[1]
Oldham, K. B. and Spanier, J., The Fractional Calculus, New York, Academic Press, 1974.

[2]
Kilbas, A. A., Srivastava, H. M. and Trujillo, J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.

[3]
Podlubny, I., Fractional Differential Equations, New York, Academic Press, 1999.

[4]
He, J. H., Homotopy perturbation technique, Comput. Methods Appl. Mech. Eng., 178 (1999), pp. 257–262.

[5]
He, J. H., A coupling method of homotopy technique and perturbation technique for nonlinear problems, Int. J. Nonlinear Mech., 35 (2000), pp. 37–43.

[6]
Das, S. and Gupta, P. K., An approximate analytical solution of the fractional diffusion equation with absorbent term and external force by homotopy perturbation method, Zeitschrift-für-Naturforschung, 65a(3) (2010), pp. 182–190.

[7]
Tian, L. and Gao, Y., The global attractor of the viscous Fornberg-Whitham equation, Nonlinear Anal. Theory Method Appl., 71 (2009), pp. 5176–5186.

[8]
Mallan, F. and Al-Khaled, K., An approximation of the analytic solution of the shock wave equation, Comput. Appl. Math., 192 (2006), pp. 301–330.

[9]
Berberler, M. and Yildrim, E. A., He’s homotopy perturbation method for solving shock wave equation, Appl. Anal., 88 (2009), pp. 997–1004.

[10]
Golbabai, A. and Sayevand, K., The homotopy perturbation method for multi-order time fractional differential equations, Nonlinear Sci. Lett. A, 1 (2010), pp. 147–154.

[11]
Singh, J., Gupta, P. K. and Rai, K. N., Homotopy perturbation method to space-time fractional solidification in a finite slab, Appl. Math. Model., 35 (2010), pp. 1937–1945.

[12]
Gupta, P. K. and Singh, M., Homotopy perturbation method for fractional Fornberg-Whitham equation, Comput. Math. Appl., 61 (2011), pp. 250–254.

[13]
Zhang, S., Zong, Q.-A., D. L., and Gao, Q., A generalized exp-function method for fractional riccati differential equations, Commun. Fractional Calculus, 1 (2010), pp. 48–51.

[14]
Das, S., Gupta, P. K. and Kumar, R., The homotopy analysis method for fractional Cauchy reaction-diffusion problems, Int. J. Chem. React. Eng., 9 (2011), pp. A15.

[15]
Gupta, P. K., Approximate analytical solutions of fractional Benney-Lin equation by reduced differential transformation and homotopy perturbation method, Comput. Math. Appl., 61 (2011), pp. 2829–2842.

[16]
Chow, C. Y., An Introduction to Computational Fluid Mechanics, Wiley, New York, 1979.

[17]
Kevorkian, J., Partial Differential Equations, Analytical Solution Techniques, Wadsworth and Brooks, New York, 1990.

[18]
Al-Khaled, K., Theory and Computations in Hyperbolic Model Problems, Ph.D. Thesis. University of Nebraska-Lincoln, USA, 1996.

[19]
He, J. H., Periodic solutions and bifurcations of delay-differential equations, Phys. Lett. A, 347 (2005), pp. 228–230.

[20]
He, J. H., Application of homotopy perturbation method to nonlinear wave equations, Chaos Soliton. Fract., 26 (2005), pp. 695–700.

[21]
He, J. H., Limit cycle and bifurcation of nonlinear problems, Chaos Soliton. Fract., 26 (2005), pp. 827–833.

[22]
Abbaoui, K. and Cherruault, Y., New ideas for proving convergence of decomposition methods, Comput. Math. Appl., 29 (1995), pp. 103–108.