Skip to main content Accessibility help
×
Home

Solving PDEs with radial basis functions *

  • Bengt Fornberg (a1) and Natasha Flyer (a2)

Abstract

Finite differences provided the first numerical approach that permitted large-scale simulations in many applications areas, such as geophysical fluid dynamics. As accuracy and integration time requirements gradually increased, the focus shifted from finite differences to a variety of different spectral methods. During the last few years, radial basis functions, in particular in their ‘local’ RBF-FD form, have taken the major step from being mostly a curiosity approach for small-scale PDE ‘toy problems’ to becoming a major contender also for very large simulations on advanced distributed memory computer systems. Being entirely mesh-free, RBF-FD discretizations are also particularly easy to implement, even when local refinements are needed. This article gives some background to this development, and highlights some recent results.

Copyright

References

Hide All
Barnett, G. A., Flyer, N. and Wicker, L. J. (2015), An RBF-FD polynomial method for nonhydrostatic atmospheric modeling on different node layouts. Submitted.
Bayona, V. and Kindelan, M. (2013), ‘Propagation of premixed laminar flames in 3D narrow open ducts using RBF-generated finite differences’, Combust. Theory Model. 17, 789803.
Bercovici, D., Schubert, G., Glatzmaier, G. A. and Zebib, A. (1989), ‘Three-dimensional thermal convection in a spherical shell’, J. Fluid Mech. 206, 75104.
Blaise, S. and St-Cyr, A. (2012), ‘A dynamic $hp$ -adaptive discontinuous Galerkin method for shallow water flows on the sphere with application to a global tsunami simulation’, Mon. Weather Rev. 140, 978996.
Bochner, S. (1933), ‘Monotone Functionen, Stieltjes Integrale und harmonische Analyse’, Math. Ann. 108, 378410.
Bollig, E., Flyer, N. and Erlebacher, G. (2012), ‘Solution to PDEs using radial basis function finite-differences (RBF-FD) on multiple GPUs’, J. Comput. Phys. 231, 71337151.
Boyd, J. P. (2000), Chebyshev and Fourier Spectral Methods, Dover.
Buhmann, M. D. (2000), Radial basis functions. In Acta Numerica, Vol. 9, Cambridge University Press, pp. 138.
Buhmann, M. D. (2003), Radial Basis Functions: Theory and Implementations, Vol. 12 of Cambridge Monographs on Applied and Computational Mathematics , Cambridge University Press.
Chen, W., Fu, Z.-J. and Chen, C. S. (2014), Recent Advances in Radial Basis Function Collocation Methods, Springer Briefs in Applied Sciences and Technology, Springer.
Chinchapatnam, P. P., Djidjeli, K., Nair, P. B. and Tan, M. (2009), ‘A compact RBF-FD based meshless method for the incompressible Navier–Stokes equations’, J. Eng. Maritime Env. 223, 275290.
Collatz, L. (1960), The Numerical Treatment of Differential Equations, Springer.
Curtis, P. C. J. (1959), ‘ $n$ -parameter families and best approximation’, Pacific J. Math. 93, 10131027.
Driscoll, T. A. and Fornberg, B. (2002), ‘Interpolation in the limit of increasingly flat radial basis functions’, Comput. Math. Appl. 43, 413422.
Duchon, J. (1977), Splines minimizing rotation-invariant semi-norms in Sobolev spaces. In Constructive Theory of Functions of Several Variables, Vol. 571 of Lecture Notes in Mathematics (Schempp, W. and Zeller, K., eds), Springer, pp. 85100.
Fasshauer, G. E. (1997), Solving partial differential equations by collocation with radial basis functions. In Surface Fitting and Multiresolution Method, Vol. 2, Proc. 3rd International Conference on Curves and Surfaces (Le Méhauté, A., Rabut, C. and Schumaker, L. L., eds), Vanderbilt University Press, pp. 131138.
Fasshauer, G. E. (2007), Meshfree Approximation Methods with MATLAB, Vol. 6, Interdisciplinary Mathematical Sciences , World Scientific.
Flyer, N. and Fornberg, B. (2011), ‘Radial basis functions: Developments and applications to planetary scale flows’, Comput. and Fluids 46, 2332.
Flyer, N. and Lehto, E. (2010), ‘Rotational transport on a sphere: Local node refinement with radial basis functions’, J. Comput. Phys. 229, 19541969.
