictability with Taylor rule fundamentals. Journal of International Economics, 77(2): 167–80.CrossRefGoogle Scholar
Mortimore, M. (1981). El estado y los bancos transnacionales: enseñanza de la crisis boliviana de endeudamiento público externo. Revista de la CEPAL.CrossRefGoogle Scholar
Mussa, M. (1977). The exchange rate, the balance of payments and monetary and fiscal policy under a regime of controlled floating. In Flexible Exchange Rates and Stabilization Policy, pages 97116. London: Palgrave Macmillan.CrossRefGoogle Scholar
National Institute of Statistics and Informatics (INEI). (2016). Panorama de la Economía Peruana. 1950–2015. Instituto Nacional de Estadística e Informática. Lima, Peru. Retrieved from www.inei.gob.pe/media/MenuRecursivo/publicacionesdigitales/Est/Lib1359/index.htmlGoogle Scholar
Pereira, L. C. B. and Nakano, Y. (1991). Hyperinflation and stabilization in Brazil: The first Collor plan. In Economic Problems of the 1990s, edited by Davidson, P and Kregel, J. London: Edward Elgar, 4168.Google Scholar
Perez-Reyna, D. and Osorio-Rodríguez, D. (2016). The fiscal and monetary history of Colombia: 1963–2012. Technical report, mimeo.Google Scholar
Pilbeam, K. and Langeland, K. N. (2015). Forecasting exchange rate volatility: Garch models versus implied volatility forecasts. International Economics and Economic Policy, 12(1): 127–42.CrossRefGoogle Scholar
Raftery, A. E., Madigan, D., and Hoeting, J. A. (1997). Bayesian model averaging for linear regression models. Journal of the American Statistical Association, 92(437): 179–91.CrossRefGoogle Scholar
Rossi, B. (2013). Exchange rate predictability. Journal of Economic Literature, 51(4): 1063–119.CrossRefGoogle Scholar
Rossi, B. and Inoue, A. (2012). Out-of-sample forecast tests robust to the choice of window size. Journal of Business & Economic Statistics, 30(3): 432–53.CrossRefGoogle Scholar
Sachs, J. (1987). The Bolivian hyperinflation and stabilization. The American Economic Review, 77(2): 279–83.Google Scholar
Sánchez, F., Armenta, A., and Fernández, A. (2005). Historia monetaria de Colombia en el siglo XX: grandes tendencias y episodios relevantes. Number 30. Centro de Desarrollo Económico at the Universidad de los Andes in Colombia (CEDE).Google Scholar
Sarantis, N. (2006). On the short-term predictability of exchange rates: A BVAR time-varying parameters approach. Journal of Banking & Finance, 30(8): 2257–79.CrossRefGoogle Scholar
Schüssler, R., Beckmann, J., Koop, G., and Korobilis, D. (2018). Exchange rate predictability and dynamic Bayesian learning. Essex Finance Centre Working Papers 20781, University of Essex, Essex Business School.Google Scholar
Sheriff, B. and Ernesto, H. (1992). Política económica, crecimiento y bienestar: Bolivia (1950–1990). CEPAL, 1992. Retrieved from: https://repositorio.cepal.org/handle/11362/28237Google Scholar
Singh, A. (2005). Stabilization and reform in Latin America: Macroeconomic perspective on the experience since the early 1990s. Technical report, International Monetary Fund.Google Scholar
Stock, J. H. and Watson, M. W. (2002). Forecasting using principal components from a large number of predictors. Journal of the American Statistical Association, 97(460): 1167–79.CrossRefGoogle Scholar
Stock, J. H. and Watson, M. W.(2004). Combination forecasts of output growth in a seven-country data set. Journal of Forecasting, 23(6): 405–30.CrossRefGoogle Scholar
Theil, H. (1971). Applied economic forecasting. Chicago: North-Holland Publishing Company.Google Scholar
Van Dijk, D. and Franses, P. H. (2003). Selecting a nonlinear time series model using weighted tests of equal forecast accuracy. Oxford Bulletin of Economics and Statistics, 65: 727–44.Google Scholar
West, K. D. (1996). Asymptotic inference about predictive ability. Econometrica: Journal of the Econometric Society, 64(5): 1067–84.CrossRefGoogle Scholar
Wieland, V. and Wolters, M. (2013). Forecasting and policy making. In Handbook of Economic Forecasting, vol. 2, edited by G. Elliott and A. Timmerman, pp. 239–325. New York: Elsevier.CrossRefGoogle Scholar
World Bank. (2017). Peru – Systematic country diagnostic (English). Washington, DC: World Bank Group. Retrieved from www.documents.worldbank.org/curated/en/919181490109288624/Peru–Systematic–Country–DiagnosticGoogle Scholar
Wright, J. H. (2008). Bayesian model averaging and exchange rate forecasts. Journal of Econometrics, 146(2): 329–41.CrossRefGoogle Scholar
2
Cited by

Save element to Kindle

To save this element to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Exchange Rates in South America's Emerging Markets
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Exchange Rates in South America's Emerging Markets
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Exchange Rates in South America's Emerging Markets
Available formats
×