Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T12:30:49.589Z Has data issue: false hasContentIssue false

Indigenous cattle breeds and factors enhancing their variation, potential challenges of intensification and threats to genetic diversity in Uganda

Published online by Cambridge University Press:  16 December 2015

Fredrick Kabi*
Affiliation:
Molecular Genetics Laboratory, Department of Environmental Management, Makerere University, P.O. Box 7098, Kampala, Uganda National Livestock Resources Research Institute (NaLIRRI), P.O. Box 96, Tororo, Uganda
Vincent Muwanika
Affiliation:
Molecular Genetics Laboratory, Department of Environmental Management, Makerere University, P.O. Box 7098, Kampala, Uganda
Charles Masembe
Affiliation:
Department of Biological Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
*
Correspondence to: Fredrick Kabi, Molecular Genetics Laboratory, Department of Environmental Management, Makerere University, P.O. Box 7098, Kampala, Uganda. email: freddykabi@gmail.com
Get access

Summary

Indigenous cattle support approximately 26.1 percent of Ugandan families through provision of food and income in addition to the supply of socio-cultural wealth and security. Cattle keepers have developed and maintained variations of indigenous cattle phenotypes and genotypes suited to their agro-ecological zones through traditional management practices and socio-cultural aspects. The Ankole (Bos taurus indicus), East African shorthorn Zebu (Bos indicus) and their crossbred cattle constitute the main indigenous breeds, adding up to 93.3 percent of the Ugandan herd. With intensions to increase productivity, state policies encourage livestock farmers to upgrade local genotypes towards high yielding exotic dairy cattle. This if not appropriately planned is likely to result into loss of local genetic diversity, well endowed with resilience to local climatic conditions, endemic diseases and feed resource constraints. Here in, we review literature related to indigenous cattle in Uganda including how diverse landscapes, local management practices and socio-cultural aspects have enriched patterns of indigenous cattle variations. Then we highlight potential challenges of intensive management, increased selection for higher productivity and threats to genetic diversity of indigenous cattle populations. Since indigenous cattle vary with landscapes and socio-cultural values, have taken decades to establish, efforts to save them through genetic diversity studies, conservation and farmers sensitization should be undertaken immediately.

Résumé

Les bovins indigènes se soutiennent environ 26.1% des familles ougandaises par la fourniture de nourriture et de revenus, en plus de la fourniture de la richesse et de la sécurité socio-culturelle. Les éleveurs de bovins ont développé et maintenu variations de phénotypes et les génotypes de bovins indigènes adaptées à leurs zones agro-écologiques (ZAE) grâce à des pratiques de gestion traditionnelles et les aspects socio – culturels. Le Ankole (Bos taurus indicus), shorthorn Afrique de l'Est Zébu (EASZ) (Bos indicus) et leurs hybrides constituent les principales races de bovins indigènes, en ajoutant jusqu’à 93.3% du troupeau ougandaise. Avec intensions pour augmenter la productivité, les politiques de l'Etat encouragent les éleveurs à améliorer génotypes locaux vers les bovins élevés laitiers exotiques rendement. Cette si pas prévu de manière appropriée est susceptible d'entraîner dans la perte de la diversité génétique locale, bien dotée en la résilience aux conditions climatiques locales, les maladies endémiques et les contraintes de ressources d'alimentation. Ici, dans, nous passons en revue la littérature liée aux bovins indigènes en Ouganda, y compris la façon dont divers paysages, pratiques de gestion locales et les aspects socio- culturels ont renforcé types de variations de bovins indigènes. Ensuite, nous mettons en évidence les défis potentiels de la gestion intensive, une sélection accrue pour une meilleure productivité et des menaces à la diversité génétique des populations de bovins indigènes. Depuis les bovins indigènes varient avec des paysages et des valeurs socio-culturelles, ont pris des décennies à établir, les efforts pour les sauver à travers des études de la diversité génétique, la conservation et la sensibilisation des agriculteurs doivent être prises immédiatement.