Flyer, N. and Wright, G. B. (2007), ‘Transport schemes on a sphere using radial basis functions’, J. Comput. Phys. 226, 10591084.
Flyer, N. and Wright, G. B. (2009), ‘A radial basis function method for the shallow water equations on a sphere’, Proc. Roy. Soc. A 465, 19491976.
Flyer, N., Lehto, E., Blaise, S., Wright, G. B. and St-Cyr, A. (2012), ‘A guide to RBF-generated finite differences for nonlinear transport: Shallow water simulations on a sphere’, J. Comput. Phys. 231, 40784095.
Fornberg, B. (1987), ‘The pseudospectral method: Comparisons with finite differences for the elastic wave equation’, Geophysics 52, 483501.
Fornberg, B. (1996), A Practical Guide to Pseudospectral Methods, Cambridge University Press.
Fornberg, B. (1998), ‘Calculations of weights in finite difference formulas’, SIAM Rev. 40, 685691.
Fornberg, B. and Flyer, N. (2015a), ‘Fast generation of 2-D node distributions for mesh-free PDE discretizations’, Comput. Math. Appl. doi:10.1016/j.camwa.2015.01.009
Fornberg, B. and Flyer, N. (2015b), A Primer on Radial Basis Functions with Applications to the Geosciences, SIAM.
Fornberg, B. and Lehto, E. (2011), ‘Stabilization of RBF-generated finite difference methods for convective PDEs’, J. Comput. Phys. 230, 22702285.
Fornberg, B. and Piret, C. (2007), ‘A stable algorithm for flat radial basis functions on a sphere’, SIAM J. Sci. Comput. 30, 6080.
Fornberg, B. and Piret, C. (2008), ‘On choosing a radial basis function and a shape parameter when solving a convective PDE on a sphere’, J. Comput. Phys. 227, 27582780.
Fornberg, B. and Wright, G. (2004), ‘Stable computation of multiquadric interpolants for all values of the shape parameter’, Comput. Math. Appl. 48, 853867.
Fornberg, B. and Zuev, J. (2007), ‘The Runge phenomenon and spatially variable shape parameters in RBF interpolation’, Comput. Math. Appl. 54, 379398.
Fornberg, B., Driscoll, T. A., Wright, G. and Charles, R. (2002), ‘Observations on the behavior of radial basis functions near boundaries’, Comput. Math. Appl. 43, 473490.
Fornberg, B., Larsson, E. and Flyer, N. (2011), ‘Stable computations with Gaussian radial basis functions’, SIAM J. Sci. Comput. 33, 869892.
Fornberg, B., Larsson, E. and Wright, G. B. (2006), ‘A new class of oscillatory radial basis functions’, Comput. Math. Appl. 51, 12091222.
Fornberg, B., Lehto, E. and Powell, C. (2013), ‘Stable calculation of Gaussian-based RBF-FD stencils’, Comput. Math. Appl. 65, 627637.
Fornberg, B., Wright, G. and Larsson, E. (2004), ‘Some observations regarding interpolants in the limit of flat radial basis functions’, Comput. Math. Appl. 47, 3755.
Fox, L. (1947), ‘Some improvements in the use of relaxation methods for the solution of ordinary and partial differential equations’, Proc. Roy. Soc. A 190, 3159.
Fuselier, E. J. and Wright, G. B. (2013), ‘A high-order kernel method for diffusion and reaction–diffusion equations on surfaces’, J. Sci. Comput. 56, 535565.
Giraldo, F. X. and Restelli, M. (2008), ‘A study of spectral element and discontinuous Galerkin methods for the Navier–Stokes equations in nonhydrostatic mesoscale atmospheric modeling: Equation sets and test cases’, J. Comput. Phys. 227, 38493877.
Gupta, M. M. (1991), ‘High accuracy solutions of incompressible Navier–Stokes equations’, J. Comput. Phys. 93, 343359.
Harder, H. and Hansen, U. (2005), ‘A finite-volume solution method for thermal convection and dynamo problems in spherical shells’, Geophys. J. Int. 161, 522532.
Hardy, R. L. (1971), ‘Multiquadric equations of topography and other irregular surfaces’, J. Geophys. Res. 76, 19051915.
Hon, Y. C. and Schaback, R. (2001), ‘On unsymmetric collocation by radial basis functions’, Appl. Math. Comput. 119, 177186.
Iske, A. (2004), Multiresolution Methods in Scattered Data Modelling, Vol. 37 of Lecture Notes in Computational Science and Engineering , Springer.
Kameyama, M. C., Kageyama, A. and Sato, T. (2008), ‘Multigrid-based simulation code for mantle convection in spherical shell using Yin–Yang grid’, Phys. Earth Planet. Interiors 171, 1932.
