Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T16:29:02.328Z Has data issue: false hasContentIssue false

Evaluation of the Flote-Tech Machine-Assisted Flotation System

Published online by Cambridge University Press:  20 January 2017

Andrea A. Hunter
Affiliation:
Laboratory of Paleoethnobotany, Department of Anthropology, Northern Arizona University, Campus Box 15200, Flagstaff, AZ 86011
Brian R. Gassner
Affiliation:
Laboratory of Paleoethnobotany, Department of Anthropology, Northern Arizona University, Campus Box 15200, Flagstaff, AZ 86011

Abstract

Recently, the Flote-Tech machine-assisted flotation system was introduced as a new technique for processing soil samples in arid environments and areas with limited or no access to water resources. This system uses water recirculation in a closed loop between a water reservoir and a flotation tank, aided by diffused air, to extract archaeological botanical remains from soil samples. The paper presents two experiments conducted to assess macroremain recovery rate, flotation rate, and the potential for cross-contamination between soil samples. In addition, Flote-Tech recovery and flotation rates are compared with rates achieved using IDOT manual and SMAP machine-assisted systems. The first set of experiments using the original 1-mm screen in the flotation box received high ratings for large, medium, and small seeds, but rated poorly for very small seeds. After installing a .5-mm screen, a higher percentage of small and very small seeds was recovered. Flotation rates for the customized Flote-Tech system ranked high, matching flotation rates for SMAP systems and out-performing manual IDOT systems by a factor of four to eight. In addition, a distinct advantage of the Flote-Tech system over other machine-assisted and manual systems is the elimination of cross-contamination between samples.

Résumé

Résumé

Recientemente, el sistema de flotación asistida por la máquina Flote-Tech fue introducido corno una nueva técnica para procesar muestras de suelo en los medioambientes y áreas con acceso limitado o sin acceso a los recursos de agua. Este sistema utiliza la recirculación de agua en un circuito cerrado entre un tanque de agua y un tanque de flotación, ayudado por el aire difundido, para extraer restos botánicos arqueológicos de los muestras de suelos. Este papel presenta dos experimentos llevados a cabo para evaluar la tasa de recuperación de los macrorestos, la tasa de flotación, y la capacidad de contaminación entre elementos de las muestras de suelo. El estudio compara además las tasas de recuperación y de flotación por Flote-Tech con las tasas obtenidas utilizando los sistemas de flotación asistida por máquina IDOT (Illinois Department of Transportation) y SMAP (Shellmound Archaeological Project). El primer bloque de pruebas con el filtro original de 1 mm en la caja de flotación obtuvo tasas altas para semillas grandes, medianas, y pequenas, y muy bajas para las semillas muy pequeñas. Después de instalar un filtro de .5 mm, se recuperó un porcentaje más alto de semillas pequeñas y muy pequenas. Las tasas de flotación con el sistema Flote-Tech adaptado resultaron altas, igualándose con las tasas de flotación para los sistemas SMAP y mejorándose los sistemas manuales IDOT en un factor de cuatro a ocho. Además, una ventaja distinta del sistema Flote-Tech sobre otros sistemas mecanizados o manuales, es la eliminación de contaminacion entre elementos de las muestras.