Resumen

El ganado bovino autóctono sostiene a, aproximadamente, el 26.1 por ciento de las familias ugandesas mediante el abastecimiento en alimentos y el aporte de ingresos, además de por su importancia sociocultural en términos de riqueza y seguridad. Los criadores de ganado bovino autóctono han desarrollado y mantenido variaciones en el fenotipo y en el genotipo del ganado, que se adecúan a sus zonas agroecológicas, por medio de las prácticas tradicionales de manejo y por influencia de aspectos socioculturales. El ganado Ankole (Bos taurus indicus), el Cebú de Cuernos Cortos del Este de África (EASZ por sus siglas en inglés, Bos indicus) y sus cruces constituyen las principales razas autóctonas, llegando a representar hasta el 93.3 por ciento de la cabaña ugandesa. Con la intención de incrementar la productividad, las políticas estatales animan a los ganaderos a mejorar los genotipos locales con la vista puesta en el ganado lechero exótico de alta producción. Esto, si no se planifica adecuadamente, puede fácilmente llevar a una pérdida de la diversidad genética local, bien dotada de resistencia a las condiciones climáticas locales, a las enfermedades endémicas y a las limitaciones en la alimentación. En este artículo, revisamos la documentación existente sobre el ganado bovino autóctono de Uganda, incluido cómo diferentes entornos, prácticas locales de manejo y aspectos socioculturales han generado patrones de variación en el ganado bovino autóctono. A continuación, hacemos hincapié en los desafíos que pueden derivar del manejo intensivo, de una mayor selección para incrementar la productividad y de las amenazas a la diversidad genética de las poblaciones bovinas autóctonas. Dado que han sido necesarias décadas para que surgieran en el ganado bovino autóctono las variaciones debidas al entorno y a los valores socioculturales, los esfuerzos necesarios para preservarlas deben iniciarse cuanto antes (estudios de diversidad genética, proyectos de conservación y la sensibilización de los ganaderos).

Type
Research Article
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ajmone-Marsan, P., Garcia, J.F. & Lenstra, J.A. 2010. On the origin of cattle: how aurochs became cattle and colonized the world. Evol. Anthropol., 19: 148157.CrossRefGoogle Scholar
Amory, J.R., Barker, Z.E., Wright, J.L., Mason, S.A., Blowey, R.W. & Green, L.E. 2008. Associations between sole ulcer, white line disease and digital dermatitis and the milk yield of 1824 dairy cows on 30 dairy cow farms in England and Wales from February 2003-November 2004. Prev. Vet. Med., 83: 381391.CrossRefGoogle ScholarPubMed
AU-IBAR 2012. Rational use of rangelands and fodder crop development in Africa. African Union Inter African Bureau For Animal Resources, Monographic Series No. 1.Google Scholar
Baker, R.L. & Gray, G.D. 2004. Appropriate breeds and breeding schemes for sheep and goats in the tropics. Canberra, ACIAR Monograph.Google Scholar
Balikowa, D. 2011. Dairy development in Uganda: a review of Uganda's dairy industry, Dairy Development Authority (DDA). Uganda, (also available at http://www.fao.org/3/a-aq292e.pdf). Accessed 20 February 2014.Google Scholar
Baltenweck, I., Mubiru, S., Nanyeenya, W., Njoroge, L., Halberg, N., Romney, D. & Staal, S. 2007. Dairy production in Uganda: production efficiency and soil management strategies under different farming systems. ILRI Research Report 1. Nairobi, Kenya: Int. Livestock Research Institute.Google Scholar
Bayemi, P.H., Bryant, M.J., Perera, B.M., Mbanya, J.N., Cavestany, D. & Webb, E.C. 2005. Milk production in Cameroon: a review. Livestock Res. Rural Dev., Vol. 17, Art. #60. (also available at http://www.lrrd.org/lrrd17/6/baye17060.htm).Google Scholar
Bebe, B.O., Udo, H., Rowlands, G.J. & Thorpe, W. 2003. Smallholder dairy systems in the Kenya highlands: cattle population dynamics under increasing intensification. Livest. Prod. Sci., 82: 211221.Google Scholar
Bett, R.C., Okeyo, M.A., Malmfors, B., Johansson, K., Agaba, M., Kugonza, D.R., Bhuiyan, A., Filho, A.E.V., Mariante, A.S., Mujibi, F.D. & Philipsson, J. 2013. Cattle breeds: extinction or quasi-extant? Resources, 2: 335357. doi: 10.3390/resources2030335.Google Scholar
Bishop, S.C. 2012. A consideration of resistance and tolerance for ruminant nematode infections. Front. Genet., 3: 168. doi 10.3389/fgene.2012.00168.Google Scholar
Bradley, D.G., MacHugh, D.E., Cunningham, P. & Loftus, R.T. 1996. Mitochondrial diversity and the origins of African and European cattle. Proc. Natl. Acad. Sci. U. S. A., 93: 51315135.Google Scholar
Carval, D. & Ferrier, R. 2010. A unified model for the coevolution of resistance, tolerance and virulence. Evolution, 64: 29883009.Google Scholar
Chacko, C.T. 2005. Development of the Sunandini cattle breed in India. In Ojango, J.M., Malmfors, B. & Okeyo, A.M., eds. Animal genetics training Resource, Version 2, 2006. Nairobi, Kenya, ILRI and Uppsala, Sweden, Swedish University of Agricultural Sciences.Google Scholar
Danchin-Burge, C., Leroy, G., Moureaux, S. & Verrier, E. 2012. Evolution of the genetic variability of 8 French dairy cattle breeds assessed by pedigree analysis. J. Anim. Breed. Genet., 129, 206217. doi: 10.1111/j.1439–0388.2011.00967.x Google Scholar
Delgado, C. 2003. Rising consumption of meat and milk in developing countries has created a new food revolution. J. Nutrition, 133: 3907S3910S.CrossRefGoogle ScholarPubMed
Delgado, C., Rosegrant, M., Steinfeld, H., Ehui, S. & Courbois, C. 1999. Livestock to 2020. The next food revolution. Food, Agriculture and the Environment discussion paper No 28, Washington, DC, International Food Policy Research Institute, Rome, FAO, and Nairobi Livestock Research Institute.Google Scholar
Eisler, M.C., Lee, M.R.F., Tarlton, J.F., Martin, G.B., Beddington, J., Dungait, J.A.J., Greathead, H., Liu, J., Mathew, S., Miller, H., Misselbrook, T., Murray, P., Vinod, K.V., Van Saun, R. & Winter, M. 2014. Agriculture: steps to sustainable livestock. Nature, 507(7490): 3234.CrossRefGoogle ScholarPubMed
Epstein, H. 1971. The Origins of the Domestic Animals of Africa, Vol. 1. London, Africana Publishing Corporation.Google Scholar
FAO 2003. Defining livestock breeds in the context of community-based management of farm animal genetic resources. In Community-based management of farm animal genetic resources: 7–11 May 2003; Mbabane, Swaziland, FAO.Google Scholar
FAO 2007. The State of theWorld's Animal Genetic Resources for Food and Agriculture. Barbara Rischkowsky & Dafydd Pilling (eds.). Rome. (available at http://www.fao.org/docrep/010/a1250e/a1250e00.htm).Google Scholar
FAO 2009. Livestock keepers – guardians of biodiversity. Animal Production and Health, Paper No.167, ISBN: 2 978-92-5-106369-9 (available at http://www.fao.org/docrep/012/i1034e/i1034e00.htm) (accessed 21/8/2014).Google Scholar
Felius, M., Beerling, M.L., Buchanan, D.S., Theunissen, B., Koolmees, P.A. & Lenstra, J.A. 2014. On the history of cattle genetic resources. Diversity, 6: 705750. doi: 10.3390/d6040705.Google Scholar
Franktin, E. & Mearns, R. 2003. Sustainability and pastoral livelihoods: lessons from East African Maasai and Mongolia. Human Org., 62: 112122.Google Scholar
Freeman, A.R., Hoggart, C.J., Hanotte, O. & Bradley, D.G. 2006. Assessing the relative ages of admixture in the bovine hybrid zones of Africa and the near east using X chromosome haplotype mosaicism. Genetics, 173: 15031510.Google Scholar
Galukande, E., Mulindwa, H., Wurzinger, M., Roschinsky, R., Mwai, A.O. & Sölkner, J. 2013. Cross-breeding cattle for milk production in the tropics: achievements, challenges and opportunities. Anim. Genet. Res., 52: 111125. doi: 10.1017/S2078633612000471.Google Scholar
Gibson, J., Gamage, S., Hanotte, O., Iñiguez, L., Maillard, J.C., Rischkowsky, B., Semambo, D. & Toll, J. 2006. Options and strategies for the conservation of farm animal genetic resources. Report of an international workshop (7–10 November 2005, Montpellier, France). Rome, CGIAR System-wide Genetic Resources Programme (SGRP)/Bioversity International.Google Scholar
Gradé, J.T., Tabuti, J.R.S. & Van Damme, P. 2009. Ethnoveterinary knowledge in pastoral Karamoja, Uganda. J. Ethnopharmacol., 122: 273293.Google Scholar
Grimaud, P., Mpairwe, D., Chalimbaud, J., Messad, S. & Faye, B. 2007. The place of Sanga cattle in dairy production in Uganda. Trop. Anim. Health Prod., 39: 217227.CrossRefGoogle ScholarPubMed
Hanotte, O., Dessie, T. & Kemp, S. 2010. Time to tap Africa's livestock genomes. Ecology, 328(5986): 16401641.Google Scholar
Hanotte, O., Tawah, C.L., Bradley, D.G., Okomo, M., Verjee, Y., Ochieng, J. & Rege, J.E.O. 2000. Geographic distribution and frequency of a taurine Bos taurus and an indicine Bos indicus Y specific allele amongst sub-Saharan African cattle breeds. Mol. Ecol., 9: 387396.Google Scholar
HLPE 2013. Investing in smallholder agriculture for food security. In Gitz, V., ed. A report by the high level panel of experts on food security and nutrition of the committee on world food security. Rome, FAO. Available at http://www.fao.org/3/a-i2953e.pdf.Google Scholar
Hoffmann, I. 2010. Climate change and the characterization, breeding and conservation of animal genetic resources. Anim. Genet., 41(Suppl. 1): 3246.Google Scholar
Hoffmann, I. 2011. Livestock biodiversity and sustainability. Livest. Sci., 139: 6979.Google Scholar
Homann, S., Dalle, G. & Rischkowsky, B. 2004. Potentials and constraints of indigenous knowledge for sustainable range and water development in pastoral land use systems of Africa. A case study in the Borana lowlands of southern Ethiopia. In Eschborn: tropical ecology support programme (TOEB). Eschborn, Germany, GTZ. XIV, 123 p (Available at http://library.wur.nl/WebQuery/groenekennis/1722177)Google Scholar
Ingvartsen, K.L., Dewhurst, R.J. & Friggens, N.C. 2003. On the relationship between lactational performance and health: is it yield or metabolic imbalance that causes diseases in dairy cattle? A position paper. Livest. Prod. Sci., 83: 277308.Google Scholar
Inselman, A.D. 2003. Environmental degradation and conflict in Karamoja, Uganda: the decline of a pastoral society). Int. J. Global Env. Issues, 3(2): 168187.Google Scholar
IRIN 2013. Food insecurity threatens 1.2 million in Uganda's northeast, 10 July 2013. In Famine early warning systems network (FEWS NET). Nairobi, Integrated Regional Information Networks; (accessed 10 July 2013 at allafrica.com/stories/201307110451.html).Google Scholar
Jonsson, N.N., Bock, R.E., Jorgensen, W.K., Morton, J.M. & Stear, M.J. 2012. Is endemic stability of tick-borne disease in cattle a useful concept? Trends Parasitol., 28(3): 8589.Google Scholar
Joost, S., Bonin, A., Bruford, M.W., Després, L., Conord, C., Erhardt, G. & Taberlet, P. 2007. A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. Mol. Ecol., 16: 39553969.Google Scholar
Kabi, F., Masembe, C., Muwanika, V., Kirunda, H. & Negrini, R. 2014. Geographic distribution of non-clinical Theileria parva infection among indigenous cattle populations in contrasting agro-ecological zones of Uganda: implications for control strategies. Parasit. Vectors, 7: 414.Google Scholar
Kabi, F., Masembe, C., Negrini, R. & Muwanika, V. 2015. Patterns of indigenous female cattle morphometric traits variations in Uganda: evidence for farmers’ selection to enhance agro-ecological fitness, Anim . Genet. Res., 56: 7990. doi: 10.1017/S2078633614000551.Google Scholar
Kantanen, J., Løvendahl, P., Strandberg, E., Eythordottir, E., Li, M.-H., Kettunen-Præbel, A., Berg, P. and Meuwissen, T. 2015. Utilization of farm animal genetic resources in a changing agro-ecological environment in the Nordic countries. Front. Genet., 6: 52. doi: 10.3389/fgene.2015.00052.Google Scholar
King, J.M., Parsons, D.J., Turnpenny, J.R., Nyangaga, J., Bakari, P. & Wathes, C.M. 2006. Modelling energy metabolism of Friesians in Kenya smallholdings shows how heat stress and energy deficit constrain milk yield and cow replacement rate. Anim. Sci., 82: 705716.Google Scholar
Kityo, M.R. 2011. The effects of oil and gas exploration in the Albertine Rift region on biodiversity; a case of protected areas (Murchison Falls National Park). Nature Uganda.Google Scholar
Kohler-Rollefson, I. 2003. Indigenous knowledge about breeding and breeds. In GTZ/FAO, Proc. of the Workshop “Community-Based Management of Animal Genetic Resources – A Tool for Rural Development”, Mbabane, Swaziland.Google Scholar
Kugonza, D.R., Nabasirye, M., Mpairwe, D., Hanotte, O. & Okeyo, A.M. 2011. Productivity and morphology of Ankole cattle in three livestock production systems in Uganda. Anim. Genet. Res., 48: 1322.Google Scholar
Kugonza, D.R., Nabasirye, M., Hanotte, O., Mpairwe, D. & Okeyo, A.M. 2012. Pastoralists’ indigenous selection criteria and other breeding practices of the long-horned Ankole cattle in Uganda. Trop. Anim. Health Prod., 44(3): 557565.CrossRefGoogle ScholarPubMed
Krätli, S. 2008. What do breeders breed? On pastoralists, cattle and unpredictability. J. Agric. Environ. Int. Dev., 102(1/2): 123139.Google Scholar
Krätli, S., Huelsbusch, C., Brooks, S. & Kaufmann, B. 2013. A critical asset for food security under global climate change. Anim. Front., 3: 4250. doi: 10.2527/af.2013-0007.Google Scholar
Loquang, T.M. & Köehler-Rollefson, I. 2005. The potential benefits and challenges of agricultural animal biotechnology to pastoralists. In The 4th All Africa Conf. on Animal Agriculture and the 31st annual meeting of Tanzania Society for Animal Production. Arusha, Tanzania, 20–24 September 2005. TSAP and Nairobi, Kenya, ILRI.Google Scholar
MAAIF 2013. Agriculture for Food and Income Security, Agriculture Sector Development Strategy and Investment Plan 2010/11-2014/15 (Available at www.agriculture.go.ug/userfiles/AgriculturalSectorDevelopmentStrategyandInvestmentPlan29.pdf) (accessed on 20/09/2013).Google Scholar
Ministry of Agriculture, Animal Industry and Fisheries, Uganda; Uganda Bureau of Statistics; Food and Agriculture Organization of the United Nations; International Livestock Research Institute; and World Resources Institute. 2010. Mapping a Better Future: Spatial Analysis and Pro-Poor Livestock Strategies in Uganda. Greg Mock, Polly Ghazi & Hyacinth Billings (eds). p. 48. Washington, DC and Kampala, World Resources Institute. Available at http://www.wri.org/sites/default/files/pdf/mapping_a_better_future_livestock.pdf.Google Scholar
MAAIF/UBOS 2010. National Livestock Census Report 2008. Kampala, Uganda: Ministry of Agriculture, Animal Industry and Fisheries, Entebbe /Uganda Bureau of Statistics, Kampala, Uganda.Google Scholar
Magona, J.W., Walubengo, J. & Kabi, F. 2011. Response of Nkedi Zebu and Ankole cattle to tick infestation and natural tick-borne, helminth and trypanosome infections in Uganda. Trop. Anim. Health Prod., 32: 8798.Google Scholar
Mirkena, T., Duguma, G., Haile, A., Tibbo, M., Okeyo, A.M., Wurzinger, M. & Sölkner, J. 2010. Genetics of adaptation in domestic farm animals: a review. Livest. Sci., 132: 112.Google Scholar
Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G. & The PRISMA Group (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med., 6(6): e1000097. doi: 10.1371/journal.pmed1000097.Google Scholar
Moloo, S.K., Kutuza, S.B. & Borehan, P.F.L. 2006. Studies of Glossinapallidipes, G. fuscipesfuscipes and G. brevipalpis in terms of epidemiology and epizootiology of trypanosomiasis in South-eastern Uganda. Ann. Trop. Med. Parasitol., 74: 219237.Google Scholar
Muhereza, F. E. & Ossiya, S. A. (eds.) 2004. Pastoralism in Uganda. People, Environment and Livestock: Challenges for the PEAP. Uganda National NGO Forum and Civil Society Pastoral Task Force. Kampala, Uganda.Google Scholar
Mwacharo, J.M., Okeyo, A.M., Kamande, G.K. & Rege, J.E. 2006. The small east African shorthorn zebu cattle in Kenya. I linear body measurements. Trop. Anim. Health Prod., 38: 6574.Google Scholar
Nalule, S. 2010. Social management of rangelands and settlement in Karamoja. Kampala: FAO.Google Scholar
Ndumu, D.B., Baumung, R., Wurzinger, M., Drucker, A.G., Okeyo, A.M., Semambo, D. & Sölkner, J. 2008. Performance and fitness traits versus phenotypic appearance in the African Ankole Longhorn cattle: a novel approach to identify selection criteria for indigenous breeds. Livest. Sci., 113: 234242.Google Scholar
Nørgaard, N.H., Lind, K. & Agger, J.F. 1999. Co-integration analysis used in a study of dairy-cow mortality. Prev. Vet. Med., 42: 99119.Google Scholar
Ocaido, M., Otim, C.P., Okuna, N.M., Erume, J., Ssekitto, C., Wafula, R.Z.O., Kakaire, D., Walubengo, J. & Monrad, J. 2005. Socio-economic and livestock disease survey of agro-pastoral communities in Serere County, Soroti District, Uganda. Livest. Res. Rural Dev., Vol. 17, Art. #93. Retrieved from http://www.lrrd.org/lrrd17/8/ocai17093.htm Google Scholar
Okello, S. & Sabiti, E. 2006. Milk production of indigenous Ankole cattle on Uganda as influenced by seasonal variations in temperature, rainfall and feed quality. Makerere Univ. Res. J., 1: 7392.Google Scholar
Okello-Onen, J., Mukhebi, A.W., Tukahirwa, E.M., Musisi, G., Bode, E., Heinonen, R., Perry, B.D. & Opuda-Asibo, J. 1998. Financial analysis of dipping strategies for indigenous cattle under ranch conditions in Uganda. Prev. Vet. Med., 33: 241250.Google Scholar
Oltenacu, P.A. & Algers, B. 2005. Selection for increased production and the welfare of dairy cows: are new breeding goals needed? Ambio, 34: 311315.Google Scholar
Oltenacu, P.A. & Broom, D.M. 2010. The impact of genetic selection for increased milk yield on the welfare of dairy cows. Anim. Welfare, 19(S): 3949.Google Scholar
Otim, C.P., Ocaido, M., Okuna, N.M., Erume, J., Ssekitto, C., Wafula, R.Z.O., Kakaire, D., Walubengo, J., Okello, A., Mugisha, A. & Monrad, J. 2004. Disease and vector constraints affecting cattle production in pastoral communities of Sembabule district, Uganda. Livest. Res. Rural Dev., Vol. 16, Art. #35. Retrieved from http://www.lrrd.org/lrrd16/5/otim16035.htm Google Scholar
Otte, J. & Upton, M. 2005. Poverty and livestock agriculture (available at http://books.google.com/books?hl=en&lr=&id=0_3CegomgG4C&oi=fnd&pg=PA281&dq=Otte,+J.+Upton,+M+Poverty+and+Livestock+agriculture&ots=Vjt) (accessed 10 June 2014).Google Scholar
Pariset, L., Joost, S., Ajmone Marsan, P. & Valentini, A. 2009. Landscape genomics and biased FST approaches reveal single nucleotide polymorphisms under selection in goat breeds of North-East Mediterranean. BMC Genet., 10: 7, doi:10.1186/1471-2156-10-7. http://www.biomedcentral.com/content/pdf/1471-2156-10-7.pdf Google Scholar
Payne, W.J.A. 1990. An introduction to animal husbandry in the tropics. London, UK, Longman.Google Scholar
Rathore, H.S. & Kohler-Rollefson, I. 2002. Indigenous institutions of managing livestock genetic diversity in Rajasthan (India). In Local livestock breeds for sustainable rural livelihoods; towards community-based approaches for animal genetic resource conservation, pp. 5768. Maier, Jürgen, Armonia, Ricardo, Gura, Susanne (eds). Udaipur and Sadri, Rajasthan, India, Lokhit Pashu-Palak Sansthan and League for Pastoral Peoples.Google Scholar
