Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-04T03:20:13.272Z Has data issue: false hasContentIssue false

Assessing the risk status of livestock breeds: a multi-indicator method applied to 178 French local breeds belonging to ten species

Published online by Cambridge University Press:  08 September 2015

E. Verrier*
Affiliation:
INRA, UMR1313 Génétique animale et biologie intégrative, Jouy-en-Josas, France AgroParisTech, UMR1313 Génétique animale et biologie intégrative, Paris, France
A. Audiot
Affiliation:
INRA, UE0057 DESLP, Saint-Laurent-de-la-Prée, France
C. Bertrand
Affiliation:
INRA, US0310 CTIG, Jouy-en-Josas, France
H. Chapuis
Affiliation:
SYSAAF, Centre INRA Val de Loire, 37380 Nouzilly, France
E. Charvolin
Affiliation:
INRA, UMR1313 Génétique animale et biologie intégrative, Jouy-en-Josas, France Fondation pour la Recherche sur la Biodiversité, Paris, France
C. Danchin-Burge
Affiliation:
Institut de l'Elevage, Paris, France
S. Danvy
Affiliation:
IFCE, Le Pin-au-Haras, France
J.L. Gourdine
Affiliation:
INRA, UR0143 Unité de Recherches Zootechniques, Petit-Bourg, Guadeloupe-FWI, France
P. Gaultier
Affiliation:
SYSAAF, Centre INRA Val de Loire, 37380 Nouzilly, France
D. Guémené
Affiliation:
SYSAAF, Centre INRA Val de Loire, 37380 Nouzilly, France
D. Laloë
Affiliation:
INRA, UMR1313 Génétique animale et biologie intégrative, Jouy-en-Josas, France
H. Lenoir
Affiliation:
Institut du Porc, Le Rheu, France
G. Leroy
Affiliation:
INRA, UMR1313 Génétique animale et biologie intégrative, Jouy-en-Josas, France AgroParisTech, UMR1313 Génétique animale et biologie intégrative, Paris, France
M. Naves
Affiliation:
INRA, UR0143 Unité de Recherches Zootechniques, Petit-Bourg, Guadeloupe-FWI, France
S. Patin
Affiliation:
Races de France, Paris, France
M. Sabbagh
Affiliation:
IFCE, Le Pin-au-Haras, France
*
Correspondence to: E. Verrier, AgroParisTech, 16 rue Claude Bernard, 75231 Paris 05, France. email: etienne.verrier@agroparistech.fr
Get access

Summary

Breed risk status assessment methods are key components of country-based early warning and response systems. In this study, a multi-indicator method was developed to assess the risk status of livestock populations. Six indicators were used: (i) the current number of breeding females; (ii) the change in the number of breeding females over the last 5 years or generations (depending on the species); (iii) percentage of cross-breeding; (iv) effective population size; (v) breeders organization and technical support; and (vi) socio-economic context. To make these indicators comparable, observed values were converted into scores on a six-point scale (from 0 = no threat to 5 = maximum threat); a specific conversion method was used for each indicator. For each breed, the different scores were analysed graphically and an overall score was calculated by averaging the six separate indicator scores. This approach was applied to 178 French local breeds, belonging to ten different species: horse, donkey, goat, pig, chicken, turkey, goose and Pekin duck. A large percentage of local breeds were found to be at risk to be lost for farming, although the results were species dependent. All local equine and pig breeds, as well as almost all local poultry breeds appeared to be endangered. About 80 percent of local goat and cattle breeds, and half local sheep breeds were also found to be at risk. The usefulness of this method with regards to conservation strategies and public policy is discussed.

Résumé

La classification des races animales selon leur statut vis-à-vis d'un risque de disparition est un élément-clef d'un système national d'alerte et de suivi des ressources génétiques. Une approche multi-indicateurs a été développée pour établir le degré de menace d'une population animale domestique. Au total, six indicateurs ont été retenus : (i) le nombre total de femelles reproductrices, (ii) l’évolution de ce nombre dans les cinq dernières années, ou générations, selon l'espèce ; (iii) la proportion de croisement ; (iv) la taille efficace de la population ; (v) l'organisation des éleveurs et l'appui technique ; (vi) le contexte socio-économique. Afin de faciliter la combinaison de ces indicateurs de nature différente, les valeurs observées sont converties sur une échelle de 0 (absence de menace) à 5 (menace maximale), la correspondance entre valeurs observées et notes étant spécifique de chaque indicateur. Pour chaque race, les notes sont représentées de façon graphique et une note de synthèse est attribuée en calculant la simple moyenne des six notes. Cette méthode a été appliquée à 178 races locales françaises appartenant à dix espèces différentes : cheval, âne, bovins, ovins, caprins, porc, poule, dinde, oie, canard commun. Il a été ainsi montré que la plupart des races locales françaises peuvent être considérées comme menacées : toutes les races locales d’équidés et de porc, la quasi-totalité des races locales de volailles, environ 80% des races locales bovines ou caprines, et la moitié des races locales ovines. L'intérêt de cette méthode pour la définition de stratégies de conservation et l’élaboration de politiques publiques est discuté.

Resumen

La clasificación de las razas animales según su nivel de peligro en cuanto a su desaparición es un elemento de base para un sistema nacional de alerta y de monitoreo de los recursos genéticos. Un enfoque multicriterio ha sido desarrollado para establecer el nivel de peligro de una población animal doméstica. En total, se mantuvieron seis criterios: (i) el número total de hembras reproductoras, (ii) la evolución de este número en los cincos últimos anos, o las cincos generaciones, según la especie; (iii) la proporción de cruzamientos; (iv) el tamaño efectivo de la población, (v) la organización de los criadores y el apoyo técnico; (vi) el contexto socio-económico. Con el propósito de facilitar la combinación de estos criterios de tipo diferente, los valores observados fueron convertidos en una escala de 0 (ausencia de amenaza) a 5 (amenaza máxima), la correspondencia entre valores observados y notas siendo especifica por cada criterio. Para cada raza, las notas están presentadas de forma gráfica y una nota de síntesis está calculada como la media de las seis notas. Este método ha sido aplicado a 178 razas locales francesas perteneciendo a diez diferentes especies: ganado, ovino, caprino, cerdo, caballo, asno, gallina, pavo, oca, pato común. Así se demostró que la mayoría de las razas locales francesas se pueden considerar como en peligro: todas las razas locales de équido y de cerdo, casi la totalidad de las razas locales de aves de corral, alrededor de 80% de las razas locales de ganado o caprinos y la mitad de razas locales de ovinos. Se discute el interés de este método para la definición de estrategias de conservación et la elaboración de políticas públicas.

Type
Research Article
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alderson, L. 2003. Criteria for the recognition and prioritisation of breeds of special genetic importance. Anim. Genet. Resources Info., 33: 19.Google Scholar
Alderson, L. 2010. Breeds at risk: criteria and classification. Joint ERFP/RBI/RBST workshop summary report, London, 16–17 February 2010.Google Scholar
Audiot, A. 1995. Races d'hier pour l’élevage de demain. Paris, INRA Editions.Google Scholar
Boichard, D., Maignel, L. & Verrier, E. 1997. Value of using probabilities of gene origin to measure genetic variability in a population. Genet. Select. Evol., 29: 523.CrossRefGoogle Scholar
Cervantes, I., Goyache, F., Molina, A., Valera, M. & Gutiérrez, J.P. 2011. Estimation of effective population size from the rate of coancestry in pedigreed populations. J. Anim. Breed. Genet., 128: 5663.CrossRefGoogle ScholarPubMed
Danchin-Burge, C., Leroy, G., Moureaux, S. & Verrier, E. 2012. Evolution of the genetic variability of 8 French dairy cattle breeds assessed by pedigree analysis. J. Anim. Breed. Genet., 129: 206217.CrossRefGoogle Scholar
Danchin-Burge, C., Verrier, E., Laloë, D., Saintilan, R. & Leroy, G. 2014. Setting up an observatory of the genetic variability of ruminants and equids breeds: first results based on pedigree and SNP information. 10th World Congress on Genetics Applied to Livestock Production, Vancouver, 17–22 August 2014.Google Scholar
FAO, 2004. Secondary guidelines for the development of management plans of the animal genetic resources at the national level. FAO Publications, Rome.Google Scholar
FAO. 2007. Global plan of action for animal genetic resources and the Interlaken declaration. Rome, FAO, 38 pp., (available at http://www.fao.org/docrep/010/a1404e/a1404e00.htm [consulted on 10 April 2015]).Google Scholar
FAO. 2010. Report of a workshop on indicators to measure trends in genetic diversity of domesticated animals, held in Rome, 9–10 February 2010, Pilling, D. & Scherf, B.D., ed. Rome.Google Scholar
FAO. 2015. Second state of the world's animal genetic resources for food and agriculture. Rome, Italy, FAO.Google Scholar
Frankham, R., Bradshow, C.J.A. & Brook, B.W. 2014. Genetics in conservation management: revised recommendations for the 50/500 rules, red list criteria and population viability analyses. Biol. Cons., 170: 5663.CrossRefGoogle Scholar
Gandini, G., Ollivier, L., Danell, B., Distl, O., Geogoudis, A., Groeneveld, E., Martyniuk, E., Van Arendonk, J. & Woolliams, J. 2004. Criteria to assess the degree of endangerment of livestock breeds in Europe. Livest. Prod. Sci., 91: 173182.CrossRefGoogle Scholar
Lambert-Derkimba, A., Casabianca, F. & Verrier, E. 2006. L'inscription du type génétique dans les règlements techniques des produits animaux sous AOC : conséquences pour les races animales. INRA Productions Animales, 19: 357370.CrossRefGoogle Scholar
Lambert-Derkimba, A., Lauvie, A. & Verrier, E. 2013. How the development of products valorizing local breeds changes breeding goals: examples from French cattle breeds. Anim. Genet. Resources, 53: 135140.CrossRefGoogle Scholar
Lauvie, A., Danchin-Burge, C., Audiot, A., Brives, H., Casabianca, F. & Verrier, E. 2008. A controversy about crossbreeding in a conservation programme: the case study of the Flemish Red cattle breed. Livest. Sci., 118: 113122.CrossRefGoogle Scholar
Lauvie, A., Audiot, A., Couix, N., Casabianca, F., Brives, H. & Verrier, E. 2011. Diversity of rare breed management programs: between conservation and development. Livest. Sci., 140: 161170.CrossRefGoogle Scholar
Leroy, G., Mary-Huard, T., Verrier, E., Danvy, S., Charvolin, E. & Danchin-Burge, C. 2013. Estimating the effective population size using pedigree data: what method in practice? Examples in dog, sheep, cattle and horses. Genet. Select. Evol., 45: 1.CrossRefGoogle Scholar
Loftus, R. & Scherf, B. eds. 1993. World watch list for domestic animal diversity. 1st edition. Rome, FAO.Google Scholar
Scherf, B. ed. 2000. World watch list for domestic animal diversity. 3rd edition. Rome, FAO.Google Scholar
Verrier, E., Tixier-Boichard, M., Bernigaud, R. & Naves, M. 2005. Conservation and values of local livestock breeds: usefulness of niche products and/or adaptation to specific environments. Anim. Genet. Resources Info., 36: 2131.CrossRefGoogle Scholar
Wright, S. 1931. Evolution in Mendelian populations. Genetics, 16: 97159.CrossRefGoogle ScholarPubMed