Kansa, E. J. (1990a), ‘Multiquadrics: A scattered data approximation scheme with applications to computational fluid-dynamics, part I: Surface approximations and parital derivative estimates’, Comput. Math. Appl. 19, 127145.
Kansa, E. J. (1990b), ‘Multiquadrics: A scattered data approximation scheme with applications to computational fluid-dynamics, part II: Solutions to parabolic, hyperbolic and elliptic partial differential equations’, Comput. Math. Appl. 19, 147161.
Kee, B. B. T., Liu, G. R. and Lu, C. (2008), ‘A least-square radial point collocation method for adaptive analysis in linear elasticity’, Eng. Anal. Bound. Elem. 32, 440460.
Kindelan, M., Bernal, F., Gonzalez-Rodriguez, P. and Moscoso, M. (2010), ‘Application of the RBF meshless method to the solution of the radiative transport equation’, J. Comput. Phys. 229, 18971908.
Larsson, E. and Fornberg, B. (2003), ‘A numerical study of some radial basis function based solution methods for elliptic PDEs’, Comput. Math. Appl. 46, 891902.
Larsson, E., Lehto, E., Heryudono, A. and Fornberg, B. (2013), ‘Stable computation of differentiation matrices and scattered node stencils based on Gaussian radial basis functions’, SIAM J. Sci. Comput. 35, A2096A2119.
Lele, S. K. (1992), ‘Compact finite difference schemes with spectral-like resolution’, J. Comput. Phys. 103, 1642.
Li, M., Tang, T. and Fornberg, B. (1995), ‘A compact fourth-order finite difference scheme for the steady incompressible Navier–Stokes equations’, Internat. J. Numer. Meth. Fluids 20, 11371151.
Lombard, B. and Piraux, J. (2004), ‘Numerical treatment of two-dimensional interfaces for acoustic and elastic waves’, J. Comput. Phys. 195, 90116.
Lombard, B., Piraux, J., Gelis, C. and Virieux, J. (2008), ‘Free and smooth boundaries in 2-D finite-difference schemes for transient elastic waves’, Geophys. J. Int. 172, 252261.
Madych, W. R. and Nelson, S. A. (1992), ‘Bounds on multivariate polynomials and exponential error estimates for multiquadric interpolation’, J. Approx. Theory 70, 94114.
Mairhuber, J. C. (1956), ‘On Haar’s theorem concerning Chebyshev approximation problems having unique solutions’, Proc. Amer. Math. Soc 7, 609615.
Martin, B., Fornberg, B. and St-Cyr, A. (2015), ‘Seismic modeling with radial basis function-generated finite differences (RBF-FD)’, Geophysics, to appear.
Martin, G. S., Wiley, R. and Marfurt, K. J. (2006), ‘Marmousi2: An elastic upgrade for Marmousi’, The Leading Edge 25, 156166.
Micchelli, C. A. (1986), ‘Interpolation of scattered data: Distance matrices and conditionally positive definite functions’, Constr. Approx. 2, 1122.
Norman, M. R., Nair, R. D. and Semazzi, F. H. M. (2011), ‘A low communication and large time step explicit finite-volume solver for non-hydrostatic atmospheric dynamics’, J. Comput. Phys. 230, 15671584.
Persson, P.-O. and Strang, G. (2004), ‘A simple mesh generator in MATLAB’, SIAM Rev. 46, 329345.
Piret, C. (2012), ‘The orthogonal gradients method: A radial basis functions method for solving partial differential equations on arbitrary surfaces’, J. Comput. Phys. 231, 46624675.
Powell, M. J. D. (1992), The theory of radial basis function approximation in 1990. In Advances in Numerical Analysis, Vol. II, Wavelets, Subdivision Algorithms and Radial Functions (Light, W., ed.), Oxford University Press, pp. 105210.
Powell, M. J. D. (2005), Five lectures on radial basis functions. Technical report, Technical University of Denmark, Lyngby.
Power, H. and Barraco, V. (2002), ‘A comparison analysis between unsymmetric and symmetric radial basis function collocation methods for the numerical solution of partial differential equations’, Comput. Math. Appl. 43, 551583.
Richardson, L. F. (1911), ‘The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam’, Phil. Trans. Royal Soc. London 210, 307357.
Rodrigues, J. D., Roque, C. M. C. and Ferreira, A. J. M. (2013), ‘An improved meshless method for the static and vibration analysis of plates’, Mechanics Based Design of Structures and Machines 41, 2139.
Schaback, R. (1995), ‘Error estimates and condition numbers for radial basis function interpolants’, Adv. Comput. Math. 3, 251264.