Rauw, W.M. 2009. Resource allocation theory applied to farm animals. CAB International: Wallingford, UK.Google Scholar
Rauw, W.M., Kanis, E., Noordhuizen-Stassen, E.N. & Grommers, F.J. 1998. Undesirable side effects of selection for high production efficiency in farm animals: a review. Livest. Prod. Sci., 56: 1533.Google Scholar
Rege, J.E. 1999. The state of African cattle genetic resources 1. Classification framework and identification of threatened and extinct breeds. Anim. Genet. Resour. Info. Bull., 25: 125138.Google Scholar
Rege, J.E. & Tawah, C. 1999. The state of African cattle genetic resources II, geographical distribution, characteristics and uses of present-day breeds and strains. Anim. Genet. Resour. Info., 26: 125.Google Scholar
Rege, J.E.O. & Gibson, J.P. 2003. Animal genetic resources and economic development: issues in relation to economic valuation. Ecol. Econ., 45: 319330.Google Scholar
Schwartz, M.K., Copeland, J., Anderson, N.J., Squires, J.R., Inman, R.M., Mckelvey, K.S., Pilgrim, K.L., Waits, L.P. & Cushman, S.A. 2009. Wolverine gene flow across a narrow climatic niche. Ecology, 90(11): 32223232.Google Scholar
Seré, C., van der Zijpp, A., Persley, G. & Rege, E. 2008. Dynamics of livestock production systems, drivers of change and prospects for nimal genetic resources. Anim. Genet. Resour. Info., 42: 324.Google Scholar
Stephens, M. 2006. Handbook of Australian livestock. 5th edition. Sydney, Australia, Australian Meat and Livestock Corporation.Google Scholar
Stites, E., Fries, L. & Akabwai, D. 2011. Foraging and Fighting: Community Perspectives on Natural Resources and Conflict in Southern Karamoja. In Feinstein International Center; 2010.Google Scholar
Taberlet, P., Valentini, A., Rezaei, H.R., Naderi, S., Pompanon, F., Negrini, R. & Ajmone-Marsan, P. 2008. Are cattle, sheep, and goats endangered species? Mol. Ecol., 17: 275284.CrossRefGoogle ScholarPubMed
Taberlet, P., Coissac, E., Pansu, J. & Pompanon, F. 2011. Conservation genetics of cattle, sheep, and goats. C. R. Biol., 334: 247254.Google Scholar
Thomas, D., Zerbini, E., Rao, P.R. & Vaidyanathan, A. 2002. Increasing animal productivity on small mixed farms in South Asia: a systems perspective. Agric. Syst., 71: 4157.Google Scholar
Thornton, P.K. 2010. Livestock production: recent trends, future prospects. Phil. Trans. R. Soc. B, 365: 28532867. doi: 10.1098/rstb.2010.0134.Google Scholar
Udo, H.M.J., Aklilu, H.A., Phong, L.T., Bosma, R.H., Budisatria, I.G.S., Patil, B.R., Samdup, T. & Bebe, B.O. 2011. Impact of intensification of different types of livestock production in smallholder crop-livestock systems. Livest. Sci., 139: 2229.Google Scholar
Van Raden, P.M. 2004. Invited review: selection on net merit to improve lifetime profit. J. Dairy Sci., 87: 31253131.Google Scholar
Weaver, A.D. 2000. Lameness. In Andrews, A.H., ed. The health of dairy cattle. Oxford, Blackwell. pp. 149202.Google Scholar
Webster, A.J.F. 2000. Sustaining fitness and welfare in the dairy cow. In Proc. of the New Zealand Society of Animal Production: 2000; New Zealand, Vol. 60, pp. 207213. New Zealand Society of Animal Production; (Ed) Peterson SW.Google Scholar
Whitaker, D.A., Kelly, J.M. & Smith, S. 2000. Disposal and disease rates in 340 British dairy herds. Vet. Record, 146: 363367.Google Scholar
Wilson, R.T. 2009. Fit for purpose – the right animal in the right place. Trop. Anim. Health Prod., 41: 10811090.Google Scholar
Wurzinger, M., Ndumu, D., Baumung, R., Drucker, A., Okeyo, A.M., Semambo, D.K., Byamungu, N. & Sölkner, J. 2006. Comparison of production systems and selection criteria of Ankole cattle by breeders in Burundi, Rwanda, Tanzania and Uganda. Trop. Anim. Health Prod., 38: 571581.Google Scholar