Skip to main content

A decision model for making decisions under epistemic uncertainty and its application to select materials

  • Sweety Shahinur (a1), A.M.M. Sharif Ullah (a2), Muhammad Noor-E-Alam (a3), Hiroyuki Haniu (a2) and Akihiko Kubo (a2)...

This study deals with both a decision model for making decisions under epistemic uncertainty and how to use it for selecting optimal materials under the same uncertainty. In particular, the proposed decision model employs a set of possibilistic objective functions defined by fuzzy numbers to handle a set of conflicting criteria. In addition, the model can calculate the compliance of a piece of decision-relevant (imprecise) information with a given objective function. Moreover, the model is capable to aggregate the calculated compliances for the sake of ranking a given set of alternatives against the set of conflicting criteria. The problem of selecting materials for making the body of a vehicle is considered as an example. In this problem, the indices for selecting the materials are unknown because the specifications regarding the vehicle body are not given. In addition, the data relevant to material properties entails a great deal of imprecision. The presented decision model can quantify the above-mentioned epistemic uncertainty in a lucid manner and generate a list of optimal materials.

Corresponding author
Reprint requests to: A.M.M. Sharif Ullah, Department of Mechanical Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507, Japan. E-mail:
Hide All
Achiche, S., & Ahmed-Kristensen, S. (2011). Genetic fuzzy modeling of user perception of three-dimensional shapes. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 25(1), 93107. doi:10.1017/S0890060410000466
Allwood, J.M., Ashby, M.F., Gutowski, T.G., & Worrell, E. (2011). Material efficiency: a white paper. Resources, Conservation and Recycling 55(3), 362381. doi:10.1016/j.resconrec.2010.11.002
Antonsson, E.K., & Otto, K.N. (1995). Imprecision in engineering design. Journal of Mechanical Design 117(B), 2532. doi:10.1115/1.2836465
Ashby, M.F. (2005). Materials Selection in Mechanical Design, 3rd ed. Oxford: Butterworth-Heinemann.
Booker, J.M., & Ross, T.J. (2011). An evolution of uncertainty assessment and quantification. Scientia Iranica 18(3), 669676. doi:10.1016/j.scient.2011.04.017
Dempster, A.P. (1968). A generalization of Bayesian inference. Journal of the Royal Statistical Society. Series B (Methodological) 30(2), 205247.
Dempster, A.P. (2008). A generalization of Bayesian inference. In Classic Works of the Dempster-Shafer Theory of Belief Functions (Yager, R.R., & Liu, L., Eds.), pp. 73104. Berlin: Springer.
Dijkman, J.G., van Haeringen, H., & de Lange, S.J. (1983). Fuzzy numbers. Journal of Mathematical Analysis and Applications 92(2), 301341. doi:10.1016/0022-247X(83)90253-6
Dubois, D., Foulloy, L., Mauris, G., & Prade, H. (2004). Probability-possibility transformations, triangular fuzzy sets, and probabilistic inequalities. Reliable Computing 10(4), 273297. doi:10.1023/B:REOM.0000032115.22510.b5
Dubois, D., & Prade, H. (1978). Operations on fuzzy numbers. International Journal of Systems Science 9(6), 613626. doi:10.1080/00207727808941724
Dubois, D., & Prade, H. (1988). Possibility Theory. New York: Plenum Press.
Gurnani, A.P., & Lewis, K. (2005). Robust multiattribute decision making under risk and uncertainty in engineering design. Engineering Optimization 37(8), 813830. doi:10.1080/03052150500340520
Huang, G.Q., & Jiang, Z. (2002). FuzzySTAR: fuzzy set theory of axiomatic design review. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 16(4), 291302. doi:10.1017/S0890060402164031
Jiang, Z., Li, W., Apley, D.W., & Chen, W. (2015). A spatial-random-process based multidisciplinary system uncertainty propagation approach with model uncertainty. Journal of Mechanical Design 137(10), 101402101402. doi:10.1115/1.4031096
Joslyn, C.A., & Booker, J.M. (2004). Generalized information theory for engineering modeling and simulation. In Engineering Design Reliability Handbook (Nikolaidis, E., Ghiocel, D.M., & Singhal, S., Eds.). Boca Raton, FL: CRC Press.
Khozaimy, O., Al-Dhaheri, A., & Ullah, A.M.M.S. (2011). A decision-making approach using point-cloud-based granular information. Applied Soft Computing 11(2), 25762586. doi:10.1016/j.asoc.2010.10.007
Klir, G.J. (1990). A principle of uncertainty and information invariance. International Journal of General Systems 17(2–3), 249275. doi:10.1080/03081079008935110
Klir, G.J. (1999). On fuzzy-set interpretation of possibility theory. Fuzzy Sets and Systems 108(3), 263273. doi:10.1016/S0165-0114(97)00371-0
Matsumura, T., & Haftka, R.T. (2013). Reliability based design optimization modeling future redesign with different epistemic uncertainty treatments. Journal of Mechanical Design 135(9), 091006091006. doi:10.1115/1.4024726
Mayyas, A.T., Mayyas, A., Qattawi, A., & Omar, M.A. (2012). Sustainable lightweight vehicle design: a case study of eco-material selection for body-in-white. International Journal of Sustainable Manufacturing 2(4), 317337. doi:10.1504/IJSM.2012.048586
Mayyas, A.T., Qattawi, A., Omar, M., & Shan, D. (2012). Design for sustainability in automotive industry: a comprehensive review. Renewable and Sustainable Energy Reviews 16(4), 18451862. doi:10.1016/j.rser.2012.01.012
McDowell, D.L., Panchal, J.H., Choi, H.-J., Seepersad, C.C., Allen, J.K., & Mistree, F. (2010). Managing Design Complexity Integrated Design of Multiscale, Multifunctional Materials and Products. Boston: Butterworth-Heinemann.
Nikolaidis, E., Chen, S., Cudney, H., Haftka, R.T., & Rosca, R. (2003). Comparison of probability and possibility for design against catastrophic failure under uncertainty. Journal of Mechanical Design 126(3), 386394. doi:10.1115/1.1701878
Nikolaidis, E., Ghiocel, D.M., & Singhal, S. (Eds.) (2004). Engineering Design Reliability Handbook. Boca Raton, FL: CRC Press.
Noor-E-Alam, M., Lipi, T.F., Hasin, M.A.A., & Sharif Ullah, A.M.M. (2011). Algorithms for fuzzy multi expert multi criteria decision making (ME-MCDM). Knowledge-Based Systems 24(3), 367377. doi:10.1016/j.knosys.2010.10.006
Omar, M.A. (2011). The Automotive Body Manufacturing Systems and Processes. Hoboken, NJ: Wiley.
Poulikidou, S., Schneider, C., Björklund, A., Kazemahvazi, S., Wennhage, P., & Zenkert, D. (2015). A material selection approach to evaluate material substitution for minimizing the life cycle environmental impact of vehicles. Materials & Design, 83, 704712. doi:10.1016/j.matdes.2015.06.079
Rashid, M.M., Sharif Ullah, A.M.M., Tamaki, J., & Kubo, A. (2011). Evaluation of hard materials using eco-attributes. Advanced Materials Research 325, 693698.
Rezaee, R., Brown, J., Augenbroe, G., & Kim, J. (2015). Assessment of uncertainty and confidence in building design exploration. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 29(4), 429441. doi:10.1017/S0890060415000426
Ross, T.J., Booker, J.M., & Montoya, A.C. (2013). New developments in uncertainty assessment and uncertainty management. Expert Systems With Applications 40(3), 964974. doi:10.1016/j.eswa.2012.05.054
Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton, NJ: Princeton University Press.
Shamasuzzaman, M., Sharif Ullah, A.M.M., & Dweiri, F.T. (2013). A fuzzy decision model for the selection of coals for industrial use. International Journal of Industrial and Systems Engineering 14(2), 230244.
Sharif Ullah, A.M.M., Fuji, A., Kubo, A., & Tamaki, J. (2014). Analyzing the sustainability of bimetallic components. International Journal of Automation Technology 8(5), 745753.
Sharif Ullah, A.M.M., Rashid, M.M., & Tamaki, J. (2012). On some unique features of C-K theory of design. CIRP Journal of Manufacturing Science and Technology 5(1), 5566. doi:10.1016/j.cirpj.2011.09.001
Sharif Ullah, A.M.M., Sato, M., Watanabe, M., & Rashid, M.M. (2016). Integrating CAD, TRIZ, and customer needs. International Journal of Automation Technology 10(2), 132143.
Sharif Ullah, A.M.M., & Shamsuzzaman, M. (2013). Fuzzy Monte Carlo simulation using point-cloud-based probability-possibility transformation. Simulation 89(7), 860875. doi:10.1177/0037549713482174
Sharif Ullah, A.M.M., & Tamaki, J. (2011). Analysis of Kano-model-based customer needs for product development. Systems Engineering 14(2), 154172. doi:10.1002/sys.20168
Ullah, A.M.M.S. (2005a). A fuzzy decision model for conceptual design. Systems Engineering 8(4), 296308. doi:10.1002/sys.20038
Ullah, A.M.M.S. (2005b). Handling design perceptions: an axiomatic design perspective. Research in Engineering Design 16(3), 109117. doi:10.1007/s00163-005-0002-2
Ullah, A.M.M.S. (2008). Logical interaction between domain knowledge and human cognition in design. International Journal of Manufacturing Technology and Management 14(1–2), 215227. doi:10.1504/IJMTM.2008.017496
Ullah, A.M.M.S., & Harib, K.H. (2008). An intelligent method for selecting optimal materials and its application. Advanced Engineering Informatics 22(4), 473483. doi:10.1016/j.aei.2008.05.006
Ullah, A.M.M.S., Hashimoto, H., Kubo, A., & Tamaki, J. (2013). Sustainability analysis of rapid prototyping: material/resource and process perspectives. International Journal of Sustainable Manufacturing 3(1), 2036. doi:10.1504/IJSM.2013.058640
Walley, P. (1991). Statistical Reasoning With Imprecise Probabilities. London: Chapman Hall.
Walley, P. (2000). Towards a unified theory of imprecise probability. International Journal of Approximate Reasoning 24(2–3), 125148. doi:10.1016/S0888-613X(00)00031-1
Youn, B.D., & Choi, K.K. (2004). Selecting probabilistic approaches for reliability-based design optimization. AIAA Journal 42(1), 124131. doi:10.2514/1.9036
Zadeh, L.A. (1975). The concept of a linguistic variable and its application to approximate reasoning. Information Sciences Part I (8), 199249; Part II (8), 301–357; Part III (9), 43–80.
Zadeh, L.A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1(1), 328. doi:10.1016/0165-0114(78)90029-5
Zadeh, L.A. (2005). Toward a generalized theory of uncertainty (GTU)––an outline. Information Sciences 172(1–2), 140. doi:10.1016/j.ins.2005.01.017
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0890-0604
  • EISSN: 1469-1760
  • URL: /core/journals/ai-edam
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed