Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-16T13:59:29.123Z Has data issue: false hasContentIssue false

Characterization of indigenous pigs in Southwestern Nigeria using blood protein polymorphisms

Published online by Cambridge University Press:  27 September 2012

A.C. Adeola*
Affiliation:
Department of Animal Sciences, Obafemi Awolowo University, Ile-Ife 2220005, Nigeria
O.G. Omitogun
Affiliation:
Department of Animal Sciences, Obafemi Awolowo University, Ile-Ife 2220005, Nigeria
*
Correspondence to: A.C. Adeola, Department of Animal Sciences, Obafemi Awolowo University, Ile-Ife 2220005, Nigeria. email: chadeola@yahoo.com
Get access

Summary

The Nigerian indigenous pigs (NIP) are threatened to lose their genetic diversity through unsustainable farming practices in Nigeria. Therefore, the genetic relationships of NIP and commercially developed cross-bred pigs were evaluated to pinpoint a possible source of pure uncontaminated genetic stocks of NIP for conservation. Blood protein polymorphisms were used as a preliminary genetic analysis of blood samples from a total of 120 pigs (79 NIP from three separate locations and 41 cross-bred pigs). Nineteen polymorphic bands of the blood proteins globulin, transferrin and albumin were observed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and a phylogenetic dendrogram was developed to analyse the genetic relationship between the NIPs. The three NIPs were found to have a high genetic similarity (84 percent similarity coefficient), and were found to be distinctly different from the commercially cross-bred strains. One line from a farm in Ogbooro, Saki Oyo, Nigeria was identified as a relatively stable genetic resource that may be a suitable NIP for future conservation efforts.

Résumé

Les diversités génétiques et les relations avec les porcs indigènes du Nigéria (NIP) et des ceux Croisés ont été évalués pour pourvoir ciblé une source possible des stocks génétiques purs non-contaminés dans le but de la conservation finale des NIP. Un total de 120 échantillons des couchons ont été recueilli, dont 79 étaient NIP et 41 Croissées. Subsequenment, 12% SDS-PAGE (éléctrophorèse d'acrylamide avec sulfate de sodium dodécyl) a été fait et les profils éléctrophorètiques des animaux sont evalués et comparés. En suite l'analyse UPGMA a été construie pour les groupements génétiques. Tous les NIPs en provenance de trois localités ont revelé une haute similarités génétiques (84%) montrant leur relations génétiques très proches.

Resumen

La insostenibilidad de las prácticas ganaderas en Nigeria amenaza la diversidad genética de los cerdos autóctonos nigerianos (NIP por sus siglas en inglés). Por tanto, se evaluó la relación genética entre NIP y los cerdos cruzados usados a nivel comercial con el fin de detectar una posible fuente genética de NIP puros no contaminados para su conservación. El polimorfismo en las proteínas sanguíneas se usó como análisis genético preliminar en las muestras de sangre de un total de 120 cerdos (79 NIP procedentes de tres ubicaciones distintas y 41 cerdos cruzados). Mediante electroforesis en gel de poliacrilamida con dodecilsulfato sódico, se observaron 19 bandas polimórficas para las proteínas sanguíneas globulina, transferrina y albúmina. Se desarrolló un dendograma poligenético para analizar la relación genética entre los NIP. Así, se encontró que los tres grupos de NIP tenían una elevada similitud genética (84 percent de coeficiente de similitud) y que diferían claramente de las líneas cruzadas comerciales. En una granja de Ogbooro, Saki Oyo (Nigeria) se identificó una fuente genética relativamente estable de NIP que podría usarse para futuros esfuerzos de conservación.

Type
Research Article
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adebambo, O.A. 1982. Evaluation of the genetic potential of Nigerian indigenous pigs. Proceedings of the Second World Congress in Genetics Applied to Livestock Production, Madrid, pp. 543553.Google Scholar
Adebambo, O.A. & Onakade, A.D. 1983. Growth and carcass traits at crossbreed of exotic and Nigerian indigenous pig. Nigerian Journal of Animal Science, 3: 7187.Google Scholar
Adeleke, M.A., Peters, S.O., Ozoje, M.O., Ikeobi, C.O.N., Adebambo, A.O., Olowofeso, O., Bamgbose, A.M. & Adebambo, O.A. 2011. A preliminary screening of genetic lineage of Nigerian local chickens based on blood protein polymorphisms. Animal Genetic Resources, 48: 2328.CrossRefGoogle Scholar
Akst, E.P., Boersma, P.D. & Fleischer, R.C. 2002. A comparison of genetic diversity between the Galapagos penguin and the Magellanic penguin. Conservation Genetics, 3: 375–83.CrossRefGoogle Scholar
Archibald, A.L. & Haley, C.S. 1992. Porcine genome analysis. Strategies for Physical Mapping, 4: 99129.Google Scholar
Bhagavatula, J. & Singh, L.L. 2006. Genotyping faecal samples of Bengal tiger Panthera tigris tigris for population estimation: a pilot study. BMC Genetics, 7: 48.Google Scholar
Cardellino, R.A. 2006. Status of the world's livestock genetic resources. In: Ruane, J. & Sonnino, A., eds. The role of biotechnology in exploring and protecting agricultural genetic resources, pp. 39. Rome, Italy, FAO, 183 pp.Google Scholar
CSKSS (Committee for the Standard Karyotype of Sus scrofa) 1988. Standard karyotype of the domestic pig. Hereditas, 109: 151157.Google Scholar
CTA. 1994. Animal breeding, pp. 1824. London, Macmillan Publishers.Google Scholar
FAO. 2000. World watch list for domestic animal diversity, 3rd edn, p. 726. Rome, Italy (available at http://www.fao.org/docrep/009/x8750e/x8750e00.HTM).Google Scholar
FAO. 2007. The State of the World's Animal Genetic Resources for Food and Agriculture, edited by Rischkowsky, Barbara & Pilling, Dafydd. Rome (available at http://www.fao.org/docrep/010/a1250e/a1250e00.htm).Google Scholar
FAO. 2011. Molecular genetic characterization of animal genetic resources. FAO Animal Production and Health Guidelines. No. 9. Rome (available at http://www.fao.org/docrep/014/i2413e/i2413e00.pdf).Google Scholar
Fetuga, B.L.A., Babatunde, S.M. & Oyenuga, V.A. 1976. Performance of the Nigerian indigenous pig under intensive management condition. Nigerian Journal of Animal Production, 3(11), 148161.Google Scholar
Gaur, A., Shailaja, K., Singh, A., Arunabala, V., Satyarebala, B. & Singh, L. 2006. Twenty polymorphic microsatellite markers in the Asiatic lion (Panthera leo persica). Conservation Genetics, 7: 10051008.Google Scholar
Ghosh, A., Das, B. & Seshadri, M. 2003. Population genetic analysis among five Indian population groups using six microsatellite markers. Human Biology, 75: 189203.Google Scholar
Granevitze, Z., Hillel, J., Chen, G.H., Cuc, N.T.K., Feldman, M., Eding, H. & Weigend, S. 2007. Genetic diversity within chicken populations from different continents and management histories. Animal Genetics, 38: 576583.Google Scholar
Hammer, Ø., Harper, D.A.T. & Ryan, P.D. 2001. Paleontological statistics software package for educational and data analysis. Palaeontologia Electronica, 4(1), 9.Google Scholar
Handley, L.L.J., Santucci, K.B., Townsend, S., Taylor, M., Bruford, M.W. & Hewitt, G.M. 2007. Genetic structure of European sheep breeds. Heredity, 99: 620631.CrossRefGoogle Scholar
Holness, D.H. 1991. The tropical agriculturist (Pigs), pp 129. Wageningen, Netherlands, Published in co-operation with CTA.Google Scholar
Ikani, I.E. & Dafwang, I.I. 1995. Pig production technology for piggery farmers. Extension Bulletin Livestock series NAERLS, Zaria, A.B.U.Google Scholar
Kemp, S., Hishida, O., Wambugu, J., Rink, A., Longeri, M.L. & Ma, R.Z. 1995. A panel of polymorphic bovine, ovine, and caprine microsatellite markers. Animal Genetics, 26: 299306.Google Scholar
Kim, K.S. & Choi, C.B. 2002. Genetic structure of Korean native pig using microsatellite markers. Korean Journal Genetics, 24: 17.Google Scholar
Kim, K.S., Yeo, J.S. & Kim, J.W. 2002. Assessment of genetic diversity of Korean native pig (Sus scrofa) using AFLP markers. Genes Genetic System, 77: 361368.Google Scholar
Lemus, F.C., Alonso, M.R., Alonso-Spilsbury, M. & Ramirez, N.R. 2003. Morphologic characteristics in Mexican native pigs. Archivos de Zootecnia, 52: 105108.Google Scholar
MacHugh, D., Loftus, R.T., Cunningham, P. & Bradley, D.G. 1998. Genetic structure of seven European cattle breeds assessed using 20 microsatellite markers. Animal Genetics, 29: 333340.CrossRefGoogle ScholarPubMed
Nei, M. 1972. Genetic distance between populations. American Naturalist, 106: 283292.Google Scholar
Olomu, J.M. & Oboh, S.O. 1995. Pig production in Nigeria, principles and practice. AJACHEM Publication Benin–city Nigeria, 52 pp.Google Scholar
Oluwole, O.O. & Omitogun, O.G. 2009. Cytogenetic characterization of Nigerian indigenous pig. African Journal of Biotechnology, 8(18), 46964701.Google Scholar
Omitogun, O.G. 2004. Analysis of swine genome organization. Evaluation of G-T-G bands in porcine chromosomes for physical mapping. In Oriyo, O.J., Ikeobi, C.O.N., Ozoje, M. O., Omoniyi, T. & Kehinde, O.B., eds. Proceedings of the 29th Annual Conference of Genetics Society of Nigeria, NACGRAB, Moor Plantation, Ibadan pp. 5457.Google Scholar
Osaro, O.M. 1995. Enhancing production performance of small holder pig farmers. Pig production workshop Training Manual, NAERLS, A.B.U, Zaria, Nigeria, pp: 100130.Google Scholar
Oseni, S.O. 2005. Evaluation of the F1 and backcrosses of Nigerian local pigs and the Large White for litter characteristics in Southwest Nigeria. Livestock Research for Rural Development, 17(4). http://www.Irrd.org/Irrd17/4/osen17044.htm.Google Scholar
Pathiraja, N. & Oyedipe, E.O. 1990. Indigenous pig of Nigeria. Animal Genetic Resources Information (FAO), 7: 6370.Google Scholar
Peinado, B., Vega-Pla, J.L., Martinez, M.A., Galian, M., Barba, C., Delgado, J.V. & Poto, A. 2006. Chato Muciano pig breed: genetic and ethno zoological characterization. Animal Genetic Resources Information (FAO), 38: 7786.Google Scholar
Rege, J.E.O. & Gibson, J.P. 2003. Animal genetic resources and economic development: issues in relation to economic valuation. Ecological Economics, 45: 319330.Google Scholar
Sneath, P.H.A. & Sokal, R.R. 1973. Numerical taxonomy. The principles and practice of numerical taxonomy, 513 pp. San Francisco, W.H. Freeman and Company.Google Scholar
Sonaiya, E.B. 1987. Observation on growth, body dimension and carcass trait of NIP. Nigerian Journal of Animal Production, 12: 124130.Google Scholar
Vidya, T.N.C., Fernando, P., Melnick, D.J. & Sukumar, R. 2005. Population genetic structure and conservation of Asian elephants (Elephas maximus) across India. Animal Conservation, 8: 377388.CrossRefGoogle Scholar
Woolliams, J.A., Matika, O. & Pattison, J. 2008. Conservation of animal genetic resources: approaches and technologies for in situ and ex situ conservation. Animal Genetic Resources Information, 42: 7189.Google Scholar
Yu, J.W., Dixit, A., Ma, K.H., Chung, J.W. & Park, Y.J. 2009. A study on relative abundance, composition and length variation of microsatellites in 18 underutilized crop species. Genetic Resources and Crop Evolution, 56: 237246.Google Scholar