Type
Reports
Copyright
Copyright © The Society for American Archaeology 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Berg, C. M. 1997 Flotation Log, Bluff Great House Site: Field Notes. Manuscript on file, Laboratory of Paleoethnobotany, Northern Arizona University, Flagstaff.Google Scholar
Cutler, H. 1956 The Plant Remains. In Higgins Flat Pueblo, by Martin, P., Rinaldo, J., Bluhm, E., and Cutler, H., pp. 174183. Fieldiana: Anthropology Vol. 45. Field Museum of Natural History, Chicago.Google Scholar
Dausman, R. J. 1989 Multimodal Flotation. Wisconsin Archaeologist 70: 362364.Google Scholar
Dye, D. H., and Moore, K. H. 1978 Recovery Systems for Subsistence Data: Water Screening and Water Flotation. Tennessee Anthropologist 3: 5969.Google Scholar
Hendry, G. W., and Bellue, M. K. 1936 An Approach to Southwestern Agricultural History through Adobe Brick Analysis. In Symposium on Prehistoric Agriculture, edited by Brand, D. D., pp. 6572. Anthropological Series Bulletin Vol. 1, No. 5. University of New Mexico, Albuquerque.Google Scholar
Hunter, A. A. 1988 Hotation Recovery Tests, Tremaine Site: Laboratory Notes. Manuscript on file, Laboratory of Paleoethnobotany, Northern Arizona University, Flagstaff.Google Scholar
Hunter, A. A. 1990 Notation Recovery Tests, OT Site: Laboratory Notes. Manuscript on file, Laboratory of Paleoethnobotany, Northern Arizona University, Flagstaff.Google Scholar
Hunter, A. A. 1996 Flotation Log and Flotation Recovery Tests, Skaggs Site: Laboratory Notes. Manuscript on file, Laboratory of Paleoethnobotany, Northern Arizona University, Flagstaff.Google Scholar
Hunter, A. A. 1997 Hotation Log, Elden Pueblo Site: Laboratory Notes. Manuscript on file, Laboratory of Paleoethnobotany, Northern Arizona University, Flagstaff.Google Scholar
Hunter, A. A., Babb, C. J., and Minor, J. C. 1995 Preliminary Results from the Analysis of Plant Remains Recovered from the N16 Project Sites. Laboratory of Paleoethnobotany, Northern Arizona University. Submitted to Navajo Nation, Window Rock, Arizona. Copies available from the Navajo Nation Archaeology Department, Flagstaff, Arizona.Google Scholar
Hunter, A. A., and Berg, C. M. 1993 Analysis of Floral Remains. In The OT Site (47-Lc- 262), by O'Gorman, J., pp. 117140. The Tremaine Site Complex: Oneota Occupation in the La Crosse Locality, Wisconsin, vol. 1. Archaeology Research Series No. 1. State Historic Society of Wisconsin, Madison, Wisconsin.Google Scholar
Hunter, A. A., and Pearsall, D. M. 1986 Paleoethnobotany of the Osage and Missouri Indians: Analysis of Plant Remains from Historic Village Sites. Missouri Archaeologist 47: 173196.Google Scholar
Hunter, A. A., and Umlauf, M. L. 1989 Preliminary Analysis of Floral Remains from the OT Site (47-LC-262). In The OT Site (47-LC-262) 1987 Archaeological Excavations: Preliminary Report, by O'Gorman, J. A., pp. 56125. Archaeological Report No. 15. Wisconsin Department of Transportation, Madison.Google Scholar
Hunter, A. A., and Wright, K. A. 1995 Archaeological Materials Analysis: Paleoethnobotanical Analysis. In Archaeological Excavations at NM-Q-41-29, A Discovery Situation at an Indian Health Service Project Near Baca, New Mexico, by Spurr, K. and Gilpin, D., pp. 3650. Archaeology Department Report No. 89-329, Addendum I (IHS NA-89-759, BIA NAO NTM-89-424, NPS 92-HHS-006). Navajo Nation, Window Rock, Arizona.Google Scholar
Johannessen, S. 1984 Paleoethnobotany. In American Bottom Archaeology: A Summary of the FAI-270 Project Contribution to the Culture History of the Mississippian River Valley, edited by Bareis, C. J. and Porter, J.W. pp. 197214. University of Illinois Press, Urbana.Google Scholar
Miller, G., Ambos, N., Boness, P., Reyher, D., Robertson, G., 1995 Terrestrial Ecosystem Survey of the Coconino National Forest. United States Department of Agriculture, Forest Service, Southwestern Region, Albuquerque, New Mexico.Google Scholar
Minnis, P., and LeBlanc, S. 1976 An Efficient, Inexpensive Arid Lands Flotation System. American Antiquity 41: 491493.CrossRefGoogle Scholar
Montgomery, R. G., Smith, W., and Brew, J. O. 1949 Franciscan Awatovi. Papers of the Peabody Museum of American Archaeology and Ethnology Vol. 36, No. 3. Harvard University, Cambridge, Massachusetts.Google Scholar
Pearsall, D. M. 1983 Flotation Recovery Tests, Osage and Missouri Project: Laboratory Notes. Manuscript on file, American Archaeology Division, University of Missouri, Columbia.Google Scholar
Pearsall, D. M. 1989 Paleoethnobotany: A Handbook of Procedures. Academic Press, San Diego.Google Scholar
Pearsall, D. M., Hunter, A. A., and Yelton, J. K. 1985 Biological Data. In Osage and Missouri Indian Life Cultural Change: 1675-1825. Part Three, pp. 394699. Final performance report submitted to the National Endowment for the Humanities, Research Grant RS-20296. Copies available from the American Archaeology Division, University of Missouri, Columbia.Google Scholar
Pulliam, C. B. 1986 Flotation Recovery Tests, Old Monroe Project: Laboratory Notes. Manuscript on file, American Archaeology Division, University of Missouri, Columbia.Google Scholar
Struever, S. 1968 Flotation Techniques for the Recovery of Small-Scale Archaeological Remains. American Antiquity 33: 353362.CrossRefGoogle Scholar
Wagner, G. E. 1976 IDOT Flotation Procedure Manual. Manuscript on file, Illinois Department of Transportation, District 8, Springfield.Google Scholar
Wagner, G. E. 1977 The Dayton Museum of Natural History Flotation Procedure Manual. Manuscript on file, Dayton Museum of Natural History, Dayton, Ohio. Google Scholar
Wagner, G. E. 1982 Testing Flotation Recovery Rates. American Antiquity 47: 127132.CrossRefGoogle Scholar
Wagner, G. E. 1988 Comparability among Recovery Techniques. In Current Paleoethnobotany: Analytical Methods and Cultural Interpretations of Archaeological Plant Remains, edited by Hastorf, C. A. and Popper, V.S. pp. 1735. University of Chicago Press, Chicago.Google Scholar
Wagner, G. E. 1976 In Pursuit of Prehistoric Subsistence: A Comparative Account of Some Contemporary Flotation Techniques. Midcontinental Journal of Archaeology 1: 77100.Google Scholar
Wittmack, L. 1905 Our Present Knowledge of Ancient Plants. In Transactions of the Academy of Science of St. Louis XV. No. 1. St. Louis, Missouri.Google Scholar