Schaback, R. (2005), ‘Multivariate interpolation by polynomials and radial basis functions’, Constr. Approx. 21, 293317.
Schaback, R. and Wendland, H. (2006), Kernel techniques: From machine learning to meshless methods. In Acta Numerica, Vol. 15, Cambridge University Press, pp. 543639.
Schoenberg, I. J. (1938), ‘Metric spaces and completely monotone functions’, Ann. of Math. 39, 811841.
Shankar, V., Wright, G. B., Fogelson, A. L. and Kirby, R. M. (2013), ‘A study of different modeling choices for simulating platelets within the immersed boundary method’, Appl. Numer. Math. 63, 5877.
Shu, C., Ding, H. and Yeo, K. S. (2003), ‘Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations’, Comput. Methods Appl. Mech. Engrg 192, 941954.
Skamarock, W. C. and Klemp, J. B. (2008), ‘A time-split nonhydrostatic atmospheric model for weather research and forecasting applications’, J. Comput. Phys. 227, 34653485.
Stemmer, K., Harder, H. and Hansen, U. (2006), ‘A new method to simulate convection with strongly temperature- and pressure-dependent viscosity in a spherical shell: Applications to the Earth’s mantle’, Phys. Earth Planet. Inter. 157, 223249.
Straka, J., Wilhelmson, R., Wicker, L., Anderson, J. and Droegemeier, K. (1993), ‘Numerical solutions of a nonlinear density current: A benchmark solution and comparisons’, Internat. J. Numer. Meth. Fluids 17, 122.
Symes, W. W. and Vdovina, T. (2009), ‘Interface error analysis for numerical wave propagation’, Comput. Geosci. 13, 363370.
Takacs, L. (1988), ‘Effects of using a posteriori methods for the conservation of integral invariants’, Mon. Weather Rev. 116, 525545.
Tarwater, A. E. (1985), Parameter study of Hardy’s multiquadric method for scattered data interpolation. Technical report UCRL-54670, Lawrence Livermore National Laboratory.
Tolstykh, A. I. (2000), ‘On using RBF-based differencing formulas for unstructured and mixed structured–unstructured grid calculations’, Proc. 16th IMACS World Congress 228, 46064624.
Tolstykh, A. I. and Shirobokov, D. A. (2003), ‘On using radial basis functions in a “finite difference mode” with applications to elasticity problems’, Comput. Mech. 33, 6879.
Trefethen, L. N. (2000), Spectral Methods in MATLAB, SIAM.
Turing, A. M. (1952), ‘The chemical basis of morphogenesis’, Phil. Trans Royal Soc. London B 237, 3772.
Wang, J. G. and Liu, G. R. (2002), ‘A point interpolation meshless method based on radial basis functions’, Internat. J. Numer. Meth. Engrg 54, 16231648.
Wendland, H. (2005), Scattered Data Approximation. Vo. 17 of Cambridge Monographs on Applied and Computational Mathematics , Cambridge University Press.
Williamson, D. L., Drake, J. B., Hack, J. J., Jakob, R. and Swarztrauber, P. N. (1992), ‘A standard test set for numerical approximations to the shallow water equations in spherical geometry’, J. Comput. Phys. 102, 211224.
Wright, G. B. (2003), Radial basis function interpolation: Numerical and analytical developments. PhD thesis, University of Colorado.
Wright, G. B. and Fornberg, B. (2006), ‘Scattered node compact finite difference-type formulas generated from radial basis functions’, J. Comput. Phys. 212, 99123.
Wright, G. B., Flyer, N. and Yuen, D. A. (2010), ‘A hybrid radial basis function: Pseudospectral method for thermal convection in a 3D spherical shell’, Geochem. Geophys. Geosyst. 11, Q07003.
Wu, Z. (1992), ‘Hermite–Birkhoff interpolation of scattered data by radial basis functions’, Approx. Theory Appl. 8, 110.
Yu, Y. and Chen, Z. (2011), ‘Implementation of material interface conditions in the radial point interpolation methless method’, IEEE Trans. Ant. Prop. 59, 29162923.
Zhai, S., Feng, X. and He, Y. (2013), ‘A family of fourth-order and sixth-order compact difference schemes for the three-dimensional Poisson equation’, J. Sci. Comput. 54, 97120.
Zhong, S., McNamara, A., Tan, E., Moresi, L. and Gurnis, M. (2008), ‘A benchmark study on mantle convection in a 3-D spherical shell using CitcomS’, Geochem. Geophys. Geosyst. 9, Q10017